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The three-dimensional Langevin model plus a constraint on the heavy fragment deformation is used to study
the fission dynamics for uranium and plutonium isotopes at low excitation energies. The potential energy surface
is calculated with the macroscopic-microscopic model based on the two-center shell model. The Werner-Wheeler
approximation is used to calculate the inertia tensor and the wall-and-window model is applied to calculate the
friction tensor. In this work, the influence of the model parameters on the fission fragment mass distribution
is investigated. The fission fragment mass distributions for 234,236,239U and 240Pu at low excitation energies
are calculated and compared with the results of GEF code as well as the evaluated data of ENDF/B-VIII.0.
A nice agreement is found in the comparison, in which the incorporation of the constraint on the heavy
fragment deformation plays an important role. In addition, the dependence of the mass distribution on the
excitation energies for n + 235U fission is also studied within the model. Furthermore, the correlation between
the elongation and mass asymmetry at the scission point and the correlations of the fission time with both the
elongation and mass asymmetry are studied. This study may shed light on understanding the dynamics of the
superlong channel for symmetric fission and the standard channels for asymmetric fission in the GEF model and
other phenomenological fission models.
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I. INTRODUCTION

Nuclear fission is one of the most important discoveries of
the 20th century, but the process of nuclear fission, involv-
ing large-scale collective motion and producing hundreds of
isotopes characterized by different mass yields and kinetic
energies, remains a challenge to be fully understood in its
mechanism and its phenomena. Nevertheless, great progress
has been made in recent years, both microscopically and
macroscopically [1–11], based on the great achievement in
the research of nuclear theory and experiment and the devel-
opment of computational power.

The macroscopic-microscopic model has been widely used
in the calculations of the nuclear masses at the ground state
and fission potential energy surface (PES) [12–14], and has
enabled great successes. The fission process can be viewed as
the motion of a Brownian particle walking on the multidimen-
sional potential energy surface. Randrup, Möller, et al. [4,15]
adopted the method of random walks on a five-dimensional
PES to calculate the fission fragment mass distributions,
which were in remarkable agreement with the experimental
data. Pomorski et al. [16] calculated the mass distributions by
weighting the adiabatic density distribution in the collective
space with the neck-dependent fission probability based on
the three-dimensional PES. Furthermore, the Langevin model
[17–23] has been applied by several groups to study nuclear
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fission and fusion reactions at higher excitation energies
for more than two decades. Recently, the Langevin model
has been successfully used to study nuclear fission at low
excitation energies. The mass distributions and total kinetic
distributions of fission fragments for some isotopes at low
excitation energies were calculated with the three- and four-
dimensional Langevin approach [5–7,9,24]. Sierk [8] made
systematic studies of the fragment mass and kinetic energy
distributions at low excitation energies as well as sponta-
neous fission for some uranium and plutonium isotopes with
the five-dimensional Langevin approach. However, owing
to the extremely complicated fission process in heavy nuclei,
the fission dynamics, especially its way towards the scission
point and the features and configuration of the scission point,
are still far from being completely understood. Knowledge
about the fission time and the correlation of the fission time to
the elongation as well as the mass asymmetry at the scission
point is significantly lacking [25].

In this work, the macroscopic-microscopic model based
on the two-center shell model [26] and three-dimensional
Langevin model plus a constraint on the heavy fragment de-
formation are applied to study the fragment mass distributions
and kinetic energy distributions. In addition, the correlation
between the elongation and mass asymmetry at the scission
point is studied, which can provide us with information on the
configuration at the scission point. Moreover, the fission time
and its correlation to the mass asymmetry and the elongation
are also investigated, which is very important for understand-
ing the fission dynamics. The constraint on the deformation
of heavy fragments is introduced, which is inspired by the
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real-time microscopic study of fission by Bulgac et al. [1],
where it is clearly shown that the heavy fragments are much
closer to a spherical shape compared with light fragments at
very early time. Phenomenologically, it is also known that the
peak of the heavy fragments in the fission fragment mass dis-
tribution almost does not change with the mass of fissioning
nuclei of actinide nuclei due to the shell effect around the
shell closure N = 82, which corresponds to a spherical shape.
The Werner-Wheeler approximation [27] is used to calculate
the inertia tensor, and the one-body wall-and-window model
[28,29] is applied to calculate the friction tensor.

This paper is organized as follows. A detailed introduction
of the model is presented in Sec. II. The results for the
fragment mass distributions, total kinetic energy distribution,
and fission time as well as some discussions concerning the
results are given in Sec. III. In Sec. IV, a summary of the
present work and future prospects are presented.

II. METHODS

A. The macroscopic-microscopic model

In the present work, the potential energy surface is calcu-
lated with macroscopic-microscopic model, where the smooth
trends of nuclear potential energy are calculated with a
macroscopic model and the local fluctuations such as shell

effects and pairing effects are calculated with a microscopic
model. The macroscopic potential energy is the sum of the
deformation-dependent surface energy and Coulomb energy,
which are calculated with the finite range liquid drop model
[30,31]. For the microscopic correction energy, we calculate
the shell correction using the Strutinsky method [32] and the
pairing correction using the BCS method [33,34].

The total potential energy within the model is the sum
of the macroscopic energy and microscopic energy for the
same nuclear shape. The realistic description of nuclear shape
during the fission process is also very important. In order to
simplify the calculation, the nuclear shape is usually assumed
to be axially symmetric along the z direction.

In this work, the two-center shell model (TCSM) [26] is
used to calculate the levels of a single particle and the shape of
nuclear surface under the assumption of volume conservation,
where the nuclear surface is an equipotential surface retaining
the same potential and enclosing the same volume throughout
nuclear fission. The Hamiltonian of the model in cylinder
coordinates is

H = − h̄2∇2

2m0
+ V (ρ, z) + VLS (�r,�l,�s) + VL2 (�r,�l ), (1)

where V (ρ, z) is the momentum-independent part of the po-
tential and is expressed as
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with z′
i = z − zi, i = 1, 2. z1 and z2 denote the positions of the

centers of the left part and the right part, separated by z = 0. In
the above formula, there are totally 12 shape parameters which
could be expressed by five free shape parameters by imposing
the following conditions: the potential and its derivative with
respect to z are continuous at z = 0, z = z1, and z = z2; the
volume of the compound nucleus must be constant during
the fission process. Thus, the five free shape parameters are
{Z0, δ1, δ2, η, ε}, defined as follows: The elongation parameter
Z0 denotes the distance between two centers, i.e., Z0 = z2 −
z1, and the fragment deformation parameter δi is defined
by δi = (3βi − 3)/(1 + 2βi ), βi = ai/bi, i = 1, 2. The mass
asymmetry is defined by η = (V2 − V1)/(V2 + V1) = (A f 2 −
A f 1)/(A f 2 + A f 1), where Vi denotes the volume of the left
or right part separated by z = 0 and A f i is the corresponding
mass number of the two parts. The neck parameter ε is the
ratio of the height of the actual potential to the deformed
oscillator potential along the symmetry axis at z = 0, i.e.,
ε = E

E ′ = (1 + cz′ + dz′2) as shown in Fig. 1.
In this work, the potential energy is dependent on the

nuclear temperature as it was given in Ref. [35],

V (q, T ) = Vmac(q) + Vmic(q, T = 0)φ(T ),

φ(T ) = exp(−anT 2/Ed ), (3)

where an is the level density parameter of the compound
nucleus and Ed is the damping parameter of the shell correc-
tion and pairing correction. It is assumed that the liquid drop
energy is independent of the temperature at low excitation
energy and the angular momentum is small for nuclear fission
induced by neutrons at low energy, so that it is negligible in
this work.

In the present work, we take the heavy fragment deforma-
tion δH = 0.02 except for those heavy fragments in the area
near symmetric fission (which are away from the N = 82 shell
closure), for which we take δ1 = δ2 = δ as the general case.
The fragment mass and the kinetic energy distribution are
mainly determined by the process from the saddle point to the
scission point, so the appropriate neck parameter ε during this
process is more important. In this work, the neck parameter
is fixed as 0.35 which was suggested by Ref. [36]. Thus, we
have three free shape parameters {Z0/R0, δ, η} in order to save
computation time, where R0 denotes the radius of the spherical
compound nucleus and Z0/R0 is dimensionless like the other
two shape parameters δ and η.

B. The Langevin model

The dynamical process of nuclear fission is described by
the Langevin model, where the slow evolution of the nuclear
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FIG. 1. The top is the nuclear shape described in the two-center
shell model. The shapes of the parts on the left of z1 and right of z2 are
semi-ellipsoid, where ai and bi are the semi-axes. The bottom is the
corresponding actual potential and the deformed oscillator potential
along the symmetry axis z.

shape is treated as the motion of a Brownian particle and the
faster motion of the inner nucleons as the heating bath. The
multidimensional Langevin equation describing the evolution
of the collective coordinates and their conjugate momenta
reads

dqi

dt
= (m−1)i j p j,

d pi

dt
= − ∂V

∂qi
− 1

2

∂ (m−1) jk

∂qi
p j pk − γi j (m

−1) jk pk + gi j� j (t ),

(4)

where qi = Z0/R0, δ, η respectively and pi is the generalized
momentum conjugate to qi. Here in Eq. (4) and in the follow-
ing equations the summation convention for repeated indices
is taken. For the term of the conservative force, the free energy
F = V − anT 2 should be adopted in principle; however, the
contribution of the second term of free energy F vanishes
if the level density parameter an does not depend on qi. In
this work, an is taken to be a constant, the same as in most
of the macroscopic-microscopic model calculations that have
been done. The (m−1)i j is the inverse of the inertia tensor. γi j

denotes the friction tensor and gi j is the strength of the random
force. According to the fluctuation-dissipation theorem, gi j is
related to γi j by

gikg jk = γi jT
∗. (5)

T ∗ is the effective nuclear temperature, which is usually used
at low excitation energy. The correlation between T ∗ and
general nuclear temperature T [37] is

T ∗ = h̄�

2
coth

h̄�

2T
. (6)

The minimum value of h̄� is given by the zero point energy,
and we adopt the value h̄� = 2 MeV suggested in Ref. [9].
The local temperature T is usually calculated according to the

equation Eint = anT 2 based on the Fermi gas model and Eint

is the intrinsic excitation energy of the compound nucleus:

Eint (q) = E∗ − 1
2 (m−1)i j pi p j − V (q, T = 0). (7)

E∗ denotes the excitation energy at the initial state, which is
the sum of the incident neutron energy and the binding energy.

The normalized random force �i(t ) is simply assumed to
be white noise:

〈�i(t )〉 = 0, 〈�i(t1)� j (t2)〉 = 2δi jδ(t1 − t2). (8)

In the Langevin model, the fission events are determined
by identifying the different trajectories in the collective coor-
dinate space. The Langevin equation is solved by the second-
order Runge-Kutta numerical method and a Gaussian random
number is used for the simulation of the random force in
this work. For each trajectory, the generalized coordinates
and momenta at the time t = nt can be calculated when
an initial condition is given. t is the time step, which is
taken to be 0.9 fm/c. The initial condition in principle should
be taken at the ground state {Z0/R0 = 0.0, δ = 0.2, η = 0.0}.
However, the fissioning rate is very low and the computation
time increases hugely. In order to save the computation time,
we take the initial condition at the first saddle point {Z0/R0 =
0.5, δ = 0.2, η = 0.0} on the potential energy surface. The
initial momenta are assumed to vanish. The comparison of the
results calculated with different initial conditions is made for
236U fission, which will be shown in the result section. The
calculation of each trajectory is terminated if it arrives at the
scission point or reaches the boundaries of the generalized co-
ordinates. The scission point is supposed to be reached when
the neck radius of the compound nucleus is less than 0.5 fm in
this work, which, however, will bring certain uncertainties into
the fragment mass distribution and other observables. We will
check the influence of the neck radius at the scission point on
the fragment mass distribution, and we find that the influence
is weak within the proper range.

C. The inertia and friction tensor

In this work, we calculate the inertia and friction tensor
with the macroscopic approach, where the nucleus is assumed
to be an incompressible and irrotational liquid drop, which
has been widely used in macroscopic-microscopic model
calculations [6,8,23,38,39].

The inertia tensor is calculated within the Werner-Wheeler
approximation [27]. Thus, the inertia tensor is usually ex-
pressed as the following form:

mi j (q) = πρm

∫ zmax

zmin

ρ2
s (z, q)

[
AiAj + 1

8
ρ2

s (z, q)A′
iA

′
j

]
dz,

(9)

Ai = 1

ρ2
s (z, q)

∂

∂qi

∫ zmax

z
ρ2

s (z′, q)dz′, (10)

where ρm is the mass density, ρ2
s (z, q) is the value of ρ on the

nuclear surface at the position z, and A′
i is the differentiation of

Ai with respect to z. Ai in Eq. (10) is applied for the right part
of the midplane of the nuclear shape and a similar equation
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is applied for the left part, where the integration is from zmin

to z.
The one-body wall-and-window model [28,29,40] is ap-

plied to calculate the friction tensor. For compact nuclear
shapes without necks, the one-body energy dissipation mainly
arises from the collision of the inner nucleons with the surface
of the nuclear potential, i.e., the “wall.” The wall friction
tensor is written as follows:

γ Wall
i j (q)

= 1

2
πρmυ

∫ zmax

zmin

dz
∂ρ2

s

∂qi

∂ρ2
s

∂q j

[
ρ2

s + 1

4

(
∂ρ2

s

∂z

)2
]−1/2

,

(11)

where υ is the average velocity of nucleons inside the nucleus,
which is related to the Fermi velocity as υ = 3

4υ f .
When the nuclear shape deforms strongly and the neck

can be identified, the nucleons and momenta can exchange
between the two prefragments, and the average velocity of
nucleons in each of the two future fragments will be changed.
The friction tensor then becomes

γW +W
i j (q) = γ Wall2

i j + γ Window
i j , (12)

where

γ Wall2
i j (q) = 1

2
πρmυ
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with
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where, ν = L, R. zN is the position of the smallest neck radius,
which is at z = 0 before scission in the shape parametrization
of TCSM [26]. DL and DR are the positions of the centers of
mass of prefragments, and

γ Window
i j (q) = ρmν

2

(
∂R12

∂qi

∂R12

∂q j
σ + 32

9

1

σ

∂VR

∂qi

∂VR

∂q j

)
,

(15)
where σ is the area of the window between two parts at z =
0. R12 denotes the distance between the centers of mass of the
left and right parts, and VR is the volume on the right side of
the window. The second term in Eq. (15) describes the energy
dissipation arising from a change of the mass asymmetry.

During the whole fission process, a smooth transition be-
tween the pure wall friction for shapes without necks and the
wall-and-window model suggested by Nix and Sierk [41] is

γi j = τ
(
γW +W

i j

) + (1 − τ )γ Wall
i j , (16)

where

τ = cos2

(
π

2

r2
N

b2

)
, b = min(b1, b2), (17)

where rN is the radius of the neck and b is the smaller of the
transverse semi-axes of the two ends.

FIG. 2. The fragment mass distributions in 14 MeV n + 235U
fission which are calculated at the initial conditions of the ground
state and the first saddle point.

III. CALCULATION RESULTS

In the dynamical calculation, the potential energy V , the
inverse of inertial tensor m−1

i j , and friction tensor γi j at each
time step are obtained by the parabola interpolation based on
the prepared meshes in order to save computation time. These
mesh values for Z0/R0, δ, and η are

Z0/R0 = −0.3(0.02)2.98,

δ = −0.45(0.03)0.81,

η = −0.61(0.02)0.61.

The numbers in the parentheses are the mesh steps for each
variable, and the total number of the grids is 439 890. The
number of Langevin trajectories is 2.5 × 105 per fission nu-
cleus when the initial condition is taken to be at the first
saddle point and 2.0 × 106 per fission nucleus when the initial
condition is taken to be at the ground state. The time step is
0.9 fm/c.

A. Influence of the initial condition, the neck radius at scission
point, the shell damping parameter, and level density parameter

on the fragment mass distribution

In this section, we investigate the influence of the initial
condition, the neck radius at the scission point, the shell damp-
ing parameter, and the level density parameter on the fragment
mass distribution, taking the case of 14 MeV n + 235U fission
as example. Figure 2 shows the results with initial conditions
taken to be at the ground state and the first saddle point.
It can be found that the difference between two calculated
results is almost invisible. It implies that the fission fragment
distributions mainly depends on the process from the saddle
point to the scission point. The result calculated from the
ground state shows stronger fluctuation because of not enough
fission events. Therefore, in the following, fragment mass
distributions are calculated with the initial condition taken
to be at the first saddle point. The scission point, i.e., the
terminating point of the Langevin trajectory, is determined
by a fixed neck radius, which should be comparable with
a nucleon size on one hand and small enough on the other
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FIG. 3. The fragment mass distributions in 14 MeV n + 235U
fission which are calculated for different values of the neck radius
at the scission point.

hand. The influence of the different values of the fixed neck
radius for setting the scission point on the fragment mass
distributions is shown in Fig. 3, which shows that with the
larger fixed neck radius, the yields at the valley region will
increase slightly, and the mass distributions are almost the
same when the fixed neck radius for setting the scission point
is in the range of 0.0–0.5 fm, which means that there is almost
no exchange of nucleons between two pre-fragments on the
way to the complete separation in this case. Therefore, the
neck radius 0.5 fm is used to determine the scission point in
this work.

The influence of the level density and the shell damping
parameter on the fragment mass distributions are also inves-
tigated, and are shown in Figs. 4 and 5, respectively. It can
be seen from Fig. 4 that the results calculated by different
values of level density parameter change very little, which
means that the fragment mass distributions are insensitive to
the level density parameter. The shell damping parameter Ed

in Eq. (3) has a strong effect on the ratio of the contribution of
the asymmetric fission to the symmetric fission, as shown in
Fig. 5. With the larger value of the shell damping parameter
Ed , the damping of shell correction energy becomes weaker,

FIG. 4. The fragment mass distributions in 14 MeV n + 235U
fission for different values of level density parameters an.

FIG. 5. The fragment mass distributions in 14 MeV n + 235U
fission for different values of shell damping parameter Ed .

which results in more events of asymmetric fission, so the
fragment yields at the peak region of the mass distribution
become higher and those at the valley region become lower.
In the following calculations for different fissioning systems,
we use the value ACN/10 MeV−1 for level density parameter
an and 30 MeV for the shell damping parameter Ed . In
addition, the use of Werner-Wheeler approximation for the
calculation of the inertia tensor is a strong assumption which
does not consider the shell effects, while the potential energy
surface contains the shell effects. Therefore, we have simply
performed calculations with the inertia tensor multiplied by
a factor of 0.5, 5.0, and 10.0, to check the sensitivity of the
fragment mass distributions against the values of the inertia
tensor. Figure 6 shows the influence of the values of the inertia
tensor on the fragment mass distributions. One can find from
the figure that the strength of the inertia tensor has not much
obvious influence on the fragment mass distribution.

B. The fragment mass distributions for different systems

The fission fragment mass distributions in 14 MeV n +
233,235,238U and 239Pu are calculated. In the present work,
we have not taken the neutron emission into account in the

FIG. 6. The fragment mass distributions in 14 MeV n + 235U
fission with the inertia tensor multiplied by a factor of 0.5, 1.0, 5.0,
and 10.0, respectively.
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FIG. 7. The calculated fragment mass distribution in 14 MeV
n + 235U fission (red line) compared with the preneutron fragment
mass distribution calculated with GEF code [42] (blue dash-dot line)
and the evaluated data from ENDF/B-VIII.0 [43] (solid circles) (up-
per panel). The bottom panel shows a comparison between the results
of the present work with and without introducing the constraint on
the heavy fragment shape (red line and black dash-dot line) and those
with a four-dimensional Langevin approach based on the TCSM [24]
(green dash-dot line).

Langevin trajectory calculations so as the neutron emission
from primary fragments, which will be left for our further
studies. Figure 7 shows the fragment mass distribution in
14 MeV n + 235U fission calculated with our model, and the
comparisons with the pre-neutron fragment mass distribution
calculated with GEF code [42], the evaluated fission yields
from ENDF/B-VIII.0 [43] and that with four-dimensional
Langevin calculations [24]. It can be seen that there is a good
agreement between our model and GEF model calculations
for both the peak position and width of fragment mass distri-
bution. The comparison with the results of four-dimensional
Langevin calculations also supports the shape constraint on
heavy fragments. In the figure, we also show the calculated
results without introducing the constraint on the heavy frag-
ment deformation i.e. taking δ1 = δ2 = δ in the Langevin
trajectory calculation. It sees that the heavy fragment mass
distribution shifts to the right side about several mass units
while the light fragment mass distribution shifts to the left side
a little bit and thus a wider width of whole mass distribution
compared with the results of GEF code and the evaluated
data. The improvement in the fragment mass distribution by
introducing the constraint on the heavy fragment deformation
is clearly visible. As for the comparison with the evaluated
data from ENDF/B-VIII.0, the overall agreement is also good.
The present calculation result is slightly shifted to the right
side of mass distribution compared with the evaluated data. It
is understandable as we know that the evaluated fission yields

FIG. 8. The calculated fragment mass distribution in 14 MeV
n + 233U fission (red curve) compared with the preneutron mass
distribution calculated with GEF code [42] (blue dash-dot curve) and
the evaluated data from ENDF/B-VIII.0 [43] (solid circles).

are the results of post-neutron fragments, while those of the
calculated results are of the primary fragments. And there is a
difference of emitted neutron numbers between the primary
fragments and the post-neutron fragments. Furthermore, in
this work we only calculate the mass distribution from the first
chance, which may also influence the results in certain extent.

The calculated fragment mass distributions in 14 MeV
n + 233,238U and 239Pu fission are shown in Figs. 8–10, re-
spectively, together with the evaluated data and the results
with GEF code. It is shown that the agreement between our
calculated results and the results calculated with GEF code
as well as the evaluated data shown in Figs. 8–10 is as good
as that shown in Fig. 7 and it indicates the rationality and
validity of the constraint on the heavy fragment deformation
introduced in this work.

In order to study the dependence of the mass distribution
on the excitation energies we have also performed the calcu-
lations for thermal, 25, 35, 45, and 55 MeV n + 235U fission
with the same model parameters. Those results as well as the

FIG. 9. The calculated fragment mass distribution in 14 MeV
n + 238U fission (red curve) compared with the preneutron mass
distribution calculated with GEF code [42] (blue dash-dot curve) and
the evaluated data from ENDF/B-VIII.0 [43] (solid circles).
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FIG. 10. The calculated fragment mass distribution in 14 MeV
n + 239Pu fission (red curve) compared with the preneutron mass
distribution calculated with GEF code [42] (blue dash-dot curve) and
the evaluated data from ENDF/B-VIII.0 [43] (solid circles).

results at En = 14 MeV are shown in Fig. 11. It can be found
that with the excitation energy increasing, the yields at valley
region increase and the yields at peak region decrease with the
wider width. Of course, the calculated results can only provide
us with the tendency of the dependence of the mass distri-
bution on the excitation energy because multichance fission
should be considered as the excitation energy increases; it is
not considered here due to the limitation of the model used in
the present work.

Another important observable in nuclear fission, the to-
tal kinetic energy (TKE) distribution, is also calculated for
14 MeV n + 235U fission. The TKE is the sum of the Coulomb
repulsion energy between two fragments and the collective
kinetic energy of two fragments along the fission direction
at the scission point. Here, the Coulomb interaction between
two fragments is simply treated as that between two charged
point particles located at the centers of mass of two fragments.
Of course, this treatment of the Coulomb energy calculation
is a little bit rough but in general it should not change the
results too much. The correlation between the total kinetic
energy and the heavy fragment mass is shown in Fig. 12,

FIG. 11. The calculated fragment mass distribution in n + 235U
fission at En = thermal, 14, 25, 35, 45, and 55 MeV.

FIG. 12. The correlation of the TKE to the heavy fragment mass
number in 14 MeV n + 235U fission and comparison with the exper-
imental data [44] (upper panel). The bottom panel is the distribution
of the TKE.

where both calculated results and the experimental data are
compared together. In the present work, the calculated TKE
is generally larger and flatter compared with the experimental
data. In order to find whether the constraint on the shape of
heavy fragments causes the TKE distribution at the scission
point to be flatter, we have made a comparison of the TKE
distribution for cases both with and without constraint. We
find that the introduction of the constraint makes the TKE at
the mass region around asymmetric fission decrease by about
3 MeV and thus leads to a better agreement with experimental
data, but makes no obvious change at the mass region near
symmetric fission, which causes the TKE distribution to be
flatter. We found that it is because the shape at the heavy
fragment side for asymmetric fission becomes more spherical
while the elongation of the light fragment side becomes larger
compared with the case without constraint. Thus the net effect
is to increase the distance between centers of two fragments
and eventually to decrease the calculated TKE at the scission
point for asymmetric fission around the N = 82 shell closure
by introduction of the constraint. In order to improve the
agreement of the TKE with experimental data, it seems to us
that the present model needs further improvement, and a more
accurate calculation of the TKE should be performed. The
probability distribution of the TKE is also shown in Fig. 12,
which is Gaussian type distribution, and the averaged value is
about 169 MeV.

C. The fission time

The nuclear fission time is also of importance for under-
standing the dynamical process of nuclear fission. The fission
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FIG. 13. The potential energy surface for 236U projected on the
Z0/R0-η plane at δ = 0.15 with ε fixed as 0.35. The two Langevin
trajectories with the starting position at the ground state are also
shown in the figure.

time in this work is defined by the time spent for a Langevin
trajectory from the starting point to the scission point. The
starting point for the calculation of fission time is taken at the
ground state. Figure 13 shows the potential energy surface
with ε = 0.35 in the Z0/R0-η plane at δ = 0.15 for 236U.
More intuitively, as an example, in Fig. 13 we also show two
Langevin trajectories projected to the Z0/R0-η plane. One sees
two trajectories with the same starting condition but having
different paths: one going to symmetric fission and another
to asymmetric fission due to the random force. From Fig. 13
one can find that the two trajectories become parallel to the
Z0/R0 axis, i.e., the fluctuation of mass asymmetry η, which
determines the fragment mass distribution, becomes small
when Z0/R0 > 2.5 (roughly). Then we set the range of the
fluctuation in mass asymmetry η to be ±0.02 and track back
all trajectories. We find that as soon as the averaged elongation
Z0 is larger than 2.30R0, the fluctuation of η remains �0.02
for all trajectories. It indicates that the fission fragment mass
distribution is formed on the way to reaching the scission point

FIG. 14. The fission time distribution in 14 MeV n + 235U fission.

FIG. 15. The correlation of the elongation to the mass asymme-
try at the scission point for 14 MeV n + 235U fission (left panel) and
the averaged nuclear shape at the scission point (right panel).

as the averaged elongation Z0 at the scission point is about
2.78R0.

Figure 14 shows the fission time distribution. One sees that
the distribution has a quick increase and slow decrease with
a tail of very long fission time, and that the peak is around
8000–10000 fm/c. The uncertainty in the calculation of the
fission time mainly comes from the neck size, defined for the
scission point based on the model.

The averaged nuclear shape at the scission point is shown
in Fig. 15, right panel, where the elongation Z0 is 2.79R0,
the mass asymmetry η is 0.16, the deformation parameter
δL of the light fragment is 0.25, and δH is 0.02 for the
heavy fragment. It can be seen that the light fragment is
more elongated compared with the nearly spherical heavy
fragment. It shows from the figure that at the scission point,
two fragments are still connected, while in the scission point
model, such as that by Pasca et al., the fissioning nucleus at
the scission point is modeled by two nearly touching coaxial
ellipsoids [45,46]. So the scission point defined in this work
is somewhat different from that used in the scission point
model. It is more interesting to study the correlation between
mass asymmetry and the elongation at the scission point, and

FIG. 16. The correlation of the averaged fission time to mass
asymmetry (upper panel) and the elongation (bottom panel) at the
scission point for 14 MeV n + 235U fission.
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the correlation of fission time to mass asymmetry and the
elongation for fission events. Figure 15, left panel, shows
the correlation between mass asymmetry and the elongation
at the scission point, which provides us with information
of the scission point configuration. Figure 16 presents the
correlation of the averaged fission time to mass asymmetry
and the elongation at the scission point. Here in Fig. 16 the
averaged fission time means an average over a small range
of η = 0.06 and Z0/R0 = 0.05, respectively. Combining
the information obtained from both Figs. 15 and 16 tells us
that the symmetric fission is related to a very large elongation
and a longer fission time, while the asymmetric fission is
related to a smaller elongation and a shorter fission time.
This study may shed light on understanding the dynamics of
the superlong channel for symmetric fission and the standard
channels for asymmetric fission in the GEF model [42] and
other phenomenological fission models.

IV. SUMMARY

In this work, we have studied the fission dynamics at low
excitation energies based on the three-dimensional Langevin
model plus a constraint on the heavy fragment deformation.

We first investigate the influence of the initial condition,
the neck radius for setting the scission point, the level density
parameter, and the shell damping parameter on the fragment
mass distribution. We find that setting the initial conditions to
be at the ground state and at the first saddle point has negli-
gible effect, which indicates that the fission yields are mainly
determined by the process from the saddle point to the scission
point. The neck radius for the scission point setting in the
range of 0.0–0.5 fm is reasonable. The influence of the level
density parameter is almost invisible, while the shell damping
parameter obviously influences the ratio of the yields at peak
and valley regions of the fission fragment mass distribution.
In addition, the sensitivity of the fragment mass distributions
to the values of the inertia tensor for 14 MeV n + 235U fission
is also checked, and there is not much obvious influence on
the mass distributions.

Then, the fragment mass distributions in 14 MeV n +
233,235,238U and 239Pu fission are calculated and compared

with the results of GEF code as well as the evaluated data
from ENDF/B-VIII.0, and a very good agreement is ob-
tained. The incorporation of the constraint on the heavy
fragment deformation being close to spherical into the three-
dimensional Langevin model obviously improves the mass
fragment distribution. It seems that the constraint is ratio-
nal and valid. Moreover, the dependence of the fragment
mass distribution on the excitation energy for n + 235U fis-
sion is studied within the model, and clearly shows that
with the excitation energy increasing, the ratio of the peak
to valley decreases and the width of the peak becomes
wider. The total kinetic energy distribution correlated with
the fragment mass is also calculated for 14 MeV n + 235U
fission, and it is more flat compared with the experimental
data.

Last, we study the fission time distribution, and it shows a
feature of quick increase and slow decrease with a long tail,
and the peak of the fission time distribution locates at 8000–
10000 fm/c. The correlation between the elongation and mass
asymmetry at the scission point as well as the correlation
of fission time to the elongation and mass asymmetry at the
scission point are studied. The symmetric fission corresponds
to a very large elongation and a longer fission time and
asymmetric fission corresponds to a smaller elongation and a
shorter fission time. It helps us to have a better understanding
of the superlong channel for symmetric fission and standard
channels for asymmetric fission in the GEF model and other
phenomenological models.

Concerning further work, we will incorporate neutron
emission into the Langevin equation to make a more realistic
study of the fission dynamics.
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