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Quark model description of ψ(4260)
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From lattice indications we follow a Born-Oppenheimer approximation to build a quark-antiquark static poten-
tial for JPC = 1−− charmonium states below their first S-wave meson-meson threshold. We show that a good de-
scription of the mass and decay properties of the experimentally well established ψ (4260) resonance is feasible.
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I. INTRODUCTION

The explanation of experimentally discovered charmonium
states that do not fit well in conventional quark model descrip-
tions of heavy quarkonia, for instance the ones provided by the
Cornell [1,2] or the Godfrey-Isgur [3] models, is nowadays a
theoretical challenge.

Regarding unconventional isospin 0 states
[χc1(3872), ψ (4260), . . . ], see [4], the presence of close open
flavor (charm) meson-meson thresholds may be playing an
important role. Explanations have been developed involving
the presence of meson-meson components in the form of
either molecules, tetraquarks implicitly involving several
molecular states, or configurations complementary to the
heavy quark-antiquark ones (for recent bibliographic reviews
see [5–8] and references therein; for a more general heavy
quarkonia review see [9]).

One possible alternative explanation may come from the
consideration of a “beyond the conventional” quark model
description, where the meson-meson degrees of freedom as
well as the gluon ones are integrated out through an ef-
fective heavy quark-antiquark potential. A specific form for
this potential can be proposed from lattice calculations [10]
for the energy of two static color sources (quark Q and
antiquark Q) when mixing of the QQ configuration with an
open flavor meson-meson one is taken into account. By using
a Born-Oppenheimer approximation the resulting QQ static
potential below the meson-meson threshold exhibits screening
starting at a certain energy below the threshold and saturating
(becoming flat) at the threshold mass.

The screening energy interval is shorter for QQ configu-
rations (Q = b or c) involving only mesons with very small
widths (B, B∗ or D, D∗). From lattice results the starting
screening energy in this case may be estimated to be about
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30 MeV below the threshold mass. In a first approach one
may tentatively take the simplifying assumption that screen-
ing takes place just at the threshold mass (zero screening
energy interval approach). This idea has been implemented
and extended through the so called Generalized Screened
Potential Model for the description of 0+(J++) charmonium
(J = 0, 1, 2) [11,12] as well as bottomonium states [13].

When applied to 0−(1−−) charmonium this approach fails
even in the low energy spectral region below the first S-wave
meson-meson threshold that we shall call henceforth DD1

[involving DD1(2420) and DD1(2430)] since the unconven-
tional ψ (4260) cannot be sensibly assigned to any state from
the potential. This failure may have to do with the need of
implementing a nonzero screening energy interval in this case
due to the significant threshold width.

In this article we try to go a step further in the construction
of the potential for 0−(1−−) charmonium by implementing
a nonzero screening energy interval. We shall show that a
reasonable description of 0−(1−−) states lying below the DD1

threshold including ψ (4260) may be attained. The contents of
the article are organized as follows. In Sec. II a brief review
of the (zero screening energy interval approach) potential
for 0+(1++) states below their first S-wave meson-meson
threshold is presented. In Sec. III we implement the potential
for 0−(1−−) states. From it we calculate the spectrum below
their first S-wave meson-meson threshold. In Sec. IV we
concentrate on the study of ψ (4260), the only well established
unconventional state in this spectral region. We calculate its
decay properties and compare them to existing data. Finally
in Sec. V our main results and conclusions are summarized.

II. cc POTENTIAL FOR 0+(1++) STATES

In order to construct a QQ static potential implicitly in-
corporating the effect of meson-meson components, we shall
start from (unquenched) lattice results [10] for the energy of
two static color sources (Q and Q) when mixing of the QQ
configuration with an open flavor meson-meson one is taken
into consideration. As a consequence of the presence of this
meson-meson configuration the QQ static energy changes its
radial dependence on the Q–Q distance. Following a Born-
Oppenheimer interpretation, we shall identify the QQ static
energy with the QQ static potential (for a review of Born-
Oppenheimer potentials see [14]).
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FIG. 1. Representation of the static potential VC (r) with σ =
850 MeV/fm and ζ = 100 MeV fm.

For the sake of clarity let us go step by step. First let us only
consider a QQ configuration. The dependence of the QQ static
energy on the Q–Q distance has been derived in (quenched)
lattice QCD [15]. By identifying this energy dependence with
the (quenched) QQ static potential, one gets a Cornell-like
form

VC (r) = σ r − ζ

r
, (1)

where r is the Q–Q distance and the parameters σ and ζ

stand for the string tension and the chromoelectric Coulomb
strength respectively. This potential is drawn in Fig. 1, where
the values of the parameters,

σ = 850 MeV/fm, ζ = 100 MeV fm,

mc = 1348.6 MeV, mb = 4793 MeV, (2)

have been chosen to get a reasonable fit of the low-lying
0+(J++) charmonium and bottomonium spectra [11,13].

Let us now consider a QQ configuration with quantum
numbers IG(JPC ), for example 0+(1++) cc, plus a meson-
meson configuration. It is important to realize that the first
open flavor meson-meson configuration with these quantum
numbers that may contribute to the static potential is D0D∗0

(from now on it is always understood that the sum of the
charge conjugate meson-meson configuration is implicit).
This is so, despite the fact that D0D

0
has a lower energy

threshold, because the two mesons have to be in an S-wave
channel for the c quark in one meson and the c antiquark
in the other meson to remain static as required (this is only
strictly true in the infinite c mass limit, mc → ∞, but it can
be taken as a good approximation). [Actually, D0D

0
is the first

threshold contributing to the 0+(0++) static potential.]
From lattice results obtained when a QQ and a meson-

meson configurations are considered [10], we expect cc and
DD∗ mixing (for simplicity we assume the same mass for
the different isospin components and call the threshold DD∗).
This changes the formal dependence of the cc static energy
on the c–c distance when the energy is close below and
above the threshold mass. In particular, this dependence starts
to differ from the Cornell-like form when approaching the

FIG. 2. Representation of the 0+(1++) cc static potential
V[0, m

DD∗ ](r) with mc = 1348.6 MeV, σ = 850 MeV/fm, ζ =
100 MeV fm, and mDD∗ = 3872 MeV.

meson-meson threshold from below, becoming flat at the
threshold mass. If this change takes place in a small energy
region then the identification of this energy dependence with
a (unquenched) 0+(1++) cc static potential gives rise to the
approximate form

V[0, mDD∗ ](r) =
{

σ r − ζ

r , r � rDD∗ ,

mDD∗ − mc − mc, r � rDD∗ ,
(3)

where the bracketed subindex [0, mDD∗ ] indicates that this
potential is only valid up to the threshold mass mDD∗ = mD +
mD∗ , and the crossing radius rDD∗ is defined by the continuity
of the potential at the threshold as

σ rDD∗ − ζ

rDD∗
= mDD∗ − mc − mc. (4)

This potential, corresponding to a zero screening energy
interval approach, has been drawn in Fig. 2 for the same values
of the parameters previously used for VC (r). For the threshold
mass we use the value mDD∗ = 3872 MeV obtained from the
experimental masses of D and D∗ [4].

The physical mechanism underlying this potential has to do
with the creation of qq pairs, where q stands for a light quark
(q = u, d, s), and the later combination of q(q) with c(c) gives
rise to a total screening of the c and c color charges at the
threshold mass (string breaking) since the formed mesons D
and D∗ are color singlets.

It is worthwhile to remark that, whereas VC (r) is defined
in the whole spectral energy region, the potential V[0, mDD∗ ](r)
can only be applied to calculate 0+(1++) charmonium states
with mass below the DD∗ threshold mass. Therefore it is a
confining potential. For higher energies the form of the cc
static potential is different (one possible choice has been used
to build the Generalized Screened Potential Model [13]).

To get the low lying 0+(1++) charmonium spectrum up to
mDD∗ , we solve the Schrödinger equation for V[0, mDD∗ ](r). The
results obtained are listed in Table I. Notice that we assign
our calculated states to spin triplet ones; the reason is that
our potential is spin independent and we know that spin-spin
corrections to the mass are bigger (by a factor 3) for spin
singlet than for spin triplet states.
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TABLE I. Calculated 0+(1++) charmonium masses m[0, m
DD∗ ]

from V[0, m
DD∗ ](r) with σ = 850 MeV/fm, ζ = 100 MeV fm,

mc = 1348.6 MeV, and mDD∗ = 3872 MeV. The spectral notation
np[0, m

DD∗ ], where n (p) indicates the principal (orbital angular mo-
mentum) quantum number, has been used for the states. Masses for
experimental resonances, mPDG, have been taken from [4]. Masses
mCor from VC (r), up to mDD∗ , with the same values for σ , ζ , and mc

are also shown for comparison.

JPC State
np[0, m

DD∗ ]

m[0, m
DD∗ ]

(MeV)
mPDG

(MeV)
mCor

(MeV)
VC (r) state

np

1++

1p[0, m
DD∗ ] 3454.8 3510.66 ± 0.07 3456.2 1p

2p[0, m
DD∗ ] 3871.7 3871.69 ± 0.17

We realize that there is no difference between the 1p[0, mDD∗ ]

and the conventional 1p state since quite below threshold
there is no difference between using V[0, mDD∗ ](r) and VC (r). In
contrast there is a big difference between the 2p[0, mDD∗ ] state
lying below threshold and the conventional 2p state with mass
above it [mCor (2p) = 3911 MeV]. A justified assignment of
the 2p[0, mDD∗ ] state to χc1(3872) has been done elsewhere [11].
Here we just plot in Fig. 3 the 2p[0, mDD∗ ] radial wave function
as compared to the 2p radial wave function to make clear the
difference between them. We observe that as a consequence
of the color screening in the 2p[0, mDD∗ ] state there is a flux
of probability from the origin outwards as compared to the
nonscreened case. This will be important for the numerical
evaluation of the width for the electromagnetic transition
between ψ (4260) and χc1(3872).

III. cc POTENTIAL FOR 0−(1−−) STATES

When considering the 0−(1−−) case, the simple prescrip-
tion of a zero screening energy interval adopted for the con-
struction of the potential for 0+(1++) states has to be refined if
we want to accommodate the existing data. As said before, the
same approach cannot give any state that can be reasonably
assigned to ψ (4260).

For this refinement let us recall that the first S-wave meson-
meson threshold for 0−(1−−) states, DD1, with a threshold
mass mDD1

� 4287 MeV, corresponds to D0D1
0
(2420) where

D1
0
(2420) has a width of about 30 MeV and to D0D1

0
(2430)

where D1
0
(2430) has a larger but quite uncertain width

(384+107
−75 ± 74 MeV). As said before, the threshold effect on

the static potential comes from the coupling of QQ to light
qq pairs out of the vacuum giving rise to the meson-meson
threshold components. It turns out that in the limit mQ →
∞ the strong interaction has heavy quark spin symmetry
(HQSS) and this prevents the formation of D0D1

0
(2420) from

a QQ(1−−) and a qq(0++) [16]. Therefore in this limit the
only meson-meson component to be taken into account in
the construction of the potential should be D0D1

0
(2430). One

FIG. 3. Radial wave functions R(r) (in units of fm− 3
2 ) for the

1++(2p[0,m
DD∗ ] ) state (thick line) and the 1++(2p) state (thin line).

should consider though that HQSS breaking is expected given
the real (noninfinite) mass of the charm quark, as detailed
in Ref. [17]. Hence we shall consider DD1 as an effective
threshold that may be also incorporating the possible effect
of D0D1

0
(2420). It is physically reasonable to assume that

due to the non-negligible widths of D1
0
(2430) and D1

0
(2420)

the starting screening energy in the 0−(1−−) case lies quite
below threshold, as compared to the 0+(J++) case where
the threshold widths are negligible. If we recall that for the
0+(0++) case lattice calculations give a starting screening
energy of about 30 MeV below threshold, then, from the
D1

0
(2420) width [�30 MeV], we may reasonably expect for

the 0−(1−−) case the starting screening energy to be at least 60
MeV below threshold. To be more specific, let us call the start-
ing screening energy Es ≡ m

D0D1
0 − mc − mc − �, where �

indicates its distance to the threshold. Then according to our
expectation, � � 60 MeV. On the other hand we expect �

to be limited by a value 30 MeV bigger than the value of
the D1

0
(2430) width. This determines the expected interval

of possible values for �. Unfortunately the uncertainty in
the knowledge of the D1

0
(2430) width does not permit us

to fix precisely the upper bound for �. Instead we shall use
in what follows the scarce ψ (4260) data to try to fix it as
much as possible. This will allow us to conclude that values of
� within the interval [60, 120] MeV may give a quantitative
account of the observed properties of ψ (4260); see below.

The static potential will start to differ from VC (r) at Es. To
take this into account in a simple manner we shall assume that
at Es the potential reduces its slope [the one from VC (r)] to a
constant value s which is maintained up to the threshold mass,
where it becomes 0. This should be considered as an average
approximation to the gradual decreasing of the slope that it is
expected to really take place.

Specifically the proposed potential for 0−(1−−) states
reads (again we shall assume isospin symmetry)

V[0,mDD1
](r) =

⎧⎪⎨⎪⎩
σ r − ζ

r , r � r�,(
mDD1

− mc − mc − �
) + s(r − r�), r� � r � (r×)DD1

,

mDD1
− mc − mc, r � (r×)DD1

,

(5)
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TABLE II. Correlated � and s values giving rise to the same
mass for the 4s[0,mDD1

] state from V[0,mDD1
](r) with σ = 850 MeV/fm,

ζ = 100 MeV fm, mc = 1348.6 MeV, and mDD1
= 4287 MeV. Cal-

culated root-mean-square radii 〈r2〉 1
2 are also listed. The × sign

indicates that no value of s can be found to get the required bound
state.

�

(MeV)
s (MeV/fm) m4s[0,mDD1

]

(MeV)
〈r2〉 1

2 (fm)

05 ×
30 ×
60 13 4261.5 3.7
120 64.2 4261.5 2.8
180 135 4261.5 2.5

where r� and (r×)DD1
are defined by the continuity of the

potential as

σ r� − ζ

r�

= mDD1
− mc − mc − �, (6)

−� + s((r×)DD1
− r�) = 0. (7)

Regarding the value of the slope s, we shall fix it by
requiring that a bound state close below threshold appears, as
experimentally required by the presence of the unconventional
ψ (4260) resonance. It turns out that s and � are correlated
in the sense that an increase of � can be compensated by
an increase of s to get the same mass for the bound state,
as can be checked in Table II. This mitigates the lack of a
clear connection between the chosen value of � and the real
threshold widths.

It should be emphasized that for � = 0 no bound state
that could be assigned to ψ (4260) can be generated. This is
the quantitative translation of our previous comment about
the need to go beyond the zero screening energy interval
approach for 0−(1−−) states. For � � 30 MeV the only
possibility to generate bound states close below threshold
is by choosing such a small value of s that an unphysical
proliferation of bound states occurs. Only for � � 60 MeV
does a well defined bound state with the required mass of
4260 MeV appear. Regarding other states than ψ (4260), with
masses below 4200 MeV, the different (�, s) pairs considered
produce a rather small change in the mass of the high-lying
ones, of 10 MeV at most, giving rise to quite the same spectral
description. (Notice that the higher the � value the bigger the
change in the masses, which indicates that � cannot be much
larger than 180 MeV for the same spectrum to be maintained.)

In Fig. 4 we have plotted the potential V[0,mDD1
](r) for � =

60 MeV and s � 13 MeV/fm. For the threshold mass we use
the value mDD1

= 4287 MeV obtained from the experimental

masses of D0 and D1
0

[4]. For the remaining parameters we
keep the formerly used values.

The 0−(1−−) low-lying spectrum obtained from this poten-
tial is shown in Table III.

Notice that there is almost no difference between
V[0,mDD1

](r) and VC (r) in the description of the (conventional)
sates below 4200 MeV. In contrast from this energy to

FIG. 4. Representation of the 0−(1−−) cc static potential
V[0,mDD1

](r) with mc = 1348.6 MeV, σ = 850 MeV/fm, ζ =
100 MeV fm, mDD1

= 4287 MeV, � = 60 MeV, and s =
12.97 MeV/fm.

threshold the use of V[0,mDD1
](r) gives rise to the appearance

of the 4s[0,mDD1
] and 3d[0,mDD1

] states with no correspondence
at all with any conventional state from VC (r) [the 4s state has a
mass mCor (4s) = 4437 MeV]. This allows the accommodation
of ψ (4260) as discussed in the next section.

For the sake of completeness it should be added that
a nonzero screening energy interval potential, in line with
lattice results, may also be used for 0+(1++) states. However
this does not give rise to any significant difference with the
zero screening energy interval approach used in Sec. II. For
�1++ = 30 MeV the value of the slope can be chosen to get a
description completely equivalent to the one provided by the
zero screening energy interval approach.

TABLE III. Calculated 0−(1−−) charmonium masses m[0, mDD1
]

from V[0, mDD1
](r) with σ = 850 MeV/fm, ζ = 100 MeV fm,

mc = 1348.6 MeV, and mDD1
= 4287 MeV. The spectral notation

nl[0, mDD1
], where n (l) indicates the principal (orbital angular mo-

mentum) quantum number, has been used for the states. Masses for
experimental resonances, mPDG, have been taken from [4]. Masses
mCor from VC (r), up to mDD1

, with the same values for σ , ζ , and mc

are also shown for comparison.

JPC State
nl[0, mDD1

]

m[0, mDD1
]

(MeV)
mPDG

(MeV)
mCor

(MeV)
VC (r) state

nl

1−−

1s[0,mDD1
] 3046.0 3096.916 ± 0.011 3046.0 1s

2s[0,mDD1
] 3632.1 3686.09 ± 0.04 3632.2 2s

1d[0,mDD1
] 3743.4 3773.15 ± 0.33 3743.5 1d

3s[0,mDD1
] 4061.0 4039 ± 1 4065.8 3s

2d[0,mDD1
] 4136.4 4191 ± 5 4142.8 2d

4s[0,mDD1
] 4261.5 4230 ± 8

3d[0,mDD1
] 4277.3
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FIG. 5. Radial wave functions R(r) (in units of fm− 3
2 ) for the

1−−(4s[0,mDD1
] ) state (thick line) and the 1−−(4s) state (thin line).

IV. ψ(4260)

In Table III the well established ψ (4260) (different mea-
surements of its mass go from 4222 to 4284 MeV; the quoted
average mass in [4] is mψ (4260) = 4230 ± 8 MeV) has been
assigned to the 4s[0,mDD1

] state with a calculated mass of
4261.5 MeV, although it is very probable that this state mixes
with the 3d[0,mDD1

] one giving rise a mass closer to the quoted
experimental average. Under this assignment ψ (4260) is an
unconventional state coming out from the string breaking
effect due to the DD1 threshold.

The role played by the DD1(2420) configuration has been
previously emphasized by some authors; see for example
[7,18–22] (and more references therein). In our potential
quark model the “molecular constituents” DD1(2430) and
DD1(2420) are embedded in the quark-antiquark 4s[0,mDD1

]

radial wave function, drawn in Fig. 5, as reflected by the value

of its root-mean-square radius 〈r2〉 1
2 = 3.75 fm, which is

much larger than for wave functions from VC (r) (for instance,

〈r2〉 1
2 = 1.55 fm for the 4s state with a mass of 4437 MeV).

The nonvanishing probability density at long distances for
the 4s[0,mDD1

] state, i.e., the nonvanishing probability for the
heavy quark and antiquark to be far apart, clearly indicates
that string breaking has taken place (as a related consequence
the probability density at the origin has been significantly
reduced).

One could argue that it is not a big deal to get the mass of
a state through the fixing of the free parameter s. Nonetheless
once we have the wave function of ψ (4260) we can calculate
its decay properties and use their comparison to data as a
stringent test of our effective description. In this regard let us
recall that the discovery channel for ψ (4260) was J/ψπ+π−,
that the conventionally dominant expected decay to DD is
suppressed, that the electromagnetic decay to χc1(3872)γ is
seen against the not-seen decay to χc1(1p)γ , and that the
following ratio has been measured [4]:(

	ψ (4260)→J/ψπ+π−	ψ (4260)→e+e−

	ψ (4260)−

)
Exp

= 9.2 ± 1.0 eV. (8)

It may be worthwhile to mention that other screened po-
tential models have been used for the description of heavy
quarkonia; see for example [23,24]. These models use a
general screened potential without connection to any specific
meson-meson threshold, yet they generate a 4s state with a
mass about 4260 MeV. In particular, in Ref. [23] an analysis
of ψ (4260) was carried out (at the time of publication of
Ref. [24] the ψ (4260) had not been discovered yet). As
established by the authors, there are some considered diffi-
culties, also shared by the other screened potential models
of the same kind, in assigning the calculated 4s state to
ψ (4260). These difficulties have to do with the experimental
lack of coupling of ψ (4260) to e+e− and with the nonob-
servation of the decay modes DD, DD

∗
, and D∗D

∗
. Next

we shall show that these difficulties are overcome in our
model, signaling the need to include screening effects though
a detailed threshold consideration for a complete explanation
of charmonium. Although we shall rely on the particular
choice (�, s) = (60 MeV, 13 MeV/fm) we shall also give
results for (�, s) = (120 MeV, 64.2 MeV/fm) and (�, s) =
(180 MeV, 135 MeV/fm). This will allow us to establish the
interval of variation of � compatible with experimental ob-
servations.

A. ψ(4260) → e+e−

For conventional 3S1 bottomonium states below their cor-
responding S-wave threshold, the potential models we use,
VC (r) and V[0,mDD1

](r), reproduce quite approximately the
measured ratios of leptonic widths to e+e−. These ratios are
calculated as (see for example [25])

	i1→e+e−

	i2→e+e−
=

∣∣Ri1 (0)
∣∣2∣∣Ri2 (0)
∣∣2

m2
i2

m2
i1

(9)

where i1,2 stand for 3S1 states, Ri1,2 (0) for their radial wave
functions at the origin, and mi1,2 for their masses.

Regarding charmonium, the calculated ratio

	2s[0,mDD1
]→e+e−

	1s[0,mDD1
]→e+e−

= 	2s→e+e−

	1s→e+e−
= 0.5

is a 15% off the experimental one (
	ψ (2s)→e+e−
	J/ψ→e+e−

)
Exp

= 0.42 ±
0.02.

Then, by assuming a similar quality for the calculated
ratios involving the 4s[0,mDD1

] state, we can use

	ψ (4260)→e+e−

	ψ (2s)→e+e−
�

	4s[0,mDD1
]→e+e−

	2s[0,mDD1
]→e+e−

= |Rψ (4260)(0)|2
|Rψ (2s)(0)|2

m2
ψ (2s)

m2
ψ (4260)

= 2.4 × 10−2 (10)

where Rψ (4260)(0) � 1.5 fm− 3
2 and Rψ (2s)(0) � 8.3 fm− 3

2

from our model, together with the experimental measurement
(	ψ (2s)→e+e− )Exp = 2.30 ± 0.06 keV, to predict an approxi-
mated leptonic decay width

	ψ (4260)→e+e− � 55.2 ± 0.2 eV. (11)
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Notice that this value is quite small as compared to
(	ψ (2s)→e+e− )Exp and other values for conventional states. This
is a direct consequence of the lack of probability at the origin
caused by screening expressed through the value of the radial
wave function at the origin.

Unfortunately the ψ (4260) → e+e width has not been
measured separately for comparison. Instead we may use the
experimentally known ratio(

	ψ (4260)→J/ψπ+π−	ψ (4260)→e+e−

	ψ (4260)

)
Exp

= 9.2 ± 1.0 eV (12)

to guess from (11) the required branching ratio

	ψ (4260)→J/ψπ+π−

	ψ (4260)
� 0.17 ± 0.03. (13)

Then from the total measured width

(	ψ (4260))Exp = 55 ± 19 MeV (14)

we get

	ψ (4260)→J/ψπ+π− � 9 ± 5 MeV. (15)

It is worthwhile to point out that the leptonic width would
be smaller than the estimated value (11) if ψ (4260) contained
also some 3d[0,mDD1

] probability. This would make the branch-
ing ratio (13) and the decay width to J/ψπ+π− (15) increase
from their estimated values.

For the sake of consistency 	ψ (4260)→J/ψπ+π− should be
reproduced from our quark model description. However, this
calculation involves the emission of two gluons through in-
termediate hybrid states (see for instance [26]) that should be
consistently obtained within our quark model framework. This
is a task out of the scope of the present article.

Nevertheless we should emphasize that a small value for
	ψ (4260)→e+e− , such as the one we predict, is a sine qua
non condition for ψ (4260) → J/ψπ+π− having a significant
branching ratio, as required from being the discovery channel.
[Just for comparison, if we had used the 4s wave function
to describe ψ (4260) the derived branching ratio would have
been 0.005.] Furthermore, our predicted 	ψ (4260)→e+e− is in
line with the experimental suppression of S-wave DD1 pro-
duction in e+e− annihilation.

To study the dependence of these results on
(�, s) we have repeated the calculations for
(�, s) = (120 MeV, 64.2 MeV/fm) and (�, s) =
(180 MeV, 135 MeV/fm). We get (	ψ (4260)→e+e− )(120,64.2) �
230 ± 6 eV, (	ψ (4260)→J/ψπ+π− )(120,64.2) � 2.2 ±
1.2 MeV and (	ψ (4260)→e+e− )(180,135) � 345 ± 9 eV,
(	ψ (4260)→J/ψπ+π− )(180,135) � 1.5 ± 0.8 MeV. These values
are still compatible with data so that no discrimination among
the different � values can be done. Incidentally, the predicted
range of values for 	ψ (4260)→e+e− , [55, 345] eV, is quite
similar to the one expected from a molecular model analysis
[17].

B. E1 transitions

For conventional bottomonium and charmonium states
below their corresponding S-wave thresholds, the potential

models we use, VC (r) and V[0,mDD1
](r), give correctly the order

of magnitude of the measured ratios of 3S1 ↔ 3P1 dipole elec-
tric transitions from the same initial state or to the same final
state. More accurate results are obtained if the experimental
masses of the states are used instead of the calculated ones.

The theoretical expressions for these ratios are

	E1(i → f1 + γ )

	E1(i → f2 + γ )
= w3

i f1

w3
i f2

∣∣Di f1

∣∣2∣∣Di f2

∣∣2 (16)

for the case in which the same initial state decays into two
final ( f1 and f2) states with the same value of Jf and

	E1(i1 → f + γ )

	E1(i2 → f + γ )
= w3

i1 f

w3
i2 f

∣∣D f i1

∣∣2∣∣D f i2

∣∣2 (17)

for the case in which two initial states (i1 and i2) decay into
the same final state.

wi f is the photon energy and Di f the electric dipole matrix
element,

Di f =
∫ ∞

0
dr, Ri(r)r2 3

wi f

[wi f r

2
j0

(wi f r

2

)
− j1

(wi f r

2

)]
R f (r),

(18)

where Ri, f (r) are the radial wave functions of the initial and
final mesons and j0, j1 stand for spherical Bessel functions.

By reasonably assuming the correct order of magnitude of
the ratios when transitions from 4s[0,mDD1

] are involved, we
predict the following [for ψ (2s) and χc1(1p) the experimental
masses are used; for ψ (4260) the calculated mass is taken
since we do not consider mixing with the 3d[0,mDD1

] state]:

	ψ (4260)→χc1(3872)γ

	ψ (4260)→χc1(1p)γ
�

	4s[0,mDD1
] → 2p[0, m

DD∗ ]γ

	4s[0,mDD1
] → 1p[0, m

DD∗ ]γ

= 107.8 (19)

and

	ψ (4260)→χc1(1p)γ

	ψ (2s)→χc1(1p)γ
�

	4s[0,mDD1
] → 1p[0, m

DD∗ ]γ

	2s[0,mDD1
] → 1p[0, m

DD∗ ]γ

= 0.018. (20)

The first ratio (19) provides an explanation for the decay
ψ (4260) → χc1(3872)γ being seen against the not-seen de-
cay ψ (4260) → χc1(1p)γ . More quantitatively, we may use
the second ratio (20) to predict from the experimental value
(	ψ (2s)→χc1(1p)γ )Exp = 29 ± 1 keV a width

	ψ (4260)→χc1(1p)γ � 0.506 ± 0.017 keV.

Then from the first ratio we predict

	ψ (4260)→χc1(3872)γ � 54.6 ± 1.9 keV.

We should keep in mind though that, according to our
assumption above, these values of the widths should be con-
sidered as indicative of their order of magnitude and not as
accurate predictions.

As these radiative transitions are sensitive to the
details of the wave functions, they can provide us,
through the consideration of different (�, s) pairs,
with some additional constraints on the � values.
Actually the results we get, (	ψ (4260)→χc1(1p)γ )(120,64.2) �
1.7 ± 0.1 keV, (	ψ (4260)→χc1(3872)γ )(120,64.2) � 2.2 ± 0.1 keV
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and (	ψ (4260)→χc1(1p)γ )(180,135) � 2.9 ± 0.1 keV,
(	ψ (4260)→χc1(3872)γ )(180,135) � 0.044 ± 0.004 keV, indicate
that � should be smaller than 120 MeV in order to not
contradict the fact that the decay ψ (4260) → χc1(3872)γ is
seen whereas the ψ (4260) → χc1(1p)γ decay is not. Hence
we may tentatively delimit the � interval to [60, 120] MeV.

C. ψ(4260) → DD

Other issue about ψ (4260) has to do with the experimental
suppression of the DD decay mode despite the fact that
ψ (4260) is above the DD threshold mass. In order to calculate
this decay we shall rely on the 3P0 decay model [27,28], where
the physical mechanism involved is related to the one we
have used to take into account color screening in the potential
(a qq created in the hadronic vacuum with 0++ quantum
numbers combines with cc giving rise to DD). This model
provides sensible results for the DD decay of the low-lying
conventional bottomonium and charmonium states with mass
above the DD threshold [29].

Specifically the expression for the width is

	ψ (4260)→DD = 2π
EDED

mψ (4260)
k|A|2, (21)

where ED (=ED) is the energy of the D (or D) meson given by

ED =
√

m2
D + k2 = ED (22)

with k being the modulus of the three-momentum of D (or D),
for which we shall use the relativistic expression

k =
√(

m2
ψ (4260) − 4m2

D

)
2

, (23)

and A stands for the decay amplitude given by

|A|2 ≡ β2|M|2, (24)

where the constant β specifies the strength of the pair creation,
and the expression for |M|2 can be derived from [29] in a
straightforward manner (we use the same notation as in this
reference) as

|M|2 = 1

96
I (+)2, (25)

where

I (+)2 =
∣∣∣∣∣∣

1

h̄
9
2

∫ ∞
0 r2

X drX ψX (rX )
∫

p2d p ũD(p)̃uD(p)[
p j1

( prX

h̄

)
j1

( mc
(mc+mq )

krX
h̄

) + mq

(mc+mq ) k j0
( prX

h̄

)
j0

( mc

(mc+mq )
krX
h̄

)]
∣∣∣∣∣∣
2

, (26)

mq = 340 MeV is the mass of the light quark, ψX denotes the
radial wave function of ψ (4260) in configuration space, and
ũD(p) stands for the radial wave function of D in momentum
space,

ũD(p) ≡
√

2

π

∫ ∞

0
r2

D drD ψD(rD) j0
( prD

h̄

)
, (27)

calculated from ψD, the radial wave function of D in configu-
ration space.

In order to simplify the calculation we shall approach as
usual ψD(rD) using a Gaussian [and the same expression for
ψD(rD]:

ψD(rD) = 2

π
1
4 R

3
2
D

e
− r2

D
2R2

D . (28)

RD can be fixed either variationally or by requiring it to be
equal to the root-mean-square (rms) radius obtained from the
description of (conventional) D with VC (r) and a light quark
mass of about 340 MeV (this implies a change of the value of
the Coulomb strength ζ to get the spectral mass). By using the
rms radius procedure we get RD = 0.54 fm. Then the use of
the Gaussian instead of the wave function from VC (r) hardly
makes any difference.

We may avoid the dependence on the constant β by tak-
ing the ratio with some other DD decay process. Further-
more, if the width for this other process has been measured
then we can give a prediction for 	ψ (4260)→DD by assuming
that the calculated ratio approximates the experimental one.
These conditions may be satisfied by choosing the process
ψ (3770) → DD. [Notice that ψ (3770) has been assigned to
the 1d[0,mDD1

] state in Table III.]

The ψ (3770) → DD width is given by

	ψ (3770)→DD = 2π
E ′

DE ′
D

mψ (3770)
k′|A′|2

with

k′ =
√(

m2
ψ (3770) − 4m2

D

)
2

and |A′|2 ≡ β2|M′|2 with

|M′|2 = 1

48
I (−)2

and

I (−)2 =
∣∣∣∣∣∣

1

h̄
9
2

∫ ∞
0 r2

X drX ψ ′
X (rX )

∫
p2d p ũD(p)̃uD(p)[−p j1

( prX

h̄

)
j1

( mc
(mc+mq )

k′rX
h̄

) + mq

(mc+mq ) k
′ j0

( prX

h̄

)
j2

( mc
(mc+mq )

k′rX
h̄

)]
∣∣∣∣∣∣
2

,
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where ψ ′
X denotes the radial wave function of ψ (3770) in

configuration space.
By making use of these expressions we get [the experimen-

tal mass for ψ (3770) has been used]

	ψ (4260)→DD

	ψ (3770)→DD

= 7 × 10−3

that explains the DD decay suppression for ψ (4260) as com-
pared to the conventional ψ (3770) state. Quantitatively, using
this ratio and the measured values

(	ψ (3770)→DD)Exp = 25.6 ± 0.8 MeV

and

(	ψ (4260))Exp = 55 ± 19 MeV,

we predict

	ψ (4260)→DD � 0.18 ± 0.01 MeV

and
	ψ (4260)→DD

(	ψ (4260))Exp
� (3 ± 2) × 10−3.

Regarding the dependence on the constrained (�, s) interval,
we get (	ψ (4260)→DD)

(120,64.2)
� 1.7 ± 0.1 MeV, which is still

suppressed with respect to 	ψ (3770)→DD by a factor of 15.
Hence we may expect the experimental suppression factor to
be in the interval [143, 15]. To go beyond in the determination
of this factor one should make use of it to calculate how the
cross section σ (e+e− → DD) differs at center-of-mass ener-
gies of 3770 and 4260 MeV. Then, through a comparison to
the measured values of R = σtot (e+e−→hadrons)

σQED (e+e−→μ+μ− ) at these energies
[30], a more precise value of the factor might be estimated.
This is a quite interesting program, but is clearly out of the
scope of this article.

V. SUMMARY

Starting from lattice results for the energy of two static
color sources (Q and Q) when mixing of the QQ configuration
with an open flavor meson-meson one is taken into account,
the form of a Born-Oppenheimer quark-antiquark static po-
tential can be prescribed. This potential contains implicitly
the effect of color screening due to the presence of light
qq pairs that combine with QQ, giving rise to meson-meson
components.

A simplified prescription corresponding to consider that
screening takes place just at the meson-meson threshold en-
ergy, previously used for the description of 0+(J++) char-
monium (J = 0, 1, 2), has been refined by the introduction
of a nonzero screening energy interval to deal with 0−(1−−)
states below their first S-wave meson-meson threshold. The
spectrum from the resulting potential contains conventional-
like states as well as unconventional ones. This allows for
the theoretical accommodation of the experimentally well
established resonance ψ (4260) through its assignment to a
calculated sate. To check the viability of such an assignment
we have calculated e+e−, E1, and DD decay widths. Our
results show full compatibility with existing data although
more refined measurements would be needed for a more
detailed comparison. Meanwhile we may tentatively conclude
that ψ (4260) may be described as an unconventional state
coming out from the string breaking effect due to DD1 meson-
meson components.
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