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Single-particle energies of the �c charmed baryon are obtained in several nuclei from the relevant self-energy
constructed within the framework of a perturbative many-body approach. Results are presented for a charmed
baryon-nucleon (YcN) potential based on a SU(4) extension of the meson-exchange hyperon-nucleon potential Ã
of the Jülich group. Three different models (A, B, and C) of this interaction, which differ only on the values of the
couplings of the scalar σ meson with the charmed baryons, are considered. Phase shifts, scattering lengths, and
effective ranges are computed for the three models and compared with those predicted by the YcN interaction
derived by Haidenbauer and Krein [Eur. Phys. A 54, 199 (2018)] from the extrapolation to the physical pion
mass of recent results of the HAL QCD Collaboration. Qualitative agreement is found for two of the models
(B and C) considered. Our results for �c nuclei are compatible with those obtained by other authors based on
different models and methods. We find a small spin-orbit splitting of the p-, d-, and f -wave states as in the case
of single � hypernuclei. The level spacing of �c single-particle energies is found to be smaller than that of the
corresponding one for hypernuclei. The role of the Coulomb potential and the effect of the coupling of the �cN
and �cN channels on the single-particle properties of �c nuclei are also analyzed. Our results show that, despite
the Coulomb repulsion between the �c and the protons, even the less attractive one of our YcN models (model
C) is able to bind the �c in all the nuclei considered. The effect of the �cN-�cN coupling is found to be almost
negligible due to the large mass difference of the �c and �c baryons.
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I. INTRODUCTION

Soon after the discovery of charmed hadrons [1–6], the
possible existence of charmed nuclei (bound systems com-
posed of nucleons and charmed baryons) was proposed in
analogy with hypernuclei (see, e.g., Refs. [7–11]). This possi-
bility motivated several authors to study the properties of these
systems within different theoretical approaches, predicting a
rich spectrum and a wide range of atomic numbers [12–18].
Production mechanisms of charmed nuclei by means of charm
exchange or associate charm production reactions, analo-
gous to the ones widely used in hypernuclear physics, were
also proposed [19,20]. However, the experimental production
of charmed nuclei is difficult and, up to now, only three
ambiguous candidates have been reported by an emulsion
experiment carried out in Dubna in the mid 1970s [21–25].
Experimental difficulties arise mainly from (i) the kinematics
of the production reactions: charmed particles are formed with
large momentum making their capture by a target-nucleus
improbable; and (ii) the short lifetimes of D-meson beams,
which makes it necessary to place the target as close as pos-
sible to the D-meson production point. Such difficulties will
be hopefully overcome at the future GSI-FAIR (Gesellschaft
für Schwerionenforschung–Facility for Antiproton and Ion
Research) and JPARC (Japan Proton Accelerator Research

Complex) facilities [26,27]. The production of charmed par-
ticles in these facilities will be sufficiently large to make
the study of charmed nuclei possible. Studies of p̄ reactions
in nuclei under the conditions of the PANDA experiment
predict forward differential cross sections for the formation
of �c hypernuclei in the range of a few μb/sr [28]. These
future prospects have injected a renewed interest in this line
of research [29]. In the last few years, theoretical estimations
of the charmed baryon properties in nuclear matter and finite
nuclei have been revisited using the quark-meson coupling
model [30–33], a relativistic mean-field approach [34], effec-
tive Lagrangians satisfying the heavy quark, chiral and hidden
local symmetries [35], the quark cluster model [36], and a
single-folding potential employing a lattice QCD (LQCD)
simulation of the �cN interaction [37]. An extrapolation to
the physical pion mass of the former LQCD �cN interaction
has recently become available [38].

In this work we study the single-particle properties of the
�c charmed baryon in several nuclei using a microscopic
many-body approach. Our starting point is a nuclear matter
G matrix derived from a bare charmed baryon-nucleon (YcN ,
Yc = �c and �c) potential based on a SU(4) extension of the
hyperon-nucleon (Y N) potential Ã of the Jülich group [39].
This G matrix is used to calculate the self-energy of the �c in
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the finite nucleus including corrections up to the second order.
Solving the Schrödinger equation with this self-energy we are
able to determine the single-particle energies and the wave
function of the bound �c. Our approach also provides the real
and imaginary parts of the �c optical potential at positive
energies and therefore allows one to study the �c-nucleus
scattering properties. This method was already used to study
the properties of the nucleon [40], the � isobar [41], and the
� and � hyperons [42–45] in finite nuclei.

The paper is organized in the following way. In Sec. II
we present our model for the YcN interaction. The method
to obtain the �c single-particle properties in finite nuclei is
briefly described in Sec. III. Results for a variety of �c nuclei
are shown in Sec. IV. Finally, a brief summary and some
concluding remarks are given in Sec. V.

II. THE YcN INTERACTION

Our model for the YcN interaction is based on a general-
ization of the meson exchange Y N potential Ã of the Jülich
group [39]. In analogy with that model, we describe the three
different channels, �cN → �cN , �cN → �cN , and �cN ↔
�cN , only as the sum of single scalar, pseudoscalar, and
vector meson exchange potentials shown in Fig. 1. As in the
Y N Jülich potential, the exchange of the effective scalar σ me-
son parametrizes the contribution of correlated 2π exchange.
The basic elements of our model are the baryon-baryon-
pseudoscalar (BBP) and the baryon-baryon-vector (BBV) ver-
tices described, respectively, by the Lagrangian densities

LBBP = gNNπ (N†�τN ) · �π + g�c�cπ [��†
c · �π�c + �†

c
��c · �π ]

− ig�c�cπ (��†
c × ��c) · �π + gN�cD[(N†D)�c

+�†
c (D†N )] + gN�cD[(N†�τD) · ��c + ��†

c (D†�τN )]

and

LBBV = gNNρ (N†�τN ) · �ρ + g�c�cρ[��†
c · �ρ�c + �†

c
��c · �ρ]

− ig�c�cρ (��†
c × ��c) · �ρ + gN�cD∗ [(N†D∗)�c

+�†
c (D∗†N )] + gN�cD∗ [(N†�τD∗) · ��c

+ ��†
c (D∗†�τN )] + gNNωN†Nω

+ g�c�cω�†
c�cω + g�c�cω

��†
c · ��cω.

We note that the isospin structure of these vertices is the same
as that of their analogous strange ones. Similarly to the Jülich
Y N interaction, which is itself based on the Bonn NN one, the
YcN model presented here also neglects the contribution of the
η and η′ mesons.

We use the SU(4) symmetry to derive the relations between
the different coupling constants. Note, however, that this
symmetry is strongly broken due to the use of the different
physical masses of the various baryons and mesons and that
we employ it rather as a mathematical tool to get a handle
on the various couplings of our model. In particular, we are
dealing with JP = 1

2
+

baryons and JP = 0− and 1− mesons
belonging to 20′- and 15-plet irreducible representations
of SU(4), respectively. Because the baryon current can be
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FIG. 1. Single-meson exchange contributions included in our
model for the YcN interaction.

reduced according to

20′ ⊗ 20′ = 1 ⊕ 151 ⊕ 152 ⊕ 20′′ ⊕ 45 ⊕ 45 ⊕ 84 ⊕ 175,

(1)

there are two ways to obtain an SU(4) scalar for the cou-
pling 20′ ⊗ 20′ ⊗ 15 because the baryon current contains two
distinct 15-plet representations, 151 and 152. They couple to
the meson 15 plets with strengh g151 and g152 , respectively. It
is quite straightforward to relate these two couplings to the
couplings gD and gF of the usual symmetric (“D-coupling”)
and antisymmetric (“F -coupling”) octet representations of the
baryon current in SU(3). They read

g151 = 1

4
(7gD +

√
5gF ) =

√
10

3
g8(7 − 4α),

g152 =
√

3

20
(
√

5gD − 5gF ) =
√

40g8(1 − 4α), (2)

where in the last step we have written gD and gF in terms
of the conventional SU(3) octet strength coupling g8 and the
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so-called F/(F + D) ratio α:

gD = 40√
30

g8(1 − α), gF = 4
√

6g8α. (3)

Let us first consider the coupling of the baryon current
to the pseudoscalar mesons. The relations between all the
relevant BBP coupling constants can easily be obtained by
using SU(4) Clebsch-Gordan coefficients [46] and the above
relations. They read

g�c�cπ = 2√
3

gNNπ (1 − αp),

g�c�cπ = 2 gNNπαp,

gN�cD = − 1√
3

gNNπ (1 + 2αp),

gN�cD = gNNπ (1 − 2αp), (4)

where we have added the subindex p to the ratio α to specify
that this is the ratio for the coupling of baryons with the
pseudoscalar mesons and to distinguish it from that for the
vector ones used below.

Similarly, the corresponding relations for the BBV cou-
plings can be obtained by simply making the replacements
π → ρ, D → D∗, and αp → αv in the above expressions. In
addition, the couplings to the ω meson are

gNNω = gNNρ (4αv − 1),

g�c�cω = gNNρ

9
(6αv + 3), (5)

g�c�cω = gNNρ (2αv − 1),

where we have assumed that the physical ω meson results
from the ideal mixing of the mathematical members of the
15-plet ω8 and ω1.

The relations for the tensor coupling constants fBBM can
be obtained by applying the corresponding SU(4) relations to
the “magnetic” coupling GBBM = gBBM + fBBM. Thus, in the
above relations gv has to be replaced simply by Gv and αv

by αt .
Regarding the couplings of the scalar σ meson with the

charmed baryons, we note that this meson is not a member
of any SU(4) multiplet and, therefore, it is not possible to
obtain these couplings by invoking the SU(4) symmetry as
we did for the couplings with the pseudoscalar and vector
mesons. This leaves us certain freedom to chose the values of
the couplings g�c�cσ and g�c�cσ . To explore the sensitivity of
our results to these couplings, in this work we consider three
different sets of values that, together with the pseudoscalar
and vector meson couplings, define three models for the YcN
interaction. From now on we refer to these models simply as
A, B, and C. In model A the couplings of the σ meson with the
charmed baryons are assumed to be equal to those with the �

and � hyperons, and their values are taken from the original
Y N potential Ã of the Jülich group [39]. In models B and C
these couplings are reduced by 15 and 20%, respectively, with
respect to model A. The coupling gNNσ has been taken, for the
three models, to be equal to that of the Jülich Ã Y N potential.

Using the values αP = 0.4, αv = 1, and αt = 0.4 given in
Ref. [39], we obtain the couplings reported in Table I, where

TABLE I. Baryon-baryon-meson coupling constants gBBM and
fBBM and cutoff masses �BBM for the models A, B, and C of the
YcN interaction constructed and used in this work.

Model Vertex gBBM/
√

4π fBBM/
√

4π �BBM (GeV)

A, B, C NNπ 3.795 – 1.3
A, B, C �c�cπ 3.067 – 1.4
A, B, C �c�cπ 2.277 – 1.2

A, B, C N�cD −3.506 – 2.5
A, B, C N�cD 1.518 – 2.5

A, B, C NNρ 0.917 5.591 1.4
A, B, C �c�cρ 0.000 4.509 1.16
A, B, C �c�cρ 1.834 3.372 1.41

A, B, C NNω 4.472 0.000 1.5
A, B, C �c�cω 1.490 2.758 2.0
A, B, C �c�cω 1.490 −2.907 2.0

A, B, C N�cD∗ −1.588 −5.175 2.5
A, B, C N�cD∗ −0.917 2.219 2.5
A, B,C NNσ 2.385 – 1.7

A �c�cσ 2.138 – 1.0
A �c�cσ (I = 1/2) 3.061 – 1.0
A �c�cσ (I = 3/2) 3.102 – 1.12

B �c�cσ 1.817 – 1.0
B �c�cσ (I = 1/2) 2.601 – 1.0
B �c�cσ (I = 3/2) 2.636 – 1.12

C �c�cσ 1.710 – 1.0
C �c�cσ (I = 1/2) 2.448 – 1.0
C �c�cσ (I = 3/2) 2.481 – 1.12

we also show the cutoff masses �BBM of the monopole form
factors of the different vertices. We note that, to describe the
nucleon-nucleon data quantitatively, the coupling gNNω in the
Jülich Ã Y N model was increased by a factor of 1.626 with
respect to its SU(3) value, gNNω = 3gNNρ , thereby accounting
for missing short-range correlations in an effective way. In
the present work, we apply the same increasing factor to the
g�c�cω and g�c�cω coupling constants of Eq. (5). We also note
that the relation of these coupling constants to gNNρ is a factor
of 2 smaller than that obtained in the SU(3) sector, while the
relations in Eq. (4), involving charmed baryons and the π ,
ρ, D, and D∗ mesons, are the same as those involving their
counterparts in the strange sector.

The three YcN interaction models have then been used to
solve the coupled-channel (�cN , �cN) Lipmann-Schwinger
equation to obtain several scattering observables from the
corresponding scattering amplitudes. The �cN phase shifts
in the 1S0 and 3S1 partial waves are shown as functions of
the center-of-mass kinetic energy in Fig. 2 for the three
models. The extrapolation to the physical pion mass of the
recent results of the HAL QCD Collaboration [37] made by
Haidenbauer and Krein in Ref. [38] is shown by the thick
green band for comparison. One can clearly see from the
phase shifts that model A predicts a more attractive �cN
interaction in the 1S0 and 3S1 partial waves than the one derived
in Ref. [38]. The reduction of the g�c�cσ and g�c�cσ couplings
in models B and C leads to a reduction of attraction in these
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FIG. 2. 1S0 [panel (a)] and 3S1 [panel (b)] �cN phase shifts as a function of the center-of-mass kinetic energy. Results are shown for models
A, B, and C. The thick band shows the extrapolation to the physical pion mass of the recent results of the HAL QCD Collaboration [37] made
by Haidenbauer and Krein in Ref. [38].

two partial waves which translates into a qualitatively better
agreement between the phase shifts predicted by these two
models and those obtained from the interaction of Ref. [38],
particularly in the low-energy region. Note that the interaction
derived in Ref. [38] predicts similar phase shifts for both
partial waves since the corresponding 1S0 and 3S1 potentials
are almost identical, a feature already noted by the HAL
QCD Collaboration at different values of the pion mass (see
Ref. [37]) that seems to persist when extrapolating the lattice
results to the physical point. This, however, is not the case for
our models A, B, and C, which predict more overall attraction
in the 3S1 partial wave. This can also be seen, for example, in

Fig. 3 where we show the diagonal 1S0 and 3S1 matrix elements
of the �cN → �cN channel in momentum space.

For completeness, we report in Table II the singlet and
triplet �cN scattering lengths and the effective range pre-
dicted by the three models. The results obtained by Haiden-
bauer and Krein in Ref. [38] are shown for comparison in the
last column of the table. There is a good agreement between
model C and the results of Ref. [38] for both scattering
lengths. However, is it pointed out in Ref. [38] that the
scattering lengths at the physical pion mass could in fact be as
larger as −1.3 fm if the uncertainty of ±0.2 fm, given by the
HAL QCD Collaboration for their result at mπ = 410 MeV, is
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FIG. 3. 1S0 [panel (a)] and 3S1 [panel (b)] �cN → �cN diagonal matrix elements as a function of the relative momentum q. Results are
shown for models A, B, and C.
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TABLE II. Singlet and triplet �cN scattering lengths and effec-
tive ranges predicted by the models A, B, and C. The results of the
extrapolation to the physical pion mass of the recent results of the
HAL QCD Collaboration [37] made by Haidenbauer and Krein in
Ref. [38] are shown in the last column. Units are given in fm.

Model A Model B Model C Ref. [38]

as −2.60 −1.11 −0.84 −0.85 . . . − 1.00
rs 2.86 4.40 5.38 2.88 . . . 2.61
at −15.87 −1.52 −0.99 −0.81 . . . − 0.98
rt 1.64 2.79 3.63 3.50 . . . 3.15

combined with the observation that variations in the scattering
lengths of ±0.05 fm at this value of the pion mass amount
to differences of about ±0.1 fm at mπ = 138 MeV. In this
case, the prediction of model B would be in better agreement
with the result of Haidenbauer and Krein than model C.
Model A predicts a singlet effective range compatible with
that obtained in Ref. [38], although it predicts a smaller triplet
one. On the other hand, models B and C give a singlet effective
range larger than that of Ref. [38] but their agreement is
qualitatively better for the triplet one.

III. �c SINGLE-PARTICLE PROPERTIES
IN FINITE NUCLEI

Here we briefly describe a method to obtain the �c single-
particle energies in a finite nucleus using an effective in-
medium YcN interaction derived from the bare YcN potential
presented in the previous section. The starting point of this
method is the calculation of all the YcN G matrices, which
describe the interaction between a charmed baryon (Yc = �c

and �c) and a nucleon in infinite nuclear matter. The G
matrices are obtained by solving the coupled-channel Bethe-
Goldstone equation, written schematically as

GYcN→Y ′
c N ′ (ω) = VYcN→Y ′

c N ′ +
∑
Y ′′

c N ′′
VYcN→Y ′′

c N ′′

× QY ′′
c N ′′

ω − εY ′′
c

− εN ′′ + iη
GY ′′

c N ′′→Y ′
c N ′ (ω), (6)

where V is the bare YcN potential derived in the previous
section, Q is the Pauli operator that prevents the nucleon in
the intermediate state Y ′′

c N ′′ from being scattered below the
Fermi momentum kFN , and ω is the nuclear matter starting
energy that corresponds to the sum of the masses and the
nonrelativistic energies of the interacting charmed baryon and
nucleon. We note that the Bethe-Goldstone equation has been
solved in momentum space including partial waves up to a
maximum value of the total angular momentum J = 4. We
note also here that the so-called discontinuous prescription
has been adopted; i.e., the single-particle energies εY ′′

c
and

εN ′′ in the denominator of Eq. (6) are simply taken as the
sum of the nonrelativistic kinetic energy plus the mass of the
corresponding baryon.

The finite nucleus YcN G matrix, GFN, can be obtained, in
principle, by solving the Bethe-Goldstone equation directly
in the finite nucleus [47,48]. The Bethe-Goldstone equation

GFN

+

(c)

N

Λ

G

N

Λ

Λ

Λ

N

G

G

(a) (b)

~

Λ

ΛC

CC

C

C

C

Λ  , Σ
C C

FIG. 4. Brueckner-Hartree-Fock approximation to the finite nu-
cleus �c self-energy (diagram a), split into the sum of a first-
order contribution (diagram (b)) and a second-order 2p1h correction
(diagram c).

in the finite nucleus is formally identical to Eq. (6), the only
difference being the intermediate particle-particle propagator
(i.e., Pauli operator and energy denominator), which corre-
sponds to that in the finite nucleus. Alternatively, one can find
the appropriate GFN by relating it to the nuclear matter YcN G
matrix already obtained. Eliminating the bare interaction V
in both finite nucleus and nuclear matter Bethe-Goldstone
equations it is not difficult to write GFN in terms of G through
the following integral equation:

GFN = G + G

[(
Q

E

)
FN

−
(

Q

E

)]
GFN

= G + G

[(
Q

E

)
FN

−
(

Q

E

)]
G

+ G

[(
Q

E

)
FN

−
(

Q

E

)]
G

[(
Q

E

)
FN

−
(

Q

E

)]
G

+ · ··, (7)

which involves the nuclear matter G matrix and the difference
between the finite nucleus and the nuclear matter propagators,
written schematically as (Q/E )FN − (Q/E ). This difference,
which accounts for the relevant intermediate particle-particle
states, has been shown to be quite small (see Refs. [40–45])
and, therefore, in all practical calculations GFN can be well
approximated by truncating the expansion (7) up to second
order in the nuclear matter G matrix. Therefore, we have

GFN ≈ G + G

[(
Q

E

)
FN

−
(

Q

E

)]
G. (8)

The finite nucleus �c self-energy can be obtained in the
so-called Brueckner-Hartree-Fock approximation using the
GFN as an effective YcN interaction, as it is shown in dia-
gram (a) of Fig. 4. According to Eq. (8) it can be split into
the sum of the diagram (b), which represents the first-order
term on the right-hand side of Eq. (8), and the diagram (c),
which stands for the so-called two- particle-one-hole (2p1h),
where the intermediate particle-particle propagator has to be
viewed as the difference of propagators appearing in Eq. (8).
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Schematically, it reads

�BHF =
∑

N

〈�cN |GFN|�cN〉

≈
∑

N

〈�cN |G|�cN〉 +
∑
YcN

〈�cN |G|YcN〉

×
[(

Q

E

)
FN

−
(

Q

E

)]
〈YcN |G|�cN〉. (9)

Detailed expressions for the first-order and the 2p1h contri-
butions to �BHF can be derived in close analogy to those for
the finite nucleus � self-energy given in Refs. [42–45], being,
in fact, formally identical. The interested reader is referred
to these works for details on the derivation and for specific
expressions of both contributions.

Finally, the self-energy can then be used as an effective
�c-nucleus mean-field potential in a Schrödinger equation to
obtain the energies and wave functions of the bound states of
the �c in a finite nucleus. The Schrödinger equation is solved
by diagonalizing the corresponding single-particle Hamilto-
nian (which includes also the Coulomb potential because the
�c is a positively charged baryon) in a complete basis within a
spherical box of radius Rbox following the procedure outlined
in Refs. [40–45]. Although this method has been thoroughly
described in these works, we repeat here some of the details.

The radius of the box should be larger than the radius of the
nucleus considered. We note that the calculated observables
are independent of the choice of Rbox if this is chosen to be
around 20 fm or larger. A complete and orthonormal set of
regular basis functions within this box is given by


nl jm(�r) = 〈�r|knl jm〉 = Nnl jl (kn r)ψl jm(θ, φ), (10)

where Nnl is a normalization constant, ψl jm(θ, φ) represents
the spherical harmonics including the spin degrees of free-
dom, and jl (knr) denotes the spherical Bessel function for
a momentum value kn within the set of discrete momenta
that fulfill the condition jl (knRbox) = 0. The single-particle
Hamiltonian for the �c charmed baryon can be evaluated in
this basis and the resulting eigenvalue problem

Nmax∑
p=1

〈kn| h̄2k2
n

2M�c

δnp + �BHF(ω = eγ ) + VC |kp〉〈kp|γ 〉

= eγ 〈kn|γ 〉, (11)

restricted typically to 20 or 30 states, can easily be solved.
We note that a self-consistent procedure is required for each
eigenvalue, i.e., the �c self-energy should be evaluated at the
energy of the resulting eigenvalue. As a result, one obtains
the energies for the bound states and the corresponding wave
functions, which are expressed in terms of the coefficients for
the basis defined in Eq. (10).

IV. RESULTS

The energy of �c single-particle bound states in 5
�c

He,
13
�c

C, 17
�c

O, 41
�c

Ca, 91
�c

Zr, and 209
�c

Pb are shown in Table III
for the three models considered. For comparison the energy
of the single-particle bound states of the � hyperon in the

corresponding hypernuclei, obtained with the original Jülich
Ã Y N interaction using the method described in the pre-
vious section, are also reported in Table III. Note that all
charmed nuclei (hypernuclei) considered consist of a closed-
shell nuclear core plus a �c (�) sitting in a single-particle
state. Model A gives the most attractive �cN interaction and,
therefore, it predicts �c single-particle states more bound than
models B and C, and a larger number of them, as it can be seen
in Table III. Note that, in the lack of experimental data on �c

nuclei, we cannot say a priori which one of the three models
is better. However, since models B and C predict, as we saw
before, scattering observables in better agreement with those
extrapolated from LQCD in Ref. [38], it would not be too
risky to state that these two models are probably more realistic
than model A.

Looking now back at Table III we observe (as in the case
of single �-hypernuclei) a small spin-orbit splitting of the p-,
d-, and f -wave states in all �c nuclei, especially in the case
of the heavier ones where it is of the order of a few tenths
of MeV. In addition, we also note that, since the �c is heavier
than the �, the level spacing of the �c single-particle energies
is, for the three models, always smaller than that for the cor-
responding hypernuclei. These observations are in agreement
with the results previously obtained by Tsushima and Khanna
in Refs. [31–33] using the quark-meson coupling model and,
later, by Tan and Ning in Ref. [34] within a relativistic
mean-field approach. Although there exist formal differences
between our calculation and those of Refs. [31–34] that give
rise to different predictions for the �c single-particle bound
states in finite nuclei, our results (particularly those for models
B and C) are in general compatible with those of these works
(see, e.g., Tables I and II of Ref. [31] and Table I of Ref. [34]).

We would like to note that if we used the bare YcN interac-
tion instead of the finite nucleus G matrix, i.e., if we worked
in the Born approximation to obtain the �c self-energy, then
all the in-medium and correlation effects taken into account
by the G matrix would be ignored and, as a result, due to the
short-range repulsion of the bare YcN interaction, much fewer
bound states of the �c would be found. As an illustration we
show in Table IV the single-particle bound states of the �c in
5
�c

He, 13
�c

C, and 17
�c

O obtained in this approximation. Results
for the � hyperon in the corresponding � hypernulei are not
shown because, in this case, no bound states are found when
using this approximation. Note that model A is still able to
predict (for the three nuclei) the same amount of bound states
although all of them are shallower. This is not the case for
models B and C for which the number of bound states is
reduced (see Table III for comparison).

It has been pointed out in Refs. [31–34] and, more recently,
also in Ref. [37] that the Coulomb interaction plays a non-
negligible role in �c nuclei, and that their existence is only
possible if their binding energy is larger than the Coulomb
repulsion between the �c and the protons. To understand
better the effect of the Coulomb force in our calculation, in
Fig. 5 we explicitly show the contributions of the kinetic
energy, the YcN interaction, and the Coulomb potential to
the energy of the �c single-particle bound state 1s1/2 as
functions of the mass number (A = N + Z + 1, with N being
the neutron number and Z being the atomic number) of the �c
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TABLE III. Energy of �c single-particle bound states of several charmed nuclei from 5
�c

He to 209
�c

Pb obtained for the three models
considered. Results for the single-particle bound states of the � hyperon in the corresponding hypernuclei predicted by the original Jülich
Ã Y N interaction are also shown for comparison. Units are given in MeV.

5
�c

He 5
�He 13

�c
C 13

� C 17
�c

O 17
� O

Model A Model B Model C JÃ Model A Model B Model C JÃ Model A Model B Model C JÃ

1s1/2 −13.58 −3.24 −1.05 −1.49 −27.26 −10.20 −5.47 −7.84 −31.76 −12.47 −6.96 −10.04

1p3/2 −1.74 – – – −14.91 −2.13 – – −19.99 −4.32 −0.51 −0.33

1p1/2 −0.39 – – – −13.42 −1.03 – – −18.79 −3.22 – −0.35

1d5/2 – – – – −4.10 – – – −9.02 – – –

1d3/2 – – – – −2.13 – – – −6.96 – – –

2s1/2 – – – – −3.59 – – – −7.13 – – –

41
�c

Ca 41
� Ca 91

�c
Zr 91

� Zr 209
�c

Pb 209
� Pb

Model A Model B Model C JÃ Model A Model B Model C JÃ Model A Model B Model C JÃ

1s1/2 −41.09 −16.89 −9.60 −17.33 −44.76 −18.46 −10.51 −24.61 −52.52 −20.33 −10.32 −31.41

1p3/2 −32.39 −10.41 −4.13 −7.67 −39.60 −14.27 −6.75 −17.66 −49.06 −18.28 −8.82 −27.59

1p1/2 −31.60 −9.67 −3.42 −7.78 −39.24 −14.00 −6.49 −17.58 −48.84 −18.10 −8.64 −27.58

1d5/2 −23.10 −3.91 – – −33.74 −9.63 −2.57 −9.12 −42.37 −12.94 −4.25 −19.24

1d3/2 −21.84 −2.74 – – −33.17 −9.01 −1.95 −8.91 −41.97 −12.58 −3.88 −19.20

1 f7/2 −13.54 – – – −27.06 −4.65 – −1.35 −37.47 −9.11 −0.59 −10.51

1 f5/2 −11.82 – – – −26.29 −3.80 – −1.13 −37.07 −8.65 −0.10 −10.41

2s1/2 −20.47 −2.74 – – −31.13 −8.05 −1.29 −6.60 −40.53 −10.20 −1.13 −17.43

2p3/2 −10.20 – – – −22.81 −2.23 – −0.39 −39.21 −9.28 −0.03 −7.68

2p1/2 −9.24 – – – −22.24 −1.45 – −0.38 −38.95 −9.06 – −7.60

2d5/2 −2.04 – – – −14.62 – – – −30.28 −5.36 – −4.85

2d3/2 −0.95 – – – −14.03 – – – −29.83 −4.75 – −4.79

2 f7/2 – – – – −7.90 – – – −22.57 – – –

2 f5/2 – – – – −6.81 – – – −22.10 – – –

3s1/2 −1.15 – – – −13.41 – – – −23.80 −1.51 – −3.59

3p3/2 – – – – −5.65 – – – −22.32 – – –

3p1/2 – – – – −5.61 – – – −21.95 – – –

3d5/2 – – – – – – – – −19.05 – – –

3d3/2 – – – – – – – – −18.33 – – –

3 f7/2 – – – – – – – – −5.58 – – –

3 f5/2 – – – – – – – – −5.02 – – –

4s1/2 – – – – – – – – −14.31 – – –

4p3/2 – – – – – – – – −1.19 – – –

4p1/2 – – – – – – – – −0.78 – – –

4d5/2 – – – – – – – – −0.68 – – –

5s1/2 – – – – – – – – −0.52 – – –

nuclei considered. Note that, while the Coulomb contribution
increases because of the increase of the number of protons
with the atomic number, those of the kinetic energy and the
YcN interaction decrease when going from light to heavy �c

nuclei. The kinetic energy contribution decreases with the
mass number because the wave function of the 1s1/2 state
(see Fig. 6) becomes more and more spread due to the larger
extension of the nuclear density over which the �c wants
to be distributed. The increase of the nuclear density with A
leads to a more attractive �c self-energy (see, e.g., Figs. 2

and 3 of Ref. [45] for a detailed discussion in the case of
single � hypernuclei) that translates into a more negative
contribution of the YcN interaction. Note that, when adding
the three contributions, the energy of the 1s1/2 bound state
decreases by several MeV in the low-mass-number region and
then it tends to saturate for heavier nuclei. This is due to a
compensation between the attraction of the YcN interaction
and the repulsion of the Coulomb force. We note that this
compensation leads, particularly in the case of model B, to
values of the �c single-particle bound-state energies similar
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TABLE IV. Energy of �c single-particle bound states of 5
�c

He, 13
�c

C, and 17
�c

O obtained in the Born approximation. Results for the � hyperon
in the corresponding hypernuclei obtained with the bare Jülich Ã Y N interaction are not shown because, in this case, no bound states are found
in this approximation. Units are given in MeV.

5
�c

He 13
�c

C 17
�c

O

Model A Model B Model C Model A Model B Model C Model A Model B Model C

1s1/2 −9.48 −1.36 – −21.81 −6.53 −2.24 −25.71 −8.15 −3.04

1p3/2 −1.17 – – −10.39 – – −14.63 −1.29 –

1p1/2 – – – −8.68 – – −13.23 −0.09 –

1d5/2 – – – −0.96 – – −4.81 – –

1d3/2 – – – – – – −2.60 – –

2s1/2 – – – −1.22 – – −3.74 – –

to those obtained for single � hypernuclei with the Jülich
Ã Y N potential (see Table III). We want to point out that
even the less attractive one of our YcN interactions (model C),
despite the Coulomb repulsion, is able to bind the �c in all the
nuclei considered. This is in contrast with the recent results of
the HAL QCD Collaboration [37], which suggest that only
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FIG. 5. Contributions of the kinetic energy, the YcN interaction,
and the Coulomb potential to the energy of the �c single-particle
bound state 1s1/2 as a function of the mass number of the �c nuclei
considered.

light- or medium-mass �c nuclei could really exist. However,
we note that this conclusion is based on results obtained for
a value of the pion mass of 410 MeV, giving rise to a YcN
interaction much less attractive than ours and the one derived
in Ref. [38] when these lattice results are extrapolated to the
physical pion mass (see Figs. 1 and 2 of Ref. [38]).

Now we would like to focus the attention of the reader
on the effect of the coupling of the �cN and �cN channels.
These two channels are located at approximately 3224 and
3394 MeV, respectively. Being separated by about 170 MeV
it is expected, as it was already pointed out by Tsushima
and Khanna (see, e.g., Refs. [31,32]), that the effect of their
coupling on charmed nuclei will be less important than that
of the �N and �N channels (separated only by ∼80 MeV)
on hypernuclei. This is illustrated in Table V, where we show
as an example the energy of the �c (�) single-particle states
bound states of 17

�c
O (17

� O) when the �cN-�cN (�N-�N)
coupling is switched off. Note that the differences between the
levels obtained with the complete coupled-channel calculation
for 17

�c
O (see Table III) and without the �cN-�cN coupling

are almost negligible, being of the order of a few tenths of
MeV or less, whereas those for 17

� O are slightly larger than
1 MeV. Note also that the elimination of the coupling between
the �cN and �cN channels leads, in the case of models B
and C, to a bit more of attraction, contrary to what happens in
hypernuclei, for which the � bound states become less bound
when the �N-�N coupling is eliminated.

TABLE V. Energy of �c single-particle bound states of 17
�c

O
when the coupling of the �cN and the �cN channels is switched off.
Results for the � hyperon in 17

� O obtained with the original Jülich
Ã Y N interaction are also shown for comparison. Units are given in
MeV.

Model A Model B Model C JÃ

1s1/2 −31.54 −12.57 −7.11 −8.78
1p3/2 −19.69 −4.37 −0.58 –
1p1/2 −18.45 −3.24 – –
1d5/2 −8.71 – – –
1d3/2 −6.62 – – –
2s1/2 −7.02 – – –
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FIG. 6. �c probability density distribution for the 1s1/2 state in the six �c nuclei considered. Results are shown for the three models A, B,
and C of the YcN interaction. Thin solid, dashed, and dotted lines show the results when the Coulomb interaction is artificially switched off.

We finish this section by showing in Fig. 6, for the three
models, the probability density distribution (i.e., the square
of the radial wave function) of the �c in the 1s1/2 state for
the six �c nuclei considered. The result when the Coulomb
interaction is artificially switched off is also shown for com-
parison (thin solid, dashed, and dotted lines). Note that, due
to the increase of the nuclear density, when moving from light
to heavy nuclei the probability density of finding the �c close
to the center of the nucleus decreases, and it becomes more
and more distributed over the whole nucleus. Note also that,
as expected, the Coulomb repulsion pushes the �c away from
the center of the nuclei. A similar discussion can be done for
the probability densities of the other �c single-particle bound
states.

V. SUMMARY AND CONCLUSIONS

In this work we have determined the single-particle en-
ergies of the �c charmed baryon in several nuclei. To such
end, we have developed a charmed baryon-nucleon interaction
based on a SU(4) extension of the meson-exchange hyperon-
nucleon potential Ã of the Jülich group. We have considered
three different models of this interaction (A, B, and C) that
differ only in the values of the couplings of the scalar σ meson
with the charmed baryons. Several scattering observables have
been computed with the three models and compared with
those predicted by the YcN interaction derived by Haidenbauer
and Krein [38] from the extrapolation to the physical pion
mass of the recent results of the HAL QCD Collaboration

[37]. Qualitative agreement has been found between the pre-
dictions of our models B and C and those of the model by
Haidenbauer and Krein [38].

The three models have then been used to obtain the self-
energy of the �c in finite nuclei by using a many-body
approach that started with the construction of a nuclear matter
YcN G matrix from which a finite nucleus one was derived
through a perturbative expansion. Using the resulting �c self-
energy as an effective �c-nucleus mean-field potential in a
Schrödinger equation we have finally obtained the energies
and wave functions of the bound states of the �c in the
different nuclei.

Our results (particularly those for models B and C) are
compatible with those obtained by Tsushima and Khanna
[31–33] and Tan and Ning [34], despite the formal differences
between our calculation and those of these works based,
respectively, on the quark-meson coupling model and the
relativistic mean-field approach. A small spin-orbit splitting
of the p-, d-, and f -wave states has been found as in the case
of single � hypernuclei. It has been also observed that level
spacing of the �c single-particle energies is smaller than the
corresponding one for hypernuclei.

We have analyzed the role played by the Coulomb potential
in the energies of the �c single-particle bound states. This
analysis has shown that the compensation between the YcN
interaction and the repulsion of the Coulomb force leads,
particularly in the case of model B, to values of the �c

single-particle bound-state energies similar to those obtained
for the single �-hypernuclei with the original Jülich Ã Y N
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potential. The analysis has also shown that, despite the
Coulomb repulsion, even the less attractive one of our YcN
interactions (model C) is able to bind the �c in all the nuclei
considered. This is in contrast with the recent results of the
HAL QCD Collaboration [37] which suggest that only light-
or medium-mass �c nuclei could really exist. However, the
conclusion of this work is based on results obtained for a value
of the pion mass of 410 MeV, giving rise to a YcN interaction
much less attractive than ours and the one derived in Ref. [38]
when these lattice results are extrapolated to the physical pion
mass.

Finally, we have shown that the effect of the coupling of
the �cN and �cN channels on the single-particle properties
of charmed nuclei is much less important (being in fact
almost negligible) than that of the �N and �N channels on

the corresponding properties of single � hypernuclei, due
to the large mass difference of the �c and �c baryons of
∼170 MeV.
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