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Background: Correlations from charge correlation, known as charge balance functions, provide critical tests
of the chemical evolution of matter in a heavy-ion collision. Comparisons of experimental balance functions
with calculations from parametric descriptions of the final state suggest that the charge production in the earliest
stages of a heavy-ion collision are consistent with having generated an amount of light up, down, and strange
quarks that are largely consistent with expectations for creating a chemically equilibrate quark-gluon plasma.
Purpose: This work describes a full simulation of the evolving correlations superimposed on a state-of-the-art
microscopic description of the collision.
Methods: The creation and diffusion of balancing charges is modeled on the background of a hybrid description
of the evolution based on hydrodynamics, for when the matter’s temperature is above 155 MeV, and a
microscopic hadronic simulation, for the breakup stage. The translation of the charge-charge correlation function,
indexed by the flavors up, down, and strange, into correlations between specific hadron species is built on the
assumption that differential charges enhance differential yields according to statistical equilibrium. Monte Carlo
methods are implemented when applicable.
Results: The charge balance functions are predicted for pairs indexed by charge alone or by whether the particle
pairs are any combination of pions, kaons, or protons. Comparisons with experiment are remarkably successful
except for the proton-kaon balance functions.
Conclusions: This demonstrates first that two-particle correlations from charge conservation can be calculated
for a state-of-the-art model of the evolution with moderate amounts of computation. Aside from the magnitude
of the proton-kaon correlations, the calculations well describe preliminary experimental results from the STAR
Collaboration at the Relativistic Heavy Ion Collider. Ignoring the one disagreement, this suggests that the matter
in a heavy-ion collision comes close to maintaining chemical equilibrium during the superhadronic stage of a
heavy-ion collision.
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I. INTRODUCTION

Relativistic heavy-ion collisions are characterized by co-
pious charge production. During the initial stage, assuming
that a chemically equilibrated quark-gluon plasma (QGP) is
created, roughly equal numbers of up, down, and strange
quarks are produced. Within the central unit of rapidity, more
than a thousand hadrons might be emitted in a single collision,
with each hadron carrying two or three quarks. Thus, during
a single central collision, a rich assortment of up, down, and
strange charge is created, organized into hadrons, and emitted.
Given that the average charge density is zero, because there
are nearly as many antiquarks as quarks, one cannot well
characterize chemical properties by the densities of conserved
charges. Instead, the chemical properties of the medium are
best reflected by the susceptibility, which is a measure of
the charge fluctuation. For an equilibrated system away from

the conditions of phase separation, the charge correlation
Cab(�r1,�r2) should be local, with its strength determined by the
susceptibility χab,

Cab(�r1,�r2) = 〈�ρa(�r1)�ρb(�r2)〉
= χab(�r1)δ(�r1 −�r2) (1)

χab = 1

V
〈�Qa�Qb〉,

�ρa(�r) = ρa(�r) − 〈ρa(�r)〉,
�Qa = Qa − 〈Qa〉. (2)

Here the indices a and b refer to the charge species, up, down,
and strange. For the purposes of this study, the δ function is
any short-range function that integrates to unity, unless one
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needs to view the correlation on extremely small length scales,
�1 fm. In a weakly interacting QGP, the range of the correla-
tion is effectively zero, while in a hadron gas the correlation
extends over the size of hadron. Near a phase transition, the
correlation length can grow arbitrarily, but for systems with
small net baryon number, lattice shows no evidence of a phase
transition, and correlation lengths are expected to be small [1].
For the highest collision energies at the Relativistic Heavy
Ion Collider (RHIC) or in collisions at the Large Hadron
Collider (LHC), the net charge density approaches zero, and
the quantities �ρ and �Q can be replaced by ρa and Qa, a
simplification applied throughout the paper.

In the gaseous quark-gluon plasma (QGP) limit, quarks are
independent of one another and χab is diagonal,

χ
QGP
ab ≈ (na + nā)δab, (3)

where na is the density of quarks of type a. In a hadronic gas,
the correlation can be diagonal as a hadron species h can have
multiple charges,

χhad
ab ≈

∑
h

nqqhaqhb, (4)

where qha denotes the charge of type a on a hadron of species
h. In between these two limits, χ is complicated and has been
calculated by lattice gauge theory, which shows a smooth
transition between the expression for a hadronic gas to one
for a QGP in the temperature range 150 < T < 225 MeV
[1,2]. Thus, validating that one has indeed created matter with
equilibrated chemical properties requires verifying that the
susceptibility, or the local part of the correlation, varies with
time and position according to the local temperature.

Because of local charge conservation, any local correlation
such as one would expect in the hadronic breakup stage
characterized by a δ function, as in Eq. (1), and with the
susceptibility such as that for a hadron gas in Eq. (4), must
be accompanied by a balancing correlation. In the context of
a relativistic heavy-ion collision, charge conservation requires
that the net charge correlation, summing both the short-range
and the longer-range balancing contributions, integrates to
zero. If one defines the balancing contribution to the corre-
lation as C′(�r1,�r2, t ), then

Cab(�r1,�r2, t ) = χab(�r1, t )δ(�r1 −�r2) + C′
ab(�r1,�r2, t ). (5)

If the system is locally equilibrated, then χab in Eq. (5) is
indeed the equilibrated susceptibility as calculated in lattice
gauge theory. Due to charge conservation, Cab must integrate
to zero, and ∫

d3r′C′
ab(�r,�r′, t ) = −χab(�r, t ). (6)

In a hadronic state, the nonlocal charge correlation represents
the interhadron charge correlation. As χab changes with time,
it must feed C′(�r,�r′, t ) at �r = �r′ due to the local nature of
charge conservation. Given that the local correlation, the cor-
relation between charges on the same hadron, are determined
by the various hadronic yields, it is the determination of
the balancing correlation C′

ab that carries new information.
If charges are created early, perhaps in the prehydrodynamic

stage of the reaction, the correlation C′
ab has the chance to

spread over a large distance, perhaps more than one unit of
spatial rapidity. Whereas, if charges are created late in the
reaction, then the structure of C′

ab will be more localized.
If the local part of the correlation maintains equilibrium
according to lattice gauge theory, then the source function for
C′

ab will have contributions from both early and later charge
production. The contributions from the various stages will
also depend strongly on the charge indices. For example, Css

will be fed mainly at early times, when most of the strangeness
is produced, whereas the majority of the source for Cuu will
come a later times during hadronization. Investigating the
spatial spread of C′

ab at the end of the collision provides
insight not only into χab at the end of the collision but also
into the evolution of χab throughout the event. The actual
scales also depend on the diffusion constant and on the initial
separation of charges from the first surge [3,4], i.e., decaying
flux tubes might pull balancing charges apart as they tunnel
through the vacuum in a Schwinger mechanism. Even if the
local correlation is not equilibrated, χab can still represent
the strength of the local correlation and might be modeled by
some assumption of the nonequilibrium chemical evolution.

An obvious difficulty in extracting C′
ab(�r,�r′, t ) is that ex-

periments measure only asymptotic momenta. Fortunately,
because of the strong collective flow in heavy-ion collisions,
momenta are strongly correlated with position. A particle’s
final rapidity y and azimuthal angle φp, as defined by their
outgoing momenta, are close to the spatial rapidity ηs and
angle φr describing the last point from which the particles
were emitted. Because of thermal motion, the values of ηs and
y tend to differ by a few tenths of a unit of rapidity [3] and φp

and φr differ by a few dozen degrees [5]. This smearing out
of the correlation can be modeled but does limit the ability to
distinguish correlation features at small length scales.

The measured correlations, known as charge balance func-
tions, are usually defined by the following, or similar, form:

Bh′h(p′|p) ≡ 〈�ρh(p)[�ρh′ (p′) − �ρh̄′ (p)]〉
2〈�ρh(p)〉

− 〈�ρh̄(p)[�ρh′ (p′) − �ρh̄′ (p)]〉
2〈�ρh̄(p)〉

≈ 〈[�ρh(p) − �ρh̄(p)][�ρh′ (p′) − �ρh̄′ (p)]〉
〈�ρh(p) + �ρh̄(p)〉 .

(7)

Here h refers to some set of hadrons and h̄ denotes the
corresponding set of antiparticles. For example, h might refer
to all positively charged particles and h̄ would refer to all
the negatively charged ones. The momenta ranges might be
such that p refers to any measured track and that p′ refers to
the relative rapidity. For this case, B+−(�y) would represent
the probability, given the observation of a track of a given
charge, of finding a track of opposite sign vs. the same
sign at relative rapidity �y. Given that electric charge is
conserved, the function B+−(�y) would integrate to unity if
the acceptance and efficiency for observing the second particle
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were perfect. Another example would be BpK− , which would
describe the conditional probability of finding a proton vs.
finding an antiproton given the observation of a K− averaged
with the conditional probability for finding an antiproton vs.
a proton given the observation of a K+. For the limit of
zero net charge, a good approximation for LHC energies or
the highest RHIC energies, the latter expression in Eq. (7)
becomes exact and the quantities �ρ can be replaced as
ρ. The motivation of analyzing experimental charge balance
functions, which are functions of some measure of relative
momenta such as relative rapidity or azimuthal angle, is to
determine or constrain C′

ab which are functions of relative
position. Assuming one knows the correlations, C′

ab(�r,�r′), at
the end of the collision, one can determine the correlations of
various hadrons as a function of momenta by assuming the
differential charges induced by the correlations are distributed
thermally [6].

By analyzing charge balance functions indexed by
hadronic species from STAR [7], it appears that the suscep-
tibilities for strangeness and baryon number grew markedly
during early times. This is evidenced by the relatively broad
balance functions for pp̄ and K+K− when plotted as a
function of relative rapidity. Not surprisingly, these balance
functions are most sensitive to the evolution of χss and the
baryon susceptibility, χBB [6]. In contrast, the observed π+π−
charge balance function, which is most sensitive to the electric
charge susceptibility, is narrower in central collisions. This is
consistent with lattice results, which show that the strangeness
and baryon susceptibilities, when scaled for the increasing
volume, should stay roughly constant from thermalization
until hadronization, while in contrast, the electric charge
susceptibility roughly triples as the system expands into the
hadronization region. This feeds the correlation C′ toward
the end of the collision, which results in a narrow peak for
the π+π− balance functions. If all the susceptibilities were
to evolve similarly with time, then the behavior would be
opposite. Due to the higher thermal velocities, the π+π−
balance function would be the broadest due to the larger
thermal velocities for pions due to their relatively small
masses. Experimentally, the hierarchy is opposite, with the
pp̄ balance function being broader than the K+K− balance
functions and the π+π− being the narrowest. This behav-
ior was fit with parametric models that assumed the initial
formation of a chemically equilibrated QGP, followed by
a second surge of charge production consistent with going
from QGP susceptibilities to hadronic ones. By treating the
diffusive width, in spatial rapidity, from the initial creation
of a QGP as one parameter, and the width from the second
surge as a second parameter, and then parametrizing the initial
QGP susceptibility, it was found that matching the experiment
required that the initial quark chemistry was within a few tens
of percentages of the lattice values [8].

Another feature of balance function measurements has
been the narrowing of balance functions, indexed only by
electric charge, as a function of increasing centrality. This has
been observed by STAR at RHIC [9–12], by NA49 at the SPS
[13], and by ALICE at the LHC [14]. For the most central
collisions, the observed widths of the charge balance func-
tions in relative rapidity are consistent with the late surge in

charge production mentioned above. For the most peripheral
collisions, or for pp collisions, the charge balance functions
are broader. The physical cause of these broader correlations
is not fully understood. Event generators, like RQMD [15]
or URQMD [16], can match the widths for peripheral colli-
sions, but these generators are based on underlying pp event
generators [17], which were simply parameterized to match
such widths. The generator RQMD, which like URQMD
creates hadrons early rather than only after a QGP evolves,
does not reproduce the narrowing features seen in data, and,
opposite to the trend seen in data, the charge balance functions
from RQMD broadens with increasing centrality [18]. Charge
balance functions have also been measured as a function of
beam energy [19,20], a feature that will not be discussed here.

The observed experimental features mentioned above make
a case for producing an equilibrated quark-gluon plasma at
early times in central collisions of heavy ions, which then lasts
for a significant time, perhaps �5 fm/c, until hadronization.
However, these conclusions were made from viewing qualita-
tive trends and by fitting to either a parametric model [8,21]
or to being unable to fit with a purely hadronic model. The
state-of-the-art description of a heavy-ion collision involves
modeling the QGP stage with relativistic viscous hydrody-
namics [22] and then coupling to a hadronic simulation once
the temperature falls below ∼155 MeV. The hadronic stage
cannot be well described with hydrodynamics because the
various species begin to lose thermal contact with one an-
other [23,24]. In Ref. [25] charge correlations were evolved
and the resultant charge balance functions were calculated
for a state-of-the-art hydrodynamic model, but hadrons were
emitted from the hydrodynamic stage into the vacuum and
further evolution in the nonhydrodynamic stage was ignored.
In Ref. [25] the correlation function C′ was seeded in a
way that was consistent with local chemical equilibrium.
Correlations were evolved according to a diffusion constant
for light quarks taken from lattice calculations [26]. When
the evolution emerged from the hypersurface and into the
hadronic stage, the hadrons, and their charges were created
according to thermal arguments. However, the hadrons were
then simply emitted into the vacuum where they decayed.
Here a more realistic model is presented, which includes the
effects of hadronic rescattering. Such rescattering is is not
expected to dramatically alter the results. However, it might
not be negligible. For example, if the emission occurs at
T = 155 MeV, then many ρ mesons are created. The neutral
ρs decay producing balancing π+π− pairs with the invariant
mass of the ρ. More realistically, such ρs decay and the
daughter pions rescatter, altering the structure of the balance
function.

The hadronic simulator B3D [27] was employed for the
evolution of the hadronic phase here. As in Ref. [25] the
diffusion of balancing charges was modeled with Monte Carlo
methods, which involved tagging correlated pairs. When they
were emitted into the vacuum, once could create correla-
tions using only hadrons from the same correlated pair or
from their decay products. This reduced recombinatoric noise
and made it possible to calculate balance functions at very
modest numerical expense. Unfortunately, the complex in-
teractions of the hadron cascade preclude such an efficient
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treatment. Thus, the more realistic description here carried a
significant numerical cost. Hundreds of thousands of cascade
events were generated for this analysis. In Ref. [25] the
results were studied for their sensitivity to several param-
eters, such as the breakup temperature, the diffusion con-
stant, and the initial charge separation when the QGP was
created. Here results are presented for one default set of
parameters, and the discussion is focused on how well the
mode reproduces data, and on the effects of the hadronic
rescattering.

The method for modeling the evolution, both in the hy-
drodynamic and cascade stages, is described in the next
section. In addition to describing how the correlations are
propagated through the cascade, the method for treating the
hydrodynamic stage as used in Ref. [25] is reviewed. Results
for Au+Au collisions with

√
sNN = 200 GeV are provided

in Sec. III. This includes analyses for unidentified particles
binned by relative pseudorapidity, relative azimuthal angle,
and centrality. Charge balance functions indexed by hadronic
species are shown for central collisions, and, finally, balance
functions indexed by the angle relative to the reaction plane
are presented, an analysis that also provides the γp correlator
related to the chiral magnetic (CME) effect [28,29]. Each of
these calculations are compared to STAR data. The Appendix
presents a brief description of how a differential balancing
charge is translated into hadrons at the hypersurface sepa-
rating the hydrodynamic and hadronic stages. Prospects for
future analysis and measurements are provided in Sec. IV
along with a summary.

II. METHOD

Charge correlations, Cab(�r1, �r2) = 〈ρa(�r1)ρb(�r2)〉, were
propagated through the hydrodynamic stage using the
same methods as were applied in Ref. [25]. The correla-
tions were based on a hydrodynamic background generated
from the iEBE-VISHNU package [30] using a lattice equation
of state [31]. The hydrodynamic treatment provided a descrip-
tion of the stress-energy tensor as a function of the transverse
coordinates x and y and the proper time τ = √

t2 − z2. The
description assumed boost invariance along the beam axis,
which leads to a translational invariance with respect to the
spatial rapidity, ηs = sinh−1(z/τ ). In addition to the proper
time τ , the correlations were functions of x1, x2, y1, y2 and the
relative spatial rapidity �ηs, as boost invariance eliminates
any dependence on ηs1 + ηs2. Rather than evolve a five-
dimensional quantity, a Monte Carlo simulation was applied
as was performed in Ref. [25]. Pairs of sampling particles
of charge qa, qb were followed through time. The correlation
was evolved according to the diffusion equation and given
a source term consistent with maintaining the charge con-
servation condition in Eq. (6). Because the correlation was
represented by an ensemble of sampling charge pairs, the
diffusion equation was not treated as a differential equation
but instead as a random walk with the collision time chosen
consistent to be consistent with the diffusion constant. The
diffusion coefficient D was a function of the local temperature
and taken from lattice-gauge theory [26].

As described in the Introduction, the correlation was sepa-
rated into short-range and longer-range pieces,

Cab(�r1,�r2, t ) = χab(�r1, t )δ(�r1 −�r2) + C′
ab(�r1,�r2, t ). (8)

The δ function is not taken literally but instead is some
function that integrates to unity over a microscopic range
describing the equilibrated correlation. For a hadron gas, this
would be the size of a hadron, whereas for a QGP, the δ func-
tion could practically be literal. If chemistry is equilibrated,
then χab(�r, t ) is indeed the equilibrated charge fluctuation. For
this study, it will assumed to be the case, but more generally,
one could model the nonequilibrium behavior of the local
part of the correlation. Because the local part is accounted for
by the single-particle emission from the hydrodynamic stage,
only the nonlocal, or balancing, part needs to simulated.

The nonlocal part, C′, would propagate according to the
diffusion equation,

∂tC
′
ab(�r1,�r2, t )

= D〈[∇2ρa(�r1, t )]ρb(�r2, t )〉 + D〈ρa(�r1, t )[∇2ρb(�r2, t )]〉
+ Sab(�r1, t )δ(�r1 −�r2)

= D
(∇2

1 + ∇2
2

)
Cab(�r1,�r2, t ) + Sab(�r1, t )δ(�r1 −�r2), (9)

where Sab(�r, t ) is a source function that feeds the nonlocal cor-
relation C′. Local charge conservation determines the source
function,

Sab(�r, t ) = (∂t − ∇ · �v)χab(�r, t ). (10)

The Monte Carlo procedure involved creating sample
charge pairs, qa, qb, at a space-time point (�r, t ) with proba-
bility

dNab = Sabd3rdt . (11)

The first charge qa was chosen randomly as ±1, and the
second was chosen so the product qaqb matches the sign of
dNab. Because diffusion describes a random walk, the parti-
cles were allowed to move in random directions (in the rest
frame of the fluid), with a collision time τcoll determined by
the diffusion equation τcoll = 6D/v2, where v is the velocity
between collisions. In each time step δt , the probability of
colliding was δt/τ . The velocity was set equal to the speed
of light. This approach has two clear advantages compared to
solving the differential equation for C′

ab described above. First,
the Monte Carlo procedure allows one to label balancing pairs,
which eliminates combinatoric noise. Second, the random
walk never violates causality. Invoking causal diffusion in
differential equations can also be applied [32–34]. Nondiag-
onal elements of the diffusion constant, or, equivalently, of
the conductivity, were ignored here, which is reasonable for a
QGP but might become questionable if the hydrodynamic de-
scription were to be applied for large portions of the hadronic
stage.

For an ideal QGP, where the quarks behave independently,
the susceptibility, χab, is diagonal and the sampled charges
effectively represent quark-antiquark pairs created with a rate
such that the density of pairs would equal then densities of
individual charges. Once off-diagonal correlations exist, as in
a hadron gas, χ becomes more complicated, and the number
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of pairs is then no more than a Monte Carlo means to represent
the correlation function.

At some point each sample charge passes through the
hypersurface that separates the hydrodynamic and cascade
descriptions. In Ref. [25], the hadrons associated with each
charge sample were simulated and then correlated with the
sample hadrons from the other charge in the pair. For a
differential sample charge dQa that traverses a hypersurface
element d�μ, the differential yield for a hadron of species h
and charge qh,a, whose equilibrium number density is nh, is

dNh = nhqh,aχ
−1
ab dQb. (12)

One can see that the average differential charge emitted from
the differential hadron yield dNh is indeed dQ. Summing over
the hadron species, the net charge carried by the hadrons, dQ′,
is

dQ′
a =

∑
h

qh,adNh =
∑

h

qh,anhqh,bχ
−1
bc dQc

= χabχ
−1
bc dQc = dQa. (13)

The momentum of the particle is then chosen according to
the Cooper-Frye formula [35],

dN = d3 p

Ep
p · d� f ( �p), (14)

where f ( �p) is the phase-space density at the point on the
hypersurface element d�. The phase-space density in this
instance is the thermal form determined by the local temper-
ature, collective velocity, and the viscous corrections to the
stress-energy tensor. Implementing the Cooper-Frye formula
is complicated by the fact that a small portion of the sampled
phase space has a negative contribution, where pd� is neg-
ative, which cannot be easily represented in a Monte Carlo
representation. This only occurs for spacelike hypersurface
elements, which provide a small fraction of the overall emiss-
sion. A variety of strategies have been implemented to account
for these negative contributions [36–39] or to account for
viscosity-related anisotropies of the momentum distribution
[40]. In the Appendix we describe the approximation used
here that has the advantage of perfectly satisfying charge
conservation.

In Ref. [25], where there was no hadronic cascade, the
charge balance functions were divided into two contributions,
denoted 1A and 2A below:

1A. Correlations from the hydrodynamic stage were pro-
jected into the final state. As stated above, these corre-
lations were represented in a Monte Carlo procedure
by sampling charge pairs q1 and q2. These charges,
which could be ±u,±d or ±s, each carried the infor-
mation of the hypersurface element through which it
left the hydrodynamic stage and entered the vacuum.
Each charge produced hadrons via a Monte Carlo pro-
cedure according to the weights described above. An
additional multiplicative factor for producing hadrons
was added to increase the numerical efficiency of the
procedure. The hadrons were decayed, with the de-
cayed hadrons assigned to the stream from which the

decaying hadrons originated. Hadrons from a stream
originating from a specific sample charge were only
correlated with those hadrons from the stream coming
from the paired charge. No correlations were con-
sidered from hadrons coming from the same charge
or from hadrons coming from two charges that were
not in the same pair. By not mixing in hadrons from
uncorrelated pairs, combinatoric noise was largely
avoided. Through this procedure, the numerators to
the balance function represent the correlation that
existed in the hydrodynamic stage but ignored any
evolution of charge correlations that might be gen-
erated after the hydrodynamic stage, including those
from decays.

2A. Correlations from decays were generated by first sam-
pling the hypersurface, ignoring the sampling charge
pairs described above. Such decays can account for
over 40% of the charge balance function’s overall
normalization [41]. These uncorrelated hadrons were
then decayed, and the charge balance functions were
incremented only from hadrons coming from the
same decay chain. Again, combinatoric noise was
avoided because only those hadrons with the same
ancestor were correlated. The hadrons from this pro-
cedure were also used to generate the denominator of
the charge balance function.

Because the balance function numerators and denomina-
tors are all represented by a Monte Carlo sampling, account-
ing for the experimental acceptance and efficiency was rather
straightforward. Because the hydrodynamic calculations as-
sumed longitudinal boost invariance, the correlated hadron
pairs were randomly boosted by a rapidity �y so that the first
hadron would have a rapidity randomly between ±1. Because
both hadrons were boosted by the same rapidity, this did not
change the correlation. Hadrons were then weighted by the
experimental efficiency before the contributions were used
to increment the balance functions. For identified particles,
a sophisticated routine was applied that returns the efficiency
as a function of pseudorapidity and transverse momentum.1

For the balance functions for nonidentified charged particles,
a very simple routine was applied. For this simple routine,
all particles with pseudorapidities between ±1 and transverse
momenta between 200 MeV/c and 2 GeV/c were accepted
and assigned a uniform efficiency. Various oversampling
rates from the Monte Carlo procedures were also applied
to calculations of both the balance function numerators and
denominators. As a test of the procedure, calculations were
performed with perfect acceptance and efficiency. In that case,
the charge balance function for unidentified charged particles
should integrate to unity. In practice, due to the numerical
accuracy of the representation of the hypersurface and finite
hydrodynamic resolution, the balance function integrated to
within a few tenths of a percentage of unity.

1Routines for modeling the efficiency of the STAR detector were
provided by Gary Westfall.
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For this study, a hadronic cascade was added to model the
posthydrodynamic stage. Both steps of the procedure (1A and
2A above) of Ref. [25] were modified:

1B. Hadrons generated from the sample charges were
propagated through a cascade. The cascade evolved
two sets of particles. The first set was one of un-
correlated particles generated from the hypersurface
elements consistent with the single-particle phase-
space density. This first set is used as a base for
scattering the second class of particles. The second set
were those hadrons generated from the pairs of sample
charges representing the correlation function of the
hydrodynamic stage. These are the same as those par-
ticles from 1A described above. As was done without
the cascade, these hadrons are labeled by the sam-
pling charge responsible for their emission. Unstable
hadrons were allowed to decay, with these labels
being passed on to their decay products. Additionally,
these hadrons were allowed to elastically scatter from
those of the first set but not with those of the second
set. If hadron h2, from the second set, scattered off
h1 from the first set, then only h2 had its trajectory
altered. These scatterings provide an approximate way
to model the evolution of the charge coming from
the second particle. By ignoring resonant interactions
(aside from decays), and by fixing the cross sections
independent of isospin, the effects of the scatterings
are fully represented by the altered trajectories of the
h2 hadrons. Because resonant interactions represent a
good fraction of the scatterings in a hadronic gas, a
larger elastic cross section of 20 mb was assumed for
the scattering. As was done in the 1A for the previ-
ous study, incrementing balance function numerators
involved only pairing hadrons coming from the same
correlated charge pair but not from the same sampling
charge.

2B. As was done in 2A above, an uncorrelated set of
hadrons was emitted from the hypersurface. However,
in this case the particles were allowed to fully inter-
act, including resonant recombinations and decays.
Because such interactions mix and share charges in
nontrivial ways, tagging could not be used to identify
a pair of hadrons as coming from the same origi-
nal source. Thus, all pairs of hadrons were consid-
ered when constructing the numerator of the bal-
ance function, similarly to how experimental data are
considered. For this method combinatoric noise was
overcome by increasing the number of events. For
most centralities 80,000 events were analyzed, each
covering ±5 units of rapidity. Combined with the fact
that particles are not lost due to efficiency, the noise
is similar to what one would expect for experimental
analyses if a million events were recorded for a given
centrality.

Correlations generated in the cascade, i.e., those described
in 2B would seem to be well modeled with this procedure. The
method is somewhat numerically intensive, but the cascade

B3D [27] propagates several events per second, which makes
the procedure quite tenable. The treatment of correlations
from the hydrodynamic stage seems less satisfactory due to
the scatterings being only elastic. However, because such cor-
relations involve coupling hadrons from two different streams,
the main goal is to understand how the spread of the charge
carried by a hadron spreads out in the cascade. This spread
involves balancing the effect of diffusion, which spreads out
the charge, and cooling, which focuses the charge. Neither
of these effects during the cascade stage is significant, and
little change is noticed between 1A and 1B. The effect of the
cascade from 2B vs. 2A is potentially noticeable. For example,
during the cascade particles decay, and their products rescat-
ter. At the end of the reaction, relatively few heavy resonances,
like the ρ (0), remain. Thus, there are many more π+, π− pairs
with the invariant mass of the ρ for method 2A than for 2B,
where the rescattering was considered. In 2B, the products of a
ρ decay would still contribute to the balance function, but after
rescattering, their invariant mass distribution would be differ-
ent. Such effects are subtle when viewing the balance function
in relative rapidity or relative azimuthal angle but would be
pronounced for balance functions binned by invariant mass.

The most important missing feature in this treatment is
probably that baryon annihilation is ignored. Because anni-
hilation and regeneration of baryons should be performed
consistently, and because regeneration can be somewhat nu-
merically costly, it was neglected in this treatment. Anni-
hilation might reduce the baryon yields by 25% or more
[42–45], which should provide a significant dip in the pp̄
balance functions at small relative momenta, relative rapidity
or relative azimuthal angle. This improvement is a priority for
the next study.

III. RESULTS

Here model calculations are compared to measurements of
the STAR Collaboration at RHIC for Au + Au collisions at√

sNN = 200 GeV. The next subsection presents results for
balance functions of nonidentified particles, binned by rela-
tive pseudorapidity and relative azimuthal angle. Calculations
are shown for several centralities. The following subsection
shows results for balance functions indexed by hadron species.
All combinations of pions, kaons, and protons are calcu-
lated and compared to data for ππ, pp̄, KK , and pK . The
final subsection compares balance functions of unidentified
particles as a function of relative azimuthal angle and also
binned by the direction of the first pion relative to the reaction
plane. This provides a detailed test of collective flow and also
provides insight into the correlation measure, γp, which has
been proposed as a signal of the chiral magnetic effect.

A. Balance functions for unidentified hadrons

First, the model produced charge balance functions for
unidentified hadrons, i.e., all charged particles without dis-
crimination based on species but distinguished by whether
their charges were positive or negative. For perfect accep-
tance and efficiency, such balance functions would integrate
to unity, because for each positive particle, there exists one
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additional negative charge relative to the positive. This addi-
tional charge can be accounted for by some combination of
additional negatives or a reduced number of positive tracks.
In practice, the experimental balance functions integrate to
approximately 0.35. This shortcoming comes from a combi-
nation of efficiency and acceptance. The normalization is first
reduced by the efficiency, which varies from approximately
0.7 for central collisions to approximately 0.8 for more pe-
ripheral collisions. Because the STAR measurement is limited
to tracks with a finite range of pseudorapidities, −1 < η < 1,
a significant fraction of the balancing charge, for an observed
charge, falls outside the rapidity range. Finally, the mea-
surement is confined to particles with transverse momenta,
200 MeV < pt < 2 GeV, and to particles with a distance of
closest approach (DCA) of 3.0 cm or less. This latter cut
reduces some of the contributions from weak decays. Thus,
because there is only a ≈50% chance of a balancing charge
being in the acceptance, and because the imperfect efficiency
reduces the chance of observing a charge in the acceptance
by ≈75%, the balance functions for unidentified particles
integrate to ≈0.35. The calculations shown here for unidenti-
fied particles applied a crude acceptance and efficiency filter.
The acceptance cuts matched those of the experiment, but
the representation of the efficiency was approximate. Here
the efficiency was assumed to be independent of transverse
momentum, whereas in reality it has a modest dip for the
low-pt range. The constant efficiency was chosen to be 0.7 for
0–5% centrality collisions and 0.72, 0.74, 0.76, 0.78, and 0.8
for centralities of 10–20, 20–30, 30–40, 40–50, and 50–60%,
respectively. A more accurate representation of the efficiency
might alter results by a few percentages.

Figure 1 shows charge balance functions binned by relative
pseudorapidity, �η, and relative azimuthal angle, �φ, for
several centrality bins. Pseudorapidities, η, are approximate
surrogates for the rapidities y. Defined in terms of the polar
angle relative to the beam axis,

η = 1

2
ln

(
1 + cos θ

1 − cos θ

)
, (15)

they are equal to the rapidity in the limit that the particles
move at the speed of light and cos θ = vz. For unidentified
particles, the mass, and therefore the velocities, are unknown,
and hence analyses are performed for relative pseudorapidity
rather than for relative rapidity. For more-central collisions,
the model produced the experimental data remarkably well,
with the exception being the most-central azimuthal correla-
tions. The experimental measurements binned by �φ are af-
fected by the sector boundaries of the STAR Time Projection
Chamber. These boundaries result in acceptances that depend
on azimuthal angle, which differ for positive and negative
tracks because the tracks curve in opposite directions from the
longitudinal magnetic field. Because of the curvatures, the po-
sitions of the dips in acceptance are displaced from the
angles of sector boundaries. This displacement is opposite
for oppositely charged particles, which results in structures in
the balance function when binned by �φ. These correlations
affect all pairs of particles, not just the correlation between
a single track and a balancing pair, and hence their strength
relative to the true correlation increases with multiplicity. In

the experimental analysis, a balance function for mixed events
was constructed and subtracted from the same-event distribu-
tions. This procedure very much reduced the magnitude of
these oscillations but did not make them completely disappear.
Aside from the oscillation, the agreement of the model to data
is remarkable.

To correct for the finite acceptance in relative rapidity, both
the experimental and model calculations in the left-side panel
of Fig. 1 were divided by a factor (1.0 − �η/2) [46]. Discrep-
ancies for the first bin, whether in relative rapidity or relative
azimuthal angle, can be caused by femtoscopic correlations
or track merging and should not be given much consideration
here. For more peripheral collisions, femtoscopic correlations
can extend to larger relative momentum due to the smaller
source sizes and might distort the first few bins.

Results from both the model and from the experimental
analysis show a narrowing of the balance functions with
increasing centrality, qualitatively consistent with the pre-
dictions of Ref. [3]. The narrowing in the data appears
slightly more pronounced than in the model. The stronger
narrowing for central collisions could be caused by stronger
collective flow for those reactions or perhaps by a reduced
contribution from resonances should the more peripheral col-
lisions not reach the same degree of chemical equilibration.
In Ref. [3], the narrowing was expected to come from the
delayed hadronization associated with a longer-lived QGP
state. Because the majority of electric charge is created at or
near hadronization, these balancing charges would have less
chance to separate if they were produced after the system
had expanded and the velocity gradients subsided somewhat.
However, it is difficult to pinpoint the exact causes of the
narrowing. Species-dependent balance functions, which are
the subject of the next subsection, provide a superior means
for identifying delayed hadronization.

B. Balance functions indexed by hadronic species

Balance functions of the type,

Bh′h(p′|p) = 〈(ρh(p) − ρh̄(p))(ρh′ (p′) − ρh̄′ (p′))〉
〈ρh(p)〉 + 〈ρh̄(p)〉 , (16)

where h and h′ refer to specific hadronic species, pro-
vide the means to disentangle the three-by-three corre-
lation matrix Cab(r − r′) in coordinate space. Again, the
momenta p will typically be any observed particle, while
p′ will refer to the relative rapidity or relative azimuthal
angle. Here we consider the species as pions, kaons,
or protons, which thus provides six independent combi-
nations of possible species-dependent balance functions:
Bπ+,π− , BK+K− , Bpp̄, BK−π+ , Bp̄π+ , and Bp̄K+ . By symmetry,
the numerators for Bp̄K+ and BpK− are identical and oppo-
site to Bp̄K+ and BpK+ . The correlation matrix Cab(�r −�r′)
is symmetric and because of isospin symmetry between the
u and d quarks has only four independent elements, Cuu =
Cdd , Cud , Cus = Cds, and Css.

The resolving power of this set of correlations for deter-
mining Cab, described in Sec. I, is due to the varying quark
content of the various hadrons. For example, K+K− balance
functions are strongly influenced by the ss component of the
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FIG. 1. [(a)–(f)] Charge balance functions for unidentified charged particles binned by relative pseudorapidity for six different centralities
from 0–5% to 50–60%. The model (solid blue lines) approximately reproduces the narrowing of the experimental balance functions (stars) with
increasing centrality. [(g)–(l)] The same as (a)–(f) but binned by relative azimuthal angle. The larger volumes for more-central collisions make
it more difficult for charges to diffuse to regions with different radial flow, hence the balance functions are narrower. The contributions from
the hydrodynamic correlations (green dashed lines) and from the correlations that originated in the cascade (green dotted lines) are of similar
strength, with the cascade contribution being narrower. Oscillations of the experimental balance functions for the most-central collisions in
panels (k) and (l) are likely from the sector boundaries of the STAR experiment. Some of the deviations for small �η and �φ might be due to
femtoscopic correlations.

charge correlation. Figure 2 presents calculations for all six
combinations one can make with pion, protons, and kaons.
Balance functions could be constructed with other species,
such as lambdas or neutrons, but technical issues make such
measurements difficult. The acceptance for the model cal-
culations mirrored what was applied in the STAR analyses.
Transverse momenta were confined to 200 MeV/c < pt <

1.6 GeV/c, rapidity cuts of −0.9 < y < 0.9, and a DCA cut
of 3.0 cm were applied. Additionally, a sophisticated filter

provided by STAR was applied to the model to reproduce the
effects of STAR’s efficiency. For K+K− pairs, an additional
invariant mass cut was applied to eliminate the contributions
of neutral kaon and phi meson decays.

In the calculations, because chemical equilibrium is as-
sumed for the hydrodynamic stage, strange quark produc-
tion is mainly confined to the early stages of the collision
when the QGP is formed. This contrasts to the production of
electric charge, where most occurs at or near hadronization.
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FIG. 2. Balance functions, indexed by hadronic species and
binned by relative rapidity, are shown for central (0–5%) Au+Au
collisions at

√
sNN = 200 GeV. The model calculations (green lines)

are compared to preliminary measurements from the STAR Collabo-
ration at RHIC [7] (red stars). Matching the relatively broader struc-
ture of the K+K− and pp̄ balance functions relative to the π+π + −
balance function provides compelling evidence that the a chemically
equilibrated quark-gluon plasma was created. Unfortunately, such
conclusions are tempered by the failure of the model to reproduce
the pK− experimental balance functions.

Given that the K+K− balance function is mainly driven by
ss correlations and that the ππ balance functions are mainly
driven by the correlations of electric charge, the fact that
the kaon correlations are broader than the pion correlations,
and that these widths are rather well reproduced by the
model, makes a good case that central collisions at RHIC
produce what is close to a chemically equilibrated quark-
gluon plasma and that equilibration occured at early times.
The pp̄ balance functions further strengthens this claim. For
a chemically equilibrated system, the baryon susceptibility
changes little during hadronization, which results in baryon-
baryon correlations being driven by early charge creation.
Again, the model quantitatively reproduces the widths of
both the proton and pion balance functions, with the proton
balance function being broader. The modest discrepancy of
the K+K− balance functions might be corrected by choosing
a slightly lower initial width, σ0, for the balancing charges at
the formation time of the QGP, τ0 = 0.6 fm/c. This sensitivity
of the K+K− balance function to σ0 was shown in Ref. [25].
From those results, it would seem that reducing σ0 from the
value of 0.75 assumed here to ≈0.6 might make up such a
difference while changing other results rather little. The small
dip at low relative rapidity in the experimental pp̄ balance
function was not reproduced in the model. But this discrep-
ancy was expected given the lack of baryon annihilation
in the cascade calculations, a correction planned for future
studies.

The promising reproduction of the π+π−, K+K−, and
pp̄ balance functions is tempered by the failure to repro-
duce the pK− balance function. In this case the model
calculations are approximately 75% higher than the experi-
mental balance functions. This same discrepancy was seen
in [25], and none of the variations performed that study
seemed particularly strong enough to bring model calcula-
tions in line with the experimental result. At this time, the
experimental results are preliminary and only appear in a
thesis.

Some guidance in resolving the discrepancies in the pK−
balance function can be obtained by studying the hadronic
source functions presented in Fig. 6 of Ref. [25], which reveal
that the pK− correlations [Fig. 6(c)] receive much larger
relative contributions from intermediate stages of the system’s
evolution than do the correlations of other hadronic species
[Figs. 6(b) and 6(d)–6(g)]. The pK− balance function conse-
quently reflects the subsequent evolution of charge pairs in a
way which is somewhat less sensitive than the other balance
functions to the initial stage of the collision. This means that
uncertainties in the later stages of the collision evolution—
including the cascade phase—will tend to dominate the pK
balance function without significantly altering the rest of the
balance functions. Thus, it is possible that better accounting
for the effects of flavor-dependent freeze-out and improving
the description of χhh′ at late times could reduce some of
the discrepancies currently seen in the pK− charge balance
functions without sacrificing the agreement in the remaining
correlations or compromising the inference to the production
of a chemically equilibrated QGP in the early stages of the
collision.
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C. Balance functions binned by angle relative
to the reaction plane

The width of the balance function in azimuthal angle is
mainly determined by two factors: the relative separation in
coordinate space of the balancing charges and the strength of
the radial collective flow. Charges that are close to one another
in coordinate space will also likely be emitted with similar
velocities because they would come from regions with similar
collective flow. More-central collisions have lower breakup
temperatures and higher collective flow velocities. Further-
more, the larger sizes make it more difficult to diffuse bal-
ancing charges to regions with different collective velocities.
Thus, balance functions binned by relative azimuthal angle
tend to be significantly narrower in more-central collisions, a
trend seen in both the data and models in Fig. 1.

For midcentral heavy-ion collisions, elliptic flow develops
from anisotropic pressure gradients caused by the initial el-
liptic transverse spatial anisotropy of the participant region.
Because of the higher flow velocity in the reaction plane, the
balance function should be narrower for in-plane vs. out-of-
plane pairs. Here reaction-plane-dependent balance functions
are defined as

B(�φ|φ1 ∈ �)

= N+−(φ1 ∈ �,φ1 + �φ) + N−+(φ1 ∈ �,φ1 + �φ)

N+(φ ∈ �) + N−(φ ∈ �)

− N++(φ1 ∈ �,φ1 + �φ) − N−−(φ1 ∈ �,φ1 + �φ)

N+(φ ∈ �) + N−(φ ∈ �)
,

(17)

where the first charge is required to be in some window
�. Three windows were evaluated: 0◦ < φ1 < 7.5◦, 37.5◦ <

φ1 < 52.5◦, and 82.5◦ < φ1 < 90◦, where an angle φ1 = 0
refers to the reaction plane. For charges outside the first
quadrant, 0 < φ < 90◦, momenta were reflected about the
reaction plane and/or the x = 0 plane to exploit the reflective
symmetries.

Figure 3 displays calculations alongside results from STAR
for events in the 40–50% centrality class. As expected, the
in-plane balance functions, φ1 ≈ 0, are narrower than the
out-of-plane balance functions, φ1 ≈ 90◦. The difference is
striking and underscores the strength of elliptic flow at these
energies. Balance functions with φ1 ≈ 45◦ are also presented.
In this case, seeing a charge near 45◦, more strongly enhances
the probability of finding a balancing charge for negative �φ

than for positive �φ. This is expected because there are more
charges for φ2 � 45◦ than for φ2 � 45 because of elliptic flow.
The model calculations in Fig. 3 were all scaled down by
a factor of 0.94 so that the experimental and model balance
functions would have very similar normalizations. After the
normalization was taken into account, the experimental and
model calculations were in remarkably good agreement for
all three cuts on φ1.

As a signal of the CME, the observable γp was proposed
[28,29],

γp = 〈cos(φ1 + φ2)〉os − 〈cos(φ1 + φ2)〉ss, (18)

FIG. 3. Balance functions plotted as a function of relative az-
imuthal angle are additionally constrained by the angle of the first
charge, φ1, which is measured relative to the reaction plane. The
in-plane balance function, φ1 ≈ 0, is significantly narrower than the
the out-of-plane balance function, φ1 ≈ 90◦, due to the stronger
collective flow. When φ1 ≈ 45◦ the balance function skew toward
negative �φ because the balancing charge is more likely to be found
closer to the reaction plane, where more particles are emitted. The
model calculations (blue lines) have been scaled by a factor of 0.94
to match the normalization of the preliminary experimental results
from STAR [7] (red stars). After adjusting the normalization the
experimental and model results are in remarkable agreement.

where “os” and “ss” refer to “opposite sign” and “same sign,”
respectively, with the angles being measured relative to the
reaction plane. The observable was designed to find evidence
of the coherent magnetic fields from the spectator portions
of the colliding nuclei to rotate into electric fields due to the
coupling between �E · �B in the electromagnetic sector to the
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anomalous charge density in the QCD sector, �Ea,QCD · �Ba,QCD.
Strong longitudinal color electromagnetic fields are expected
to exist in the early stages which lead to strong anomalous
charge densities. These fluctuate in sign, from one flux tube to
another, but given that multiple charges might originate from a
single flux tube, one might expect some effects of coherence.
The coherence of these fields, combined with the coherence
of the external magnetic field should serve as a source for a
generated electric field. This field would be randomly parallel
or antiparallel to the original magnetic field and would lead
to a small correlation between same-sign charges out of the
reaction plane. Observing the CME effect would represent a
landmark achievement as it would represent the first obser-
vation of coupling between the anomalous charge densities
in the electromagnetic and QCD sectors. Unfortunately, the
effect might be too small to be observed given (1) the effect
would involve a power of the fine structure constant, (2) the
magnetic fields may dissipate before there is enough charge
to generate a current, and (3) there should be many domains

with random anomalous charge densities in the QCD sector.
The main background for this observable is the combination
of local charge conservation imprinted onto elliptic flow re-
sponsible for the correlations in Fig. 3 [47]. Here we present
results for γp from this model and compare to STAR results
to see the degree to which this background explains STAR’s
result.

Rewriting the observable using angle addition formulas as

γp = 〈sin φ1 sin φ2〉ss − 〈sin φ1 sin φ2〉ss + 〈cos φ1 cos φ2〉os

−〈sin φ1 sin φ2〉os, (19)

one can see that an enhancement of same-sign pairs out-of-
plane (| sin φ| ≈ 1) leads to a positive value for γp. A positive
value for this moment can also be caused by an enhancement
of opposite-sign pairs in-plane, which is precisely what is seen
in Fig. 3. To better illustrate how charge balance superimposed
on elliptic flow could affect γp, one can rewrite γp, again using
angle addition formulas, as

γp = {〈cos 2φ〉〈cos �φ〉ss − 〈cos 2φ1〉〈cos �φ〉os} + {(〈cos 2φ1〉〈cos �φ〉ss − 〈cos 2φ1〉〈cos �φ〉ss)(〈cos 2φ1〉〈cos �φ〉os

−〈cos 2φ1〉〈cos �φ〉os)} − {〈sin 2φ1 sin �φ〉ss + 〈sin 2φ1 sin �φ〉os}

= 1

2π (dNch/dη)

{
v2

∫
d�φ B(�φ) cos(�φ) + 1

2π

∫
dφ1d�φ B(�φ|φ1) cos(2φ1) cos(�φ)

− 1

2π

∫
dφ1d�φ B(�φ|φ1) sin(2φ1) sin(�φ)

}
. (20)

Aside from the prefactor, the first term in Eq. (20) represents
the elliptic flow v2 = 〈cos 2φ〉, multiplied by the average
cos �φ of the balance function, which is a measure of its
narrowness. The second term represents a correlation between
cos 2φ1 and cos �φ or a correlation between cos 2φ1 and
the narrowness of the balance function. For reaction-plane
balance functions that are narrower for φ1 ≈ 0 than for φ1 ≈
90◦, this correlation is positive. Indeed, a positive correlation
can be seen by comparing the φ1 ≈ 0 and φ1 ≈ 90◦ balance
functions in Fig. 3. Finally, the final term represents the
correlation between sin 2φ1 and sin �φ. Given that sin 2φ1

is largest for φ1 ≈ 45◦, inspection of Fig. 3 shows that this
contribution is also positive. Each of these three contributions
is positive and of similar magnitude. Thus, a calculation of
reaction-plane-dependent charge balance functions also pro-
vides also a calculation of γp.

Figure 4 compares model calculations of γp to those from
STAR [28,29]. The contribution from correlations from the
cascade stage provide ≈60% of γp even though the represent
only ≈40% of the strength of the balance functions in Fig. 1.
The larger role of the correlations from the cascade comes
from their being more narrow, and hence cos �φ is larger. The
net correlation from the model calculations are 10–15% larger
than the STAR data over the range of centralities.

Given that the charge balance functions in Fig. 1 for the
centrality range of 40–50% lie above the data, motivating
the adjustment factor of 0.94 in Fig. 3, one would expect
the model prediction of γp to be high by approximately 6%,

FIG. 4. The contribution to the correlator γp from local charge
conservation superimposed onto elliptic flow from the model is
compared to measurements from the STAR Collaboration [29]. The
dashed green line shows contributions from correlations from the
hydrodynamic stage, while the dotted line represents correlations
born in the cascade. The sum (solid blue line) is ≈10–15% higher
than the data. Thus, the combination of charge conservation and flow
more than accounts for the observed correlation, which has been
proposed as a signal of the chiral magnetic effect.
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since the normalization discrepancy would be due to more
balancing charges lying outside the acceptance in the exper-
iment than in the model and only those correlations within the
acceptance contribute to γp. Overstating the flow would also
lead to overpredictions of γp, but if that were the case, then
one would expect the reaction-plane-dependent balance func-
tions of Fig. 3 to have a discrepancy with the data. Another
possibility would be for the multiplicity of the model to under-
predict the true experimental situation. This was checked, and
it seems unlikely this could be a 10% discrepancy. Thus, after
accounting for the difference in normalizations between the
model and data for less-central events, this analysis suggests
that flow plus local charge conservation would predict values
close to the upper limits of the experimental error bars. Given
that the error bars include systematic error, it is not out of
the question that practically all of the observed correlation,
γp, derives from charge balance and flow. If the portion
of the signal from the chiral magnetic effect were 10% of
the signal, then one would need to explain away an even
more significant overprediction of the model. Additionally,
the CME in isolation gives a negative balance function for
out-of-plane pairs, whereas charge balance and elliptic flow
lead to positive correlations but with stronger positive cor-
relations in-plane. The latter is what is observed, but this
does not preclude the possibility that some of the difference
derives from the CME. It does seem unlikely that the CME
contribution could be larger than 10% of the signal given the
model-data comparisons in Figs. 3 and 4. Similar conclusions
were generated by comparing to simpler parametric models
of flow and charge conservation [47] or to a very simple pion
cascade model [48].

IV. SUMMARY AND CONCLUSIONS

By incorporating a hadronic cascade into the
hydrodynamics-only treatment from Ref. [25], the treatment
of correlations related to charge conservation is now based
on a beginning-to-end state-of-the-art transport picture. The
previous calculations of Ref. [25] ignored the hadron cascade,
which was less realistic, though significantly less expensive
numerically. The numerical expense of this approach was
mainly due to the fact that correlations from the cascade
portion mixed among colliding particles, which was handled
by treating the output in the same manner as what is done
in experiment. The combinatoric noise required calculations
of the equivalent of ≈10 million cascade events. This
represented a few months of CPU time, which is not a
particularly daunting cost but does make it challenging to
explore a high dimension parameter space.

The approach of combining a hydrodynamic model and
cascade has become recognized as a “best-practice” approach
to describing relativistic heavy-ion collisions. Given that the
equation of state and charge susceptibilities are well deter-
mined by lattice gauge theory, there are few aspects of the
model that one might alter that would significantly change the
outcome. Initial collective flow [49–51], i.e., flow from before
hydrodynamics is instantiated, is neglected here but should
only affect the collective flow at the 5% level for central
or midcentral collisions. The viscosity in the hydrodynamic

stage was set so that η/s = 1/4π , which might be on the low
end, but again, it is not clear that doubling the viscosity would
significantly change the charge balance functions. More so-
phisticated hydrodynamic treatments include event-by-event
fluctuations or lumpy initial conditions. Although including
or adjusting these various features would significantly change
certain relevant observables, it is not expected that they would
change charge balance functions by more than a few per-
centages. A more important parametric choice here was for
the diffusion constant for light quarks, which was taken from
lattice gauge theory. However, the lattice values, which are
functions of temperature, are somewhat untrustworthy due to
the fact that their extraction from lattice requires an analytic
continuation. The most uncertain parameter, and the one that
most strongly affects the results is the choice of σ0. This
parameter represents the random distance, in spatial rapidity,
that each charge has moved relative to its balancing charge at
the initial time where hydrodynamics is invoked. For example,
if the initial charges came from the decay of longitudinal
flux tubes, then one would expect the two charges to pull
apart during the tunneling process that provide the energy for
particle production. This parameter is known from Ref. [25]
to significantly affect the kaon and proton balance functions
binned by relative rapidity.

Here results were shown for both identified and non-
identified (aside from charge) particles, binned by relative
rapidity and relative azimuthal angle. Results were compared
to measurements from the STAR Collaboration for

√
sNN =

200 GeV/c Au+Au collisions at RHIC. The model remark-
ably well described charge balance functions for unidenti-
fied particles binned by either relative azimuthal angle or
relative pseudorapidity for a range of centralities. The only
discrepancy seemed to be that for less-central collisions, the
experimental balance functions were modestly wider than
those from the model. The model also well described balance
functions for identified particles. The pp̄, K+K− and π+π−
balance functions were well described, aside from the pp̄
balance function missing a dip at small relative momentum
due to annihilation in the breakup stage. In fact, the shape of
the π+π− balance function binned by relative rapidity was
marginally better reproduced than in the less-sophisticated
model of Ref. [25]. The one noticeable failure was in repro-
ducing the pK− balance function, a shortcoming also seen in
Ref. [25].

The fact that the K+K− and pp̄ balance functions are
broader than the π+π− balance functions, both in the data
and in the model, suggests that a chemically equilibrated QGP
was produced early in the collision. Because the strangeness
and baryon susceptibilities, relative to the entropy density,
stay nearly constant, one expects little contribution or per-
haps a negative contribution to the K+K− and pp̄ balance
functions from late-stage production. Hence they are driven
by the correlations that were generated in the early stage
and significantly spread out in relative rapidity. In contrast,
the π+π− balance function is driven by the electric charge
susceptibility which has a strong surge in the hadronization
stage and strong contributions from decay. These correla-
tions tend to be much shorter range in coordinate space,
which translates to narrower balance functions in relative
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rapidity. Indeed, these features were seen in the data and
were quantitatively reproduced by the model. Although the
failure of the model to describe the pK− balance function
dampens the enthusiasm for claiming success, the preced-
ing discussion suggests that relatively minor improvements
might be sufficient to bring model results into agreement with
experimental data. We defer these improvements to a future
study.

Another, more differential, set of charge balance func-
tions involved constraining the first particle’s azimuthal angle
relative to the reaction plane. By plotting balance functions
for unidentified particles binned by relative azimuthal angle
subject to this constraint, one is given a highly detailed test
of elliptic flow and the dynamics of correlations stemming
from local charge conservation. The reproduction of the ex-
perimental measurements was rather stunning. This success
also translated into the moment γp, which had been suggested
as a signal of the CME, and can be uniquely stated in terms of
integrals of the reaction-plane-dependent balance functions.
The model prediction of γp overpredicted the experimen-
tal measurement by 10–15%. Some of this overprediction
was expected given that the experimental balance functions
seemed to spread more outside the acceptance, but most of
the overshoot remained unexplained, though the size of the
discrepancy was not far outside the systematic error bars of the
experiment. This result makes it difficult to imagine a situation
where the CME contributions could be sufficiently substantial
to be separated from the effects of local charge conservation
superimposed onto elliptic flow.

Going forward, the main facet of the model that requires
attention is baryon annihilation. This should give an extra
dip at low relative momentum to the pp̄ balance function.
As for future analyses, it would be most interesting to study
how well one can extract the diffusion coefficient from these
models. Because of the unknown separation in relative spatial
rapidity when hydrodynamics is initialized, σ0, the widths of
balance functions in rapidity is probably not a robust means to
study the diffusion coefficient. However, the width in relative
azimuthal angle seems promising and will be the subject of a
future study.
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APPENDIX: MODIFIED COOPER FRYE FORMULA

Rewriting Eq. (12) which describes the differential number
of hadrons of species h from a differential charge dQa,

dNh = nhqh,a(χ−1)abdQb, (A1)

one can probabilistically choose whether to create a hadron
of species h with probability dNh for each sample charge
that passes through the hypersurface. Using the Cooper-Frye
formula,

dNh = d3 p

Ep
p · d� fh( �p), (A2)

the momentum of said hadron was chosen by assuming the
additional hadron’s momentum was proportional to the right-
hand side of Eq. (A2). This was performed by first transform-
ing to the rest frame of the fluid element. In that frame

dNh = d�0 d3 p fh( �p)[1 + �vp · d ��/d�0]. (A3)

Here �vp is the velocity of a particle in this frame. If the hyper
element is timelike, |d ��| < d�0, then the right-hand side
of Eq. (A3) is positive for all �p. If fh is thermal, i.e., fh =
e−Ep/T , then a momentum can readily be chosen proportional
to d3 p fh. Even if there are viscous corrections, one can
adjust the generation of the momentum consistent with the
deviations of the stress-energy tensor. For this study we follow
the method described in Ref. [40]. Next, to account for the
weight,

w = 1 + �vp · d ��/d�0, (A4)

one can reflect the momentum about the d �� plane with a
probability,

Preflect =
{

0, �vp · d� > 0

| �vp · d�|/d�0, �vp · d �� < 0
. (A5)

On average, the procedure would perfectly represent dNh from
the Cooper-Frye formula, and because the choice of whether
to produce the hadron was from Eq. (A1), the procedure
would be perfectly consistent. However, an issue arises when
the reflection probability in Eq. (A5) is negative, which is
the same as saying the dNh would be negative according to
Eq. (A3). For this treatment, the reflection probability was
simply chose to be unity in such cases. This approximation
could be overcome by consistently considering the case where
cascade particles reenter the hydrodynamic region by crossing
the same hyper element. If such crossings were consistent
with the phase-space density expressed above, as would be
the case if the hypersurface were indeed chosen at a point
where the phase-space density in the cascade maintained a
continuous phase-space density, a simple procedure would be
for such particles to reflect about the d �� plane. The removal
of the incoming cascade particle would represent the negative
contribution of the Cooper-Frye formula and the reflected
particle would account for the part of the weight in Eq. (A4)
that exceeds 2, i.e., when �vp · d ��/d�0 > 1.

For this paper, the reflection of cascade particles was not
performed. Because the reflection does not change the energy
of the particle, in the fluid frame, and because the reflection
does not create or destroy charges, the approximation does not
violate charge conservation or energy conservation. However,
it does represent a small violation of momentum conserva-
tion, and in a different frame this would translate into a
violation of energy conservation. Fortunately, such reflections
affect less than 1% of the particles in high-energy collisions.
This is because most particles are emitted through timelike
hypersurface elements, and even for those spacelike hyper-
surface elements that one encounters, only a small fraction
of the momentum space has a negative contribution in the
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Cooper-Frye formula. Finally, because this study is concerned
with charge conservation, this choice of approximation should
be especially warranted.

Because a hadron produced through the procedure thus
represents the situation in the fluid frame, it is then boosted
to the laboratory frame to complete the procedure.
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