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Within a minimum model for neutron stars consisting of nucleons, electrons, and muons at 8 equilibrium using
about a dozen equations of state (EOS) from microscopic nuclear many-body theories and 40000 EOSs randomly
generated using an explicitly isospin-dependent parametric EOS model for high-density neutron-rich nucleonic
matter within its currently known uncertainty range, we study correlations among the f-mode frequency, its
damping time and the tidal deformability as well as the compactness of neutron stars. Except for quark stars, both
the f-mode frequency and damping time of canonical neutron stars are found to scale with the tidal deformability
independent of the EOSs used. Applying the constraint on the tidal deformability of canonical neutron stars
Ay4 = 1901399 extracted by the LIGO+VIRGO Collaborations from their improved analyses of the GW170817
event, the f-mode frequency and its damping time of canonical neutron stars are limited to 1.67-2.18 kHz and
0.155-0.255 s, respectively, providing a useful guidance for the ongoing search for gravitational waves from
the f-mode oscillations of isolated neutron stars. Moreover, assuming either or both the f-mode frequency and
its damping time will be measured precisely in future observations with advanced gravitational wave detectors,
we discuss how information about the mass and/or radius as well as the still rather elusive nuclear symmetry
energies at suprasaturation densities may be extracted.
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I. INTRODUCTION

If a neutron star is disturbed by an external or internal
event, it may then oscillate nonradially and thus emit grav-
itational waves (GWs). The latter are generally expected to
provide useful information about the structure and the under-
lying equations of state (EOS) of neutron stars. For a recent
review on how and what information about the EOS of dense
neutron-rich matter can be extracted from studying the peak
frequency of postmerger GW spectrum, frequencies of both
quasiequilibrium and resonant tides in merging neutron star
binaries as well as frequencies of various oscillating modes
of isolated neutron stars, we refer the reader to Ref. [1].
Hopefully, the predicted features, see, e.g., those summarized
in Refs. [2,3], of GWs from quasinormal modes will be
verified in the near future with advanced GW detectors, such
as the Einstein Telescope [4,5].

The theoretical formalism for describing the GWs from
the quasinormal oscillations of neutron stars has been well
established, see, e.g., Refs. [6,7]. The quasinormal modes
can be classified into the polar and axial modes: the polar
modes correspond to zonal compressions while the axial
modes induce differential rotation in the fluid [8]. In neutron
stars, the polar modes can be coupled to fluid oscillations
(the fundamental f-modes, pressure p-modes, and a branch
of space-time modes: the polar w-modes) [9,10] while the
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axial modes are purely the space-time modes of oscillations
(the axial w-modes) [11,12]. Here we focus on the f-mode
as its relatively low frequency (1 ~ 3 kHz) makes it relatively
easier to be observed than other modes [10]. For example, for
a neutron star located at 10 kpc from us, Kokkotas et al. [13]
estimated that the energy required in the f-mode in order to
be detected with a signal-to-noise ratio of 10 by the advanced
LIGO detector is 8.7x 107 "My, It is far smaller than that for
the p-mode and w-mode.

There are several different ways to stimulate the pulsation
modes [13]: (i) A supernova explosion. An optimistic estimate
for the energy radiated as the GW from supernovae can be
up to about 1072 My, (ii) A star quake associated with a
pulsar glitch. The typical energy released in this process is
estimated to be about 107°-10"7 Mg [14]. (iii) A binary
neutron star merger remnant. Before the remnant collapses
to a black hole, it is expected that several oscillation modes
can be excited [15]. Moreover, the oscillation modes of in-
dividual neutron stars can also be excited by the tidal fields
before they merger [16]. (iv) A prominent phase transition,
which can lead to a mini collapse in neutron stars and thus
results in a sudden softening of the EOS. An optimistic
estimate for the energy radiated as GWs could be up to
1072 Mg, [13,17].

While the above expectations and estimates are based
on solid theoretical studies, essentially none of them have
been observationally confirmed yet. Thus, relating them with
existing observations is very useful. The first detection of
a binary neutron star merger event GW170817 has opened
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a new window for understanding properties and the EOS
of neutron stars. Indeed, many interesting physics, see, e.g.,
Refs. [18-25], has been extracted from the historical event
GW170817. One key quantity extracted from the GW170817
is the tidal deformation A4 = 1901“?38 [21] for canonical
neutron stars of mass 1.4Mg. The f-mode induced by the
tidal force during mergers of neutron star binaries has also
been investigated in recent years, see, e.g. Refs. [26-28]. It
would thus be interesting to study if and how the extracted
tidal deformability may help constrain any features of the
f-mode oscillations of neutron stars. We find that the f-mode
frequency and damping time for canonical neutron star are
limited to 1.67-2.18 kHz and 0.155-0.255 s, respectively.
As refined measurements of the tidal deformability for more
merger events are expected, tighter constraints on the f-
mode will come. In turn, future measurements of the f-mode
frequency and damping time themselves will help crosscheck
results from other approaches in the era of multimessenger
astronomy.

It is easy to understand that GWs emitted from the quasi-
normal modes carry useful information about global proper-
ties and the internal structure as well as the EOS of neu-
tron stars. But how can we decipher this information from
the detected GWs? Normally, one investigates features, such
as the frequency and damping time, of quasinormal modes
through numerically solving differential equations governing
the perturbed metric with model EOSs of neutron star matter.
If we call this route as the direct way that is basically straight-
forward given an EOS, the inverse approach (i.e., using the ob-
served f-mode features to infer properties and the underlying
EOS of neutron stars) is not easy because the related differen-
tial equations are too complicated to be numerically inverted.
Besides the standard Bayesian inference, a practically useful
way is to make use of the well-established universal relations
(independent of the EOS of neutron star matter) revealed in
studying the frequency and damping time of the quasinormal
modes and their dependences on the compactness of neutron
stars, see, e.g., Refs. [3,8,10,72]. Obviously, if the universal
relations are correct, one can use observed GW features to
determine the scaling parameters, such as the stellar mass,
radius, and moment of inertia. Can we further determine the
underlying EOS? The answer is yes since the global properties
of neutron stars depend strongly on the EOS. We will explore
if and how this may be done after verifying some of the
well-known universal relations.

The paper is organized as follows. In Sec. II, the parametric
EOS of dense neutron-rich nucleonic matter is outlined. In
Sec. III, we first study the correlations between the f-mode
frequency (damping time) and the tidal deformation. Con-
straints on the f-mode frequency and its damping time by the
tidal deformation of canonical neutron stars extracted from
the GW 170817 event are then presented. In Sec. IV, a brief
review on the universal relations of the f-mode oscillations
is given. In Sec. V, we discuss how information about global
properties of neutron stars and the high-density behavior of
nuclear symmetry energy can be extracted assuming either
or both the f-mode frequency and damping time are mea-
sured accurately. A summary of the main points is given at
the end.

II. AN EXPLICITLY ISOSPIN-DEPENDENT EOS FOR
DENSE NEUTRON-RICH NUCLEONIC MATTER

For ease of our following discussions, we briefly outline
here how we construct the EOS within a minimum model
for neutron stars consisting of neutrons, protons, electrons,
and muons at 8 equilibrium. More details can be found in
Ref. [29]. We use the NV EOS [30] for the inner crust and
the BPS EOS [31] for the outer crust. The transition point
to the liquid core is found by studying where and when
the incompressibility of uniform neutron star matter becomes
imaginary, see detailed discussions in Ref. [29]. For the EOS
of the core, there are many predictions based on various
nuclear many-body theories using different interactions. The
predicted EOSs from different theories often diverge espe-
cially at suprasaturation densities. Thus, to minimize model
dependence in preparing the EOS of neutron star matter while
be flexible and inclusive enough to cover all EOSs allowed
by all known constraints, here we adopt the rather general
parametric EOS model for neutron-rich nucleonic matter in
the core [29]. The total pressure as a function of energy
density for the charge neutral npey matter at 8 equilibrium
is calculated self-consistently. As a basic input, the nucleon
specific energy E(p, §) of neutron-rich matter with isospin
asymmetry § = (o, — pp)/p can be well approximated by the
empirical parabolic law as [32,33]:

E(p,8) = Ey(p) + Eqym(p) - 8% + 0(8Y), (1)

where Ey(p) and Egy(p) are the energy in symmetric nuclear
matter and the symmetry energy of asymmetric nuclear mat-
ter, respectively. They can be conveniently parameterized as
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According to the existing knowledge on the parameters near
the saturation density of nuclear matter, the most proba-
ble values of them are as follows: Ky = 230 =20 MeV,
Egym(po) =31.7£3.2 MeV, L =587%28.1 MeV, and
—300 < Jo < 400 MeV, —400 < Kym < 100 MeV, —200 <
Joym < 800 MeV, see, e.g., Refs. [34-39]. The first three pa-
rameters Ko, Egym(00), and L have already been constrained in
their respective narrow ranges, while the last three parameters
Jo, Ksym, and Jgyn, still have very large uncertainties. It is worth
emphasizing that the above expressions have the following
dual meanings: they are Taylor expansions near the saturation
density for systems with low isospin asymmetries. For very
neutron-rich systems especially at suprasaturation densities,
they are simply parametrizations. Thus, the high-density pa-
rameters Jo, Ky, and Jgyn are no longer Taylor expansion
coefficients, but free parameters to be determined by obser-
vations of neutron stars and/or high-energy heavy-ion reaction
experiments especially with radioactive beams [29]. However,
the uncertainty ranges of these parameters cited above mostly
based on nuclear theory predictions provide a useful reference
(the ranges of prior probability distribution functions of these
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parameters in Bayesian analyses) for their eventual inference
from the experimental and observational data. By varying
the EOS parameters, we can generate efficiently large num-
bers of EOSs for neutron star matter. These EOSs are first
screened against the well-accepted constraints, such as, the
causality condition and the ability to support neutron stars
with masses at least as high as 2.01 Mg, etc.

For comparisons, we also use 11 EOSs from predictions of
microscopic nuclear many-body theories for normal or hybrid
neutron stars (marked as 11 microscopic EOSs in the follow-
ing text and figures) and 2 EOSs from the MIT bag model
for quark stars. The 11 microscopic EOSs include: ALF2 of
Alford et al. [40] for hybrid (nuclear + quark matter) stars,
APR3 and APR4 of Akmal and Pandharipande [41], ENG of
Engvik et al. [42], MPA1 of Muther, Prakash, and Ainsworth
[43], SLy of Douchin and Haensel [44], WWF1 and WWF2
of Wiringa, Fiks, and Fabrocini [45], the QMFL40, QMFL60,
and QMFL80 within the quark mean field model with
L = 40, 60, and 80 MeV, respectively, from the recent work
of Zhu et al. [46]. The two EOSs of quark stars are from the
MIT bag model with the pressure p as a function of energy
density € given by p(e) = 1/3(e — 4B) with the bag constant
B =30 MeV/fm® and 57 MeV/fm®, respectively [47,48].
We notice that the bag constant used here might be smaller
than the values used by others in various studies, see, e.g.,
Ref. [49]. Nevertheless, as we shall show our qualitative
conclusions are independent of the MIT bag model.

III. CONSTRAINTS ON THE f-MODE FREQUENCY
AND DAMPING TIME BY THE TIDAL DEFORMATION
OF NEUTRON STARS

Among the properties of neutron stars extracted from ana-
lyzing the GW170817 event, the tidal deformation is the most
important one carrying information about the EOS of neutron
star matter. The dimensionless tidal deformability A is defined
using the second Love number k;, stellar mass M, and radius

R as
5
A= gkz . <£) . @

The k, depends on not only the mass M and radius R but also
the interior structure of neutron stars. Numerically, it is deter-
mined through a very complicated differential equation [50]
coupled to the Tolman-Oppenheimer-Volkov (TOV) equation
[51,52] for a given EOS. The code we used to calculate the &,
is the same one used previously in Refs. [53,54].

Within the parametric EOS model outlined in Sec. II, we
generated 40000 EOSs for neutron stars in the following way:
the parameters characterizing the EOS near the saturation
density of nuclear matter are fixed at their most probable
values known, i.e., Ko =230 MeV, Egn(po) = 31.7 MeV,
and L = 58.7 MeV; while the parameters describing the high-
density behavior of nuclear EOS are randomly selected with
equal probabilities in the ranges of —300 < Jy < 400 MeV,
—400 < Kgym < 100 MeV, and —200 < Joym < 800 MeV, re-
spectively. After removing those (i) violating the causality
condition, or (ii) can not support the currently observed most
massive neutron star of mass 2.01 Mg, [55], (iii) or leading to
mechanical instabilities at any density, over 23,000 rational
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FIG. 1. The correlation between the f-mode frequency and the
tidal deformability of canonical neutron stars using 23000 phe-
nomenological EOSs (solid black line), 11 microscopic EOSs (red
dots), and 2 EOSs for quark stars within the MIT bag model (blue
stars). The cross at (165, 2.18) corresponds to the lower limit of the
tidal deformability predicted using the parameterized EOS satisfying
all known constraints from terrestrial nuclear experiments, while
the cross at (580, 1.67) corresponds to the upper limit of the tidal
deformability of neutron stars extracted from the GW170817 event
by LIGO and VIRGO Collaborations.

EOSs are left to be used as inputs to solve the TOV and the
differential equations governing the complex frequency of the
f-mode given in the Appendix.

We now explore possible correlations between the f-mode
characteristics and the tidal deformability of neutron stars.
Such correlations may exist because it has been well known
that both the f-mode frequency and its damping time scale
with the compactness M/R independent of the EOS, see, e.g.,
Refs. [8,58], while the tidal deformability has also been found
to depend strongly on the (M/R)* although the « is still rather
EOS model dependent [56]. Our results for a fixed stellar
mass of 1.4 Mg are presented in Figs. 1 and 2. It is very
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FIG. 2. Same as Fig. 1, but for the f-mode damping time.
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interesting to see that an almost perfect universal correlation
exists between the frequency and/or damping time and the
tidal deformability except for the two quark EOSs. It is not
surprising that the f and t versus A relations with the quark
star EOSs do not fall onto the same universal relations as
with the other EOSs used. Indeed, both the f (or 7) versus
M/R and A versus M/R universal relations were suggested
earlier without considering any quark star model [57,58]. One
possible reason is that both the tidal deformability A and
the f-mode characteristics (f and t) depend strongly on the
internal structure of neutron stars. Indeed, the structure of
quark stars is quite different from the normal (npey matter
with or without hyperons) neutron stars that have a character-
istic low-density crust. As a result, their mass-radius relations
are very different, leading to the distinct f and t versus A
relations.

The universal f and t versus A relations may have some
significant applications. Obviously, they enable us to constrain
the predicted features of f-mode oscillations using the ex-
isting data on the tidal deformability of neutron stars and
terrestrial laboratory constrains on the EOS parameters. It
is seen that for a fixed stellar mass of 1.4 My, the lowest
tidal deformability A allowed by the parametric EOS is 165,
which is higher than the lower limit of A = 70 extracted
from analyzing the GW170817 event [21]. While the revised
maximum tidal deformability A = 580 from the improved
analyses [21] of the GW 170817 event limits both the f-mode
frequency and damping time. Therefore, by combining the
two constraints: the EOS parameter space allowed by existing
terrestrial nuclear laboratory experiments and the tidal defor-
mation extracted from GW 170817, the f-mode frequency and
damping time for a 1.4 Mg neutron star are constrained in
the region of 1.67-2.18 kHz and 0.155-0.255 s, respectively,
providing a useful guidance for detecting GWs from f-mode
oscillations of neutron stars. As already pointed out by Kokko-
tas et al. [13], in gravitational wave astronomy, the frequency
of the f-mode could be detected very precisely, but the error
of extracting the damping time from observations could be
quite large. As more neutron star mergers are expected to be
measured more accurately, the further reduced uncertainty of
the tidal deformability especially about its lower limit will
constrain more tightly the f-mode features. Moreover, the f
and 7 versus A relations of quark stars deviate significantly
from those universal relations of normal neutron stars, provid-
ing a possible way of distinguishing the two kinds of neutron
stars. Interestingly, this observation is very similar to quark
stars’ deviations from the universal /-Q and I-Love number
relations [59].

To this end, it is very interesting to mention that simula-
tions of merging neutron star binaries have found that the mass
scaled frequency (peak frequency) at the maximum amplitude
on the spectrum of the postmerger GWs scales approximately
universally with some powers of the tidal deformability A
or compactness independent of the EOSs used [60-63]. If
the remnant formed after the merger can be instantaneously
approximated by a perturbed differentially rotating star, the
f-mode of pulsation is strongly excited and it is the most
efficient channel for GW emissions [63]. Thus, the scaling
of the peak frequency in the binary mergers can be related

to the f-mode frequency of isolated neutron stars. Indeed,
Andersson pointed out that the correlation between the peak
frequency and the tidal deformability in neutron star mergers
is in principle expected from results of the oscillating single
neutron stars [1]. Clearly, our results presented above support
his expectation. The common feature shared by the peak
frequency in postmerger spectrum and the f-mode frequency
of isolated neutron stars indicate that the differential rotations
and thermal effects do not significantly affect the oscillations.
Interestingly, it was also found very recently that a strong
first-order phase transition will lead to an observable imprint
on the gravitational radiation signal from mergers of neutron
star binaries [64]. Specifically, the peak frequency was shown
to exhibit a significant deviation from an empirical relation
between the peak frequency and the tidal deformability if
a strong first-order phase transition leads to the formation
of a gravitationally stable extended quark matter core in the
postmerger remnant.

IV. SCALINGS OF THE f-MODE FREQUENCY
AND DAMPING TIME WITH THE COMPACTNESS
OF NEUTRON STARS OF FIXED MASSES

We first recall here what has been known in the literature
about some universal scalings of the f-mode frequency and
damping time with respect to the compactness and its varia-
tions of neutron stars. We then compare our results from using
the 23000 parametric EOSs with the well-established scalings.
To our best knowledge, since the early work of Andersson
and Kokkotas [8,65], many groups have investigated the uni-
versality in characteristics of quasinormal modes of neutron
stars, see, e.g., Refs. [3,10,66-72]. It is worth noting that all
the universal relations reported are not absolutely independent
of the EOSs and we focus on the f-mode in this study.

The first widely cited equations to describe the universal
relation of f-mode come from the work of Andersson and
Kokkotas [65]. They found that the f-mode frequency and
damping time can be parameterized, respectively, as

M\ 2

0, ~ a,<ﬁ> + B 5)
M3 M

w; X F[‘W(E) + ﬁi]’ 6)

where «,(=1.635), 8,(=0.78), a;(= —14.65), and B;i(=
22.85) are model-independent constants. These universal
relations have the features that the frequency w, of the
f-mode is proportional to the square root of the stellar
average density, while the scaled damping time Mw; = M/1;
is a function of the compactness M/R. We note that quark
stars are not considered in obtaining the above relations.
Two other interesting universal relations were given in
Refs. [10,58]. In particular, the following parametrization can
be used for most of the quasinormal modes [58], including
the polar f-mode, first polar w-mode, second polar w-mode,
first axial w-mode, and the second axial w-mode. However,
it is worth noting that it is almost impossible to observe the
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w-mode gravitational radiation in actual observations [73,74].

Mo = LAY b M 7
a)—a<E> + <E>+c, (7

where a, b, and ¢ are complex constants and have individual
values for each mode. For the f-mode, a=0.15—
i5.8x107%, b =0.56 +i6.7x107%, and ¢ = —0.020 —
i6.2x1073. It is obvious that the complex eigenfrequency
only depends on the compactness M/R. This universal
relation also does not include quark stars. The following
is their other universal relation given in terms of the
effective compactness, n = /M?3/I, where I is the moment of
inertia [10]

Mw, = 0.5751> + 0.133n — 0.0047, 8)
Mo = —0.0256n> + 0.00694. 9)

This universal relation works well for both normal neutron
stars and quark stars, and have a better accuracy than earlier
universal relations. They argue that the effective compactness
is a better quantity to characterize the internal mass profile of
neutron stars.

Blazquez-Salcedo et al. obtained the following universal
relation directly relating the frequency (scaled by the radius)
and the damping time (scaled by the mass) [3]

4
wi/M = —(3.14 £ 0.12)x 10-‘0(%> + (164.63 £ 0.83)

X 105(%> —(5.16 £0.24) x 1073. (10)

Again, quark stars are not considered in deriving this relation.

More recently, Stergioulas et al. [71] extended the universal
relation for the damping time of f-mode to higher orders and
compared it with that in Refs. [58,65]. It reads

M\° M\’ M\*
Ma)i=0.628(—> —0.53<—> +0.112<—). an
R R R

This universal relation has a higher accuracy (with a standard
statistical correlation coefficient 0.9997) in a wide range of
compactness (0 < M/R < 0.33).

To this end, it is necessary to compare our results with the
well-established universal relations mentioned above. Indeed,
we found general agreements with the existing relations. As
an example, we compare in Fig. 3 our results using the 23000
parameterized EOSs with the universal relation of Eq. (7)
given in Ref. [58] for a fixed stellar mass of 1.4 M. The
TVIIM (red line) result was obtained from using a simple
TVIIM model (the Tolman VII model [51]) to approximate the
mass profile inside neutron stars, while the realistic stars (blue
dashed line) was obtained by fitting the EOSs predicted by
eight different models (APR1,APR2, AU, GM24, MODEL A,
MODEL C, UT, and UU), for details about these EOS models
we refer the reader to Ref. [58]. It is seen that our results
obtained by using the parameterized EOSs are generally con-
sistent with the universal relation of Eq. (7) using the two
different sets of EOSs. As we mentioned earlier and shown
in Fig. 3, the scalings between the frequency and compactness

B ) ) ) ) I ) ) ) ) I ) ) ) ) I ) ) ) ) I i
- - Paramterized EOSs o

- - - - - Realistic stars
009 P | —TVIIM =
) R 4
= 008 | —
Q L 4
I = -
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FIG. 3. Scaled f-mode frequency versus compactness of neutron
stars with a mass of 1.4 Mg from using 23000 parametric EOSs
(black points) is compared with the universal relations obtained in
Ref. [58] using the realistic EOSs (blue dashed line) and the Tolman
VII model (red line)

or the average density are not absolutely EOS-independent es-
pecially for neutron stars with very low or high compactness.
However, as we will discuss next and shown in Figs. 4-6, there
is a perfect universal relation between the f-mode frequency
and its damping time for neutron stars with fixed masses using
all EOSs including those for quark stars.

V. APPLICATIONS OF THE UNIVERSAL RELATION
BETWEEN THE FREQUENCY AND DAMPING TIME
OF f-MODE OSCILLATIONS OF NEUTRON STARS
WITH FIXED MASSES

According to the estimates of Kokkotas et al., the relative
error o7/ f in extracting the f-mode frequency can be up to
8x 107> assuming a signal-to-noise ratio of 10 [13]. Thus,
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FIG. 4. Correlation between the f-mode frequency and its damp-
ing time for neutron stars with a fixed mass of 1.4 My using the
23000 parametric EOSs, 11 microscopic EOSs, and 2 MIT bag
model EOSs for quark stars.
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FIG. 5. The universal relations between the f-mode frequencies
and damping times for different stellar masses. Constraints on the
radii of 1.4 Mg neutron stars by the supposed frequencies are
presented in the two blocks.

the frequency can be measured rather accurately while it is
more difficult to extract the damping time. Assuming opti-
mistically both the frequency and/or damping time of the GW
emitted from the f-mode oscillation of a neutron star can be
accurately measured in the near future, what can we learn
about the global properties of neutron stars and the underlying
EOS of dense neutron-rich nuclear matter? Here we try to
answer this question at least partially to the best we can. In
principle, using the parametric EOS one can solve the inverse-
structure problem of neutron stars as demonstrated recently in
Refs. [29,56,75] to find all necessary combinations of the EOS
parameters to produce a given observable or use techniques of
Bayesian analyses to infer the probability distribution func-
tions of all EOS parameters from the observational data. As an
alternative, here we explore the possibility of inferring global
properties of neutron stars and the underlying EOS using
the universal relations between the f-mode frequency and its
damping time of neutron stars with fixed masses assuming
both of them can be obtained accurately from observations.
Using the same sets of EOSs as in Sec. II, the correlation
between the f-mode frequency and its damping time for a
canonical neutron star is shown in Fig. 4. It is seen that
both the normal neutron stars and quark stars for a given
mass fall onto the same universal relation independent of
the EOSs used. This finding is not surprising. As outlined
in Sec. III, the differential equations governing the f-mode
complex frequency w as a whole depend on the EOS through
the pressure p. Since the real and imaginary parts of the
complex frequency w vary coherently with the EOS, their
dispersion relation for neutron stars with the same mass fall
onto the same curve. This is very different from inspecting
individually the frequency and damping time as functions of
the compactness or tidal deformability, which by itself varies
with the EOS. To further illustrate this point, the universal
relations with different stellar masses are shown in Figs. 5
and 6. As expected, from light to massive neutron stars, the
perfect universality between the f-mode frequency and its
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FIG. 6. Resolution for the stellar mass in the plane of frequency
vs damping time by using their universal relations.

damping time always holds. Thus, if both the frequency and/or
damping time of the GW emitted from the f-mode oscillation
of a neutron star can be accurately measured, some global
properties of neutron stars can be extracted. For example, if
a frequency of 1.80 & 0.01 kHz is observed from a neutron
star of known mass 1.4 Mg, then the damping time should
be 0.218-0.223 s from inspecting the correlations shown in
Fig. 5, and the stellar radius should be 12.23-12.69 km from
inspecting the correlation shown in Figs. 3 and 5. Properties
corresponding to another example with a measured frequency
of 2.00 £ 0.01 kHz are given also in Fig. 5.

Using the results shown in Fig. 6 we illustrate what we
can learn if both the f-mode frequency and its damping time
can be measured but from an isolated neutron star of an
unknown mass. Shown are the universal relations for three
neutron stars with similar masses of M = 1.38 Mg, 1.40 Mg,
and 1.42 Mg, respectively. The three relations are clearly
separated. If both the frequency f and damping time 7 can
be obtained simultaneously with some precisions from future
observations, such as, f = 1.80 kHz and 7 = 0.22 s, then the
stellar mass should be around 1.40 M.

One of the major goals of studying properties of neutron
stars is to understand and constrain the underlying EOS of
dense neutron-rich nuclear matter. While the isospin sym-
metric part Eyp(p) of the EOS has been relatively tightly
constrained by terrestrial nuclear laboratory experiments [76],
the density dependence of nuclear symmetry energy Egym(0)
has been the most uncertain part of the EOS of dense neutron-
rich nucleonic matter [77]. While significant progress has
been made in probing the Egy, (o) using nuclear experiments,
the high-density behavior of Egn,(p) remains rather elusive
[39,77]. We now explore to what extent the GWs from f-mode
oscillations may help constrain the high-density behavior of
nuclear symmetry energy. As examples, we assume that two
possible frequencies (1.640 kHz and 1.800 kHz) are detected
with a 1% accuracy for a neutron star of mass 1.4 Mg,
then only some values of the high-density symmetry energy
parameters Ky, and Jyyp, are allowed, leading to a constraint
on the Egm(p) at suprasaturation densities. Our results are
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FIG. 7. Constraint on the symmetry energy at two times the
saturation density of nuclear matter by the supposedly observed
f-mode frequency at 1.640 kHz with a 1% precision from observing
neutron stars of 1.4 M.

shown in Figs. 7 and 8 for the frequency of 1.640 kHz
and 1.800 kHz, respectively. In both cases, the Egn(p)
spreads further out as the density increases. Since the sym-
metry energy Egm(2p0) around twice the saturation den-
sity pg is especially important for determining the radii of
neutron stars [78], it is useful to compare specifically the
constraints on the Egyy,(200). If a lower (higher) frequency of
1.640 £ 0.016 kHz (1.800 £ 0.018 kHz) is observed, then a
higher (lower) value of Egy, (200) = 54.5 & 6.5 MeV (43.0 +
6.5 MeV) can be inferred. Comparing the results in Figs. 7
and 8, it is seen that a variation of about 9% in frequency
leads to about 22% change in the value of Egym (2,00) extracted.
Moreover, the tendency of the symmetry energy at even higher
densities are also quite different. To put the numerical results
in perspective, we note that an extrapolation of the experi-
mental Egp,(p) systematics from subsaturation to suprasatu-
ration densities predicted that Egym(200) ~ 40.2 £12.8 [79].
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FIG. 8. Same as Fig. 7 but with a frequency of 1.800 kHz.

A recent study of neutron star radii and tidal deformability
indicated that Ey, (200) = 46.9 £ 10.1 MeV [75], while pre-
dictions based on nuclear many-body theories scatter between
Egm(2p9) = 15 and 100 MeV [75]. Compared to these earlier
results especially the rather diverge theoretical predictions,
obtaining the limits on the Egn,(2p9) from the supposed
detection of the f-mode frequency with a 1% accuracy would
be a significant progress in constraining the EOS of dense
neutron-rich nuclear matter.

VI. SUMMARY

In summary, within a minimum model for neutron stars
using 11 EOSs from microscopic nuclear many-body theo-
ries, 2 EOSs from the MIT bag model for quark stars, and
40000 parametric EOSs with their parameters constrained
by all existing constraints mostly from terrestrial nuclear
laboratory experiments, we studied the correlations among
the f-mode frequency and its damping time as well as the
tidal deformability and compactness of neutron stars. Besides
verifying some of the well-established universal relations in
the literature, we find that

(i) Except for quark stars, both the f-mode frequency
and its damping time scale with the tidal deforma-
bility of canonical neutron stars independent of the
EOSs used.

(i) The tidal deformability A4 = 190J_r?28 from analyz-
ing the GW170817 event limits the f-mode frequency
and damping time of canonical neutron stars to 1.67—
2.18 kHz and 0.155-0.255 s, respectively, providing
a useful guidance for the ongoing search for gravita-
tional waves from the f-mode oscillations of neutron
stars.

(iii)) The f-mode frequency and its damping time strongly
correlate with each other for neutron stars of the
same masses. Assuming optimistically both of them
can be obtained with high accuracies from future
observations, their correlations allow for the accu-
rate extraction of neutron star global properties and
knowledge about the EOS of dense neutron-rich nu-
clear matter. Several numerical examples under ideal-
ized conditions were considered. In particular, nuclear
symmetry energy at twice the saturation density can
be extracted with an accuracy compatible with that of
several other approaches available.

Indeed, gravitational waves from the f-mode oscillations
of neutron stars provide useful and complementary informa-
tion about both properties of neutron stars and the underlying
EOS of dense neutron-rich nuclear matter.
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APPENDIX: BASIC FORMALISM FOR POLAR f-MODE

According to the work of Lindblom and Detweiler, the
perturbed metric of nonradial oscillating neutron stars can be
written as [6,7]

ds?> = —e"(1 + rlHOY,fle"“”)dt2 — 2iwrl+1H1Y,flei“”dtdr

(A)

The fluid element of perturbation can be expressed by the
Lagrangian displacement components as

£ = rl—le—k/2WYr£leiwt’ (A2)
£ = — 2V a,ylen, (A3)
£ = —r! (rsing)V d, Y e, (Ad)

where the Hy, H;, K, W, and V are perturbation func-
tions, and the Y! is the spherical harmonic function. They
are not all independent. The perturbed metric function Hj
can be represented by other two perturbed functions as
[6,7]

—i—e)‘El — rlHQerlei“”)dr2
+2(1 = FKY ) (d6* + sin*0d$>).
|
Ho = [3M + L1 +2)U — Dr +4xrp] " {8nr%e 2 — [L1( + )M + 471° p) — w?rPe*H)]H,
+HEU+2)1 — Dr — o’ P’ — (M +4nr’p)3M — r + 47’ p)K|}.

(A5)

By using linearized Einstein equations and the continuity equation, a set of fourth-order differential equations can be deduced
as the following [6,7]:

H = —r '+ 1+2Mr ' +dnr?e*(p — p)IH) + r~'e*[Hy + K — 167 (p + p)V], (A6)
K =r"Hy+ 31+ Dr 'Hy — [+ Dr~' = WK = 87 (p+ p)e**r™'W, (A7)
W = —(+Dr "W +re?[y 'ple™?X — (1 + Dr'V + 1Hp], (A8)
X =-Ir''X+(p+ ,o)e”/z{%(r_l — %v’)Ho + %[rwze_" + %l(l + l)r_l]Hl + %(%v’ —r K
—HA+ )WV = an(p+ p)e? + PPV — 1P AV Y WY, (A9)
where the prime / represents the first-order derivative with respect to radius, such as X' = ‘é—}f, the quantity y = % fl—ﬁ is
the adiabatic index, and the function X (to replace V) is defined as
X = w(p+p)eV = p'r~1e" W + 3(p + p)e"*Hy. (A10)

To numerically solve the perturbation equations, one can integrate the Egs. (A6)—(A9) from the center to the surface of neutron
stars. The initial values at the center are taken as

W) =1,H(0) = K(0) = *+(p0 + po), (A1D)

H1(0) = [2IK(0) + 167 (0o + po)W (O)1/[1(I + 1], (A12)
e 2 —uy)2 1

X(0) = (po + po)e™™ ?(,00 +3po) —w7e "7 |W(0) + EK(O) . (A13)

The unique solution with a specific complex frequency @ = w, + iw; is determined by the condition X (R) = 0 at the stellar
surface [9]. The f-mode oscillation frequency f = w,/(27) and its damping time t = 1/w; are determined by the real and
imaginary parts of w, respectively. Several methods to numerically solve the above set of first-order differential equations [Eqgs.
(A8)—(A9)] have been proposed, such as the Detweiler-Lindblom method [6,7], the Kokkotas-Schutz method [12], and the
Andersson-Kokkotas-Schutz method [80]. To numerically calculate the frequency and damping time of f-mode, we employed
the Detweiler-Lindblom method [6,7] here. The code we used in this work is the same one we used earlier in Ref. [81].
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