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Nuclear collective dynamics in the lattice Hamiltonian Vlasov method
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The lattice Hamiltonian method is developed for solving the Vlasov equation with nuclear mean field based on
the Skyrme pseudopotential up to next-to-next-to-next-to leading order. The ground states of nuclei are obtained
through varying the total energy with respect to the density distribution of nucleons. Owing to the self-consistent
treatment of initial nuclear ground state and the exact energy conservation in the lattice Hamiltonian method, the
present framework of solving the Vlasov equation exhibits very stable nuclear ground state evolution. As a first
application of the new lattice Hamiltonian Vlasov method, we explore the isoscalar giant monopole and isovector
giant dipole modes of finite nuclei. The obtained results are shown to be comparable to that from random-phase
approximation and are consistent with the experimental data, indicating the capability of the present method in
dealing with the long-time near-equilibrium nuclear dynamics.
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I. INTRODUCTION

One-body transport models like the Boltzmann-Uehling-
Uhlenbeck (BUU) equation (see, e.g., Ref. [1]) provide a
powerful tool to describe heavy-ion collisions. Based on these
models, valuable information on the details of nuclear reaction
dynamics and nuclear matter properties has been obtained
by analyzing data in heavy-ion collisions [2–5]. Among the
obtained information, those concerning the equation of state
(EOS) of asymmetric nuclear matter at both subsaturation and
suprasaturation densities and the in-medium nuclear effective
interaction are of fundamental importance, since they are
crucial in investigating the properties of various nuclear sys-
tems or astrophysical objects [2–16]. Heavy-ion collisions not
only serve as an alternative method in extracting information
on subsaturation EOS through collective flows and particle
production (at intermediate beam energy) [4,5,17–19], but
also turn out to be the unique tool in terrestrial labs for the
exploration of the suprasaturation density behaviors of the
nuclear matter EOS (at intermediate to high beam energy)
[20–27]. In this sense, it is important to improve and upgrade
the one-body transport models so that they can help to provide
more reliable information on the EOS of asymmetric nuclear
matter and the in-medium nuclear effective interaction. To this
end, the community of heavy-ion collisions at intermediate
energies have actually made great efforts in recent years to
improve the transport models for heavy-ion collisions by the
program of transport model code comparisons [28,29].

One of the basic input in one-body transport models is the
single nucleon potential (nuclear mean-field potential) under
nonequilibrium conditions, which is generally dependent on
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nucleon momentum. The momentum dependence of single
nucleon potential, which has various origins like the exchange
term of finite-range nuclear interaction and nuclear short-
range correlations, is evident from the observed momentum
or energy dependence of nucleon optical model potential
[30,31]. This has driven the construction and development of
a lot of momentum-dependent mean-field potentials, and they
have been extensively employed to study both nuclear matter
and heavy-ion collisions [18,32–43]. Most of momentum-
dependent mean-field potentials so far applied in one-body
transport models are parameterized phenomenologically and
they cannot be directly used in nuclear structure calculations.
It is thus interesting and constructive to directly employ the
momentum-dependent nuclear effective interactions, which
are widely used in mean-field calculations of finite nuclei,
to one-body transport models. By doing this, experimental
observables from finite nuclei and heavy-ion collisions can
provide crosschecks for the single nucleon potentials, and thus
enhance the understanding on in-medium nuclear effective
interactions and the associated nuclear matter EOS.

The Skyrme interaction [44,45] has been used very suc-
cessfully in describing the ground and lowly excited state
properties of finite nuclei in mean-field calculations [46,47],
as well as heavy-ion collisions at low energies in time-
dependent Hartree-Fock (TDHF) calculations [48,49]. How-
ever, its incorrect momentum dependence at high kinetic
energies (above about 300 MeV/nucleon), which fails to re-
produce the empirical results on the nucleon optical potential
obtained by Hama et al. [30,31], hinders the application
of the conventional Skyrme interaction [50–53] in trans-
port model calculations for heavy-ion collisions at interme-
diate and high energies. Recent development of quasilocal
energy density functional and Skyrme pseudopotential (the
terminology represents effective interactions with quasilocal
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operators depending on spatial derivatives) makes it possible
to incorporate the Skyrme interaction into the transport model
calculations for intermediate to high energy heavy-ion colli-
sions. This is achieved by introducing additional higher order
derivative terms (or higher order momentum dependence) in
the conventional Skyrme effective interaction. In Ref. [54],
based on the next-to-next-to-next-to leading order (N3LO)
Skyrme pseudopotential, the Hamiltonian density and single
nucleon potential under general nonequilibrium condition
have been given, and three N3LO Skyrme pseudopotentials
with single particle potential consistent with empirical optical
potential up to 1 GeV kinetic energy have been constructed.
This provides the possibility to study finite nuclei and heavy-
ion collisions at incident energy up to about 1 GeV/nucleon
(where nuclear matter with about three times of saturation
density can be formed [55]) on the same footing by using the
same nuclear effective interaction.

Another important aspect of developing the transport
model for heavy-ion collisions is to improve the numerical
stability as well as to guarantee the energy and momentum
conservation during the dynamic process. The lattice Hamil-
tonian method [56] provides a good recipe for this motivation.
The lattice Hamiltonian method conserves the total energy
exactly and the total momentum to a high degree of accu-
racy, and has been successfully employed into the study of
heavy-ion collisions [35,38,57–66]. As the first step of build-
ing a transport model with the lattice Hamiltonian method
by incorporating the N3LO Skyrme pseudopotential, in the
present work we develop a one-body transport model without
considering nucleon-nucleon collisions based on the lattice
Hamiltonian Vlasov (LHV) method [56] with nuclear mean-
field potential based on the N3LO Skyrme pseudopotential. In
order to ensure the reliability of the LHV method, the initial
phase space distribution is obtained self-consistently through
varying the total energy. The ground state properties of the
present LHV transport model are examined. Such a LHV
transport model without nucleon-nucleon collision term can
be applied to the study of dynamical evolution of quantum
systems where the individual collisions are either inhibited by
the Pauli exclusive principle or negligible due to the dilute-
ness of the system. In that case, collective motions of finite
nuclei are ideal sites to test the validity of the present LHV
method. To this end, isoscalar giant monopole and isovector
giant dipole modes of 208Pb are studied based on the present
LHV method. The obtained results are compared with that
from random-phase approximation (RPA) and experimental
data.

The present article is organized as follows. In Sec. II, we
introduce the mean-field potential used in the LHV method,

namely, N3LO Skyrme pseudopotential, and its Hamiltonian
density under general nonequilibrium conditions. In Sec. III,
the details of the LHV method are given, and the initialization
of nuclear ground state and the treatment of collective motions
used in the present work are also introduced. The ground
state properties, isoscalar giant monopole, and isovector giant
dipole modes of 208Pb based on the LHV method with the
Skyrme pseudopotentials are presented in Sec. IV. Finally,
we summarize the present work and make a brief outlook in
Sec. V.

II. MEAN-FIELD POTENTIAL

A. N3LO Skyrme pseudopotential

The quasilocal nuclear energy density functional (EDF)
based on the density-matrix expansion provides an efficient
way to investigate the universal EDF of a nuclear system. In
previous literature [67,68], the Skyrme interaction has been
recognized as the corresponding pseudopotential of quasilocal
nuclear EDF through Hartree-Fock (HF) approximation, and a
mapping has been established from the N3LO local EDF [67]
to N3LO Skyrme pseudopotential. Such a mapping is worth-
while because it provides an order-by-order way to examine
the validity of each term in the quasilocal effective interaction,
since the precise structure of nuclear EDF can be derived
from low-energy quantum chromodynamics with chiral per-
turbation theory [69–71]. The N3LO Skyrme pseudopotential
[67,68] is a generalization of the standard Skyrme interaction
[50–53] by adding terms that depend on derivative operators
(momentum operator) up to sixth order, which corresponds
to the expansion of the momentum space matrix elements of a
generic interaction in powers of the relative momenta up to the
sixth order. In this sense, the standard Skyrme interaction can
be regarded as a N1LO Skyrme pseudopotential. Such kind of
generalization of the Skyrme interaction has been employed
to describe EOS of nuclear matter [72–76], as well as the
properties of finite nuclei [77,78].

The full Skyrme pseudopotential generally contains cen-
tral, spin-orbit, and tensor components. Since in the present
LHV method, and in most of the one-body transport models,
only spin-averaged quantities are taken into consideration,
we thus ignore the spin-orbit and tensor components, which
are irrelevant to spin-averaged quantities. The corresponding
extended Skyrme interaction used in the present LHV method
is written as

vSk = V C
N3LO + V DD

N1LO, (1)

with an overall factor δ̂(�r1 − �r2) omitted for the sake of clarity.
The central term is expressed as

V C
N3LO = t0(1 + x0P̂σ ) + t [2]

1

(
1 + x[2]

1 P̂σ

)1

2
(�̂k′2 + �̂k2) + t [2]

2

(
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)�̂k′ · �̂k + t [4]
1

(
1 + x[4]

1 P̂σ

)[1

4
(�̂k′2 + �̂k2)2 + (�̂k′ · �̂k)2

]
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2

(
1 + x[4]

2 P̂σ

)
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(
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)
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(�̂k′ · �̂k)[3(�̂k′2 + �̂k2)2 + 4(�̂k′ · �̂k)2], (2)
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where �̂k′ and �̂k are derivative operators acting on left and right,

and they take the conventional form as −( �̂∇1 − �̂∇2)/2i and

( �̂∇1 − �̂∇2)/2i, respectively. P̂σ represents the spin exchange
operator defined as P̂σ = 1

2 (1 + σ̂1σ̂2), where σ̂1 and σ̂2 are
Pauli matrices acting on the first and second state, respec-
tively. The density-dependent term V DD

N1LO, which is introduced
to mimic phenomenologically the effects of many-body inter-
actions, is taken to be the same form as in the standard Skyrme
interaction, i.e.,

V DD
N1LO = 1

6
t3(1 + x3P̂σ )ρα

(�r1 +�r2

2

)
. (3)

In the above expressions, t [n]
i , x[n]

i (n = 2, 4, 6 and i = 1, 2),
t0, t3, x0, x3, and α are Skyrme parameters. In particular,
the parameters t0 and t [n]

i are measures of the mean central
potential, with a spin-exchange character specified by x0 and
x[n]

i . The parameters t3 and x3 are their analogs of the density-
dependent potential, with α characterizing its density depen-
dence. The parameters t [n]

i and x[n]
i are related to the derivative

terms which determine the momentum-dependent parts of the
Hamiltonian density and the single-nucleon potentials. With
the introducing of the additional derivative terms in Eq. (2),
the N3LO Skyrme pseudopotential is able to describe the
empirical single nucleon potential up to a kinetic energy of
1 GeV [54].

B. Hamiltonian density with N3LO Skyrme pseudopotential

During the heavy-ion collision process, the dinuclear sys-
tem is generally far from equilibrium. In one-body transport
models, such nonequilibrium conditions are described by the
phase space distribution function (Wigner function) fτ (�r, �p),
with τ = 1 (or n) for neutrons and −1 (or p) for protons. In
the LHV method, we thus need to express the Hamiltonian
density H(�r) of the collision system in terms of fτ (�r, �p).
The Hamiltonian density in HF approximation is obtained by
calculating the expectation value of the total energy of the col-
lision system. For N3LO Skyrme pseudopotential expressed
in Eq. (1), it takes the following form (detailed derivation can
be found in Ref. [54]):

H(�r)=Hkin(�r) + Hloc(�r) + HMD(�r) + Hgrad(�r) + HDD(�r),

(4)

with Hkin(�r), Hloc(�r), HMD(�r), Hgrad(�r), and HDD(�r) be-
ing the kinetic, local, momentum-dependent, gradient, and
density-dependent terms, respectively. The kinetic term

Hkin(�r) =
∑

τ=n,p

∫
d3 p

p2

2mτ

fτ (�r, �p) (5)

and the local term

Hloc(�r) = t0
4

[
(2 + x0)ρ(�r)2 − (2x0 + 1)

∑
τ=n,p

ρτ (�r)2

]
(6)

are the same as those from the conventional Skyrme inter-
action. The ρτ (�r) in the local term is the nucleon density,
which is related to fτ (�r, �p) through ρτ (�r) = ∫

fτ (�r, �p)d �p,

while ρ(�r) represents the total nucleon density with ρ(�r) =
ρn(�r) + ρp(�r).

The momentum-dependent term and gradient term contain
the contributions from additional derivative terms in Eq. (2).
The momentum-dependent term can be expressed as

HMD(�r) =
∫

d3 pd3 p′Ks( �p, �p′) f (�r, �p) f (�r, �p′)

+
∑

τ=n,p

∫
d3 pd3 p′Kv ( �p, �p′) fτ (�r, �p) fτ (�r, �p′), (7)

with f (�r, �p) = fn(�r, �p) + fp(�r, �p). The Ks( �p, �p′) and
Kv( �p, �p′) in Eq. (7) represent the isoscalar and isovector
momentum-dependent kernel of mean-field potential, respec-
tively. For N3LO Skyrme pseudopotential used in the present
work, Ks( �p, �p′) and Kv( �p, �p′) take the following forms:

Ks( �p, �p′)= C[2]

16h̄2 ( �p− �p′)2+ C[4]

32h̄2 ( �p− �p′)4+ C[6]

16h̄2 ( �p− �p′)6,

(8)

Kv( �p, �p′)= D[2]

16h̄2 ( �p− �p′)2+ D[4]

32h̄2 ( �p− �p′)4+ D[6]

16h̄2 ( �p− �p′)6.

(9)

In the present work, for the sake of simplicity of numerical
derivatives, the gradient term is truncated at the second order,
and only the isospin symmetric part is taken into account. In
other words, we only keep the second order derivative of the
total baryon density ρ(�r), i.e.,

Hgrad(�r) = 1

16
E [2]{2ρ(�r)∇2ρ(�r) − 2[∇ρ(�r)]2}. (10)

The complete gradient term in the Hamiltonian density for the
N3LO Skyrme potential can be found in Ref. [54].

In the above expressions, for convenience, we have recom-
bined the Skyrme parameters related to the derivative terms in
Eq. (2), namely, t [n]

1 , t [n]
2 , x[n]

1 , and x[n]
2 , into the parameters C[n]

and D[n],

C[n] = t [n]
1

(
2 + x[n]

1

) + t [n]
2

(
2 + x[n]

2

)
, (11)

D[n] = −t [n]
1

(
2x[n]

1 + 1
) + t [n]

2

(
2x[n]

2 + 1
)
, (12)

which are related to the momentum-dependent terms, and
E [2], which is related to the gradient terms with

E [2] = −1

4

[
t [2]
1

(
2 + x[2]

1

) − t [2]
2

(
2 + x[2]

2

)]
. (13)

The density-dependent term is expressed as

HDD(�r) = t3
24

[
(2 + x3)ρ2 − (2x3 + 1)

∑
τ=n,p

ρ2
τ

]
ρα. (14)

Based on the above expressions, one can see that the Hamilto-
nian density H(�r) is explicitly dependent on fτ (�r, �p), as well
as the ρτ (�r) and their derivatives.

The calculations in the present work are mainly based
on three N3LO Skyrme pseudopotentials, SP6s, SP6m, and
SP6h [54], which can describe the empirical single nucleon
potential up to 1 GeV in kinetic energy. The main difference
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TABLE I. Parameters related to the nuclear matter properties of
three N3LO Skyrme pseudopotentials, SP6s, SP6m, and SP6h, and
one conventional Skyrme interaction MSL1, where the recombina-
tion of Skyrme parameters defined in Eqs. (11) and (12) are used.

SP6s SP6m SP6h MSL1

t0 (MeV fm3) −1814.64 −1956.75 −1675.52 1963.23
x0 0.5400 0.2306 −0.0902 0.3208
t3 (MeV fm3+3α) 10796.2 11402.9 9873.1 12174.9
x3 0.8257 0.1996 −0.4990 0.3219
α 0.2923 0.2523 0.3168 0.2694
C[2] (MeV fm5) 597.877 637.195 677.884 435.519
D[2] (MeV fm5) −446.695 −524.373 −601.990 −367.583
C[4] (MeV fm7) −26.2027 −28.5209 −31.2026 0.0
D[4] (MeV fm7) 23.2525 27.6873 32.4607 0.0
C[6] (MeV fm9) 0.0903 0.1000 0.1121 0.0
D[6] (MeV fm9) −0.0896 −0.1080 −0.1292 0.0

of these three interactions is their suprasaturation behavior
of the isospin dependent part of EOS, namely, the symmetry
energy. Since the nucleon momenta in both the ground state
properties and low energy collective excitation are not much
larger than the Fermi momentum of saturated nuclear matter,
conventional Skyrme interactions are still able to give the
empirical single nucleon potential. In order to compare with
RPA calculations, one conventional Skyrme interaction MSL1
[79] is also adopted in the present work. We list the Skyrme
parameters related to nuclear matter properties for the above
four Skyrme interactions in Table I, while more discussions
about the gradient parameter E [2], which is irrelevant to nu-
clear matter properties, will be given in Sec. III B. For further
reference, the characteristic parameters of nuclear matter for
these interactions are shown in Table II. The definition of these
quantities can be found, e.g., in Ref. [80].

TABLE II. Macroscopic characteristic quantities for SP6s,
SP6m, SP6h, and MSL1, where ρsc = 0.11/0.16ρ0 and ρh =
0.5 fm−3.

SP6s SP6m SP6h MSL1

ρ0 (fm−3) 0.1614 0.1630 0.1647 0.1586
E0 (MeV) −16.04 −15.94 −15.61 −16.00
K0 (MeV) 240.9 233.4 240.8 235.1
J0 (MeV) −377.0 −384.2 −358.2 −372.7
Esym(ρsc ) (MeV) 25.43 25.83 25.98 26.67
L(ρsc ) (MeV) 32.47 46.75 62.19 46.19
Esym(ρ0) (MeV) 28.84 31.93 34.97 32.33
L(ρ0) (MeV) 18.20 49.10 82.17 45.25
Ksym (MeV) −242.7 −158.0 −70.5 −183.3
Esym(2ρ0) (MeV) 24.06 41.31 61.62 39.00
Esym(ρh ) (MeV) 0.03 41.32 79.82 31.01
m∗

s,0/m 0.759 0.758 0.755 0.806
m∗

v,0/m 0.678 0.663 0.648 0.706

III. LATTICE HAMILTONIAN VLASOV METHOD

A. Lattice Hamiltonian method for Vlasov equation

Quantum theory with phase-space distributions, with
proper generalization or approximation, is profoundly suitable
to formulate and solve many-particle dynamics [81]. It is
demonstrated that in the limit involving h̄ → 0, quantum
theory with one-body phase-space distributions is reduced to
the Vlasov equation [1],

∂ f

∂t
+ �p

E
∇�r f + ∇ �pU (�r, �p) · ∇�r f − ∇�rU (�r, �p) · ∇ �p f = 0,

(15)

where f is the one-body phase-space distribution, or Wigner
function defined as the Wigner transform of one-body density
matrix ρ(�r +�s/2,�r −�s/2), i.e.,

f (�r, �p) = 1

(2π h̄)3

∫
exp

(
−i

�p
h̄

· �s
)

ρ(�r +�s/2,�r −�s/2)d�s.

(16)

In nuclear physics, Eq. (15) with an additional nucleon-
nucleon collision term on the right hand side, which takes into
account Fermi statistics, i.e.,

Ic = −
∫

d �p2

(2π h̄)3

d �p3

(2π h̄)3

d �p4

(2π h̄)3
|M12→34|2

× (2π )4δ4(p1 + p2 − p3 − p4)

× [ f1 f2(1 − f3)(1 − f4) − f3 f4(1 − f1)(1 − f2)], (17)

is commonly referred to as the BUU equation [1].
The Vlasov equation or BUU equation is normally solved

by interpreting fτ (�r, �p, t ) as the semiclassical phase space
distribution function. If we treat each volume element as
nuclear matter, the (quasi)nucleons inside the volume are in
momentum eigenstates obeying the Pauli principle. Under
such a condition, the obtained fτ (�r, �p, t ) through Wigner
transform of the density matrix turns out to be the occupation
probability of the momentum eigenstates, and thus can be
regarded as the classical phase space distribution function.

The test particle method [82], where the semiclassical
fτ (�r, �p, t ) is mimicked by a large number of test particles, i.e.,

fτ (�r, �p, t ) ∝
∑

i

δ[�ri(t ) −�r]δ[ �pi(t ) − �p], (18)

has been introduced to solve the Vlasov equation numerically.
In the conventional test particle method, the evolutions of
coordinate �ri(t ) and momentum �pi(t ) of the ith test nucleon
are governed by the mean-field potential, or the single particle
potential, which can be obtained either by varying the Hamil-
tonian density or by direct parametrization. In order to obtain
a smooth mean-field potential, the density of a certain cell is
averaged by neighboring cells. This kind of simple smoothing
technique violates the equation of motion a little bit, and fails
to conserve either the total energy or the total momentum [1].

The lattice Hamiltonian Vlasov method developed by Lenk
and Pandharipande [56] overcomes this disadvantage of con-
ventional test particle method. It conserves the total energy
exactly and the total momentum to a high degree of accuracy.
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In the LHV method, instead of mean-field potential, the
equation of motion of test nucleons is governed directly by
the total Hamiltonian of the system, which is approximated
by the lattice Hamiltonian, i.e.,

H =
∫

H(�r)d�r ≈ lxlylz
∑

α

H(�rα ) ≡ HL, (19)

where �rα represents the coordinate of a certain lattice site
α and lx, ly, and lz are lattice spacing. The above lattice
Hamiltonian can be expressed in terms of the positions and
momenta of test nucleons, if we write the semiclassical LHV
phase space distribution at lattice site α as

f̃τ (�rα, �p, t ) = 1

2

1

NE/(2π h̄)3

α,τ∑
i

S[�ri(t ) −�rα]δ[ �pi(t ) − �p],

(20)
where the factor 1

2 is due to spin degeneracy. NE is the number
of ensembles (or number of test particles in some literature)
introduced in the calculation, and the sum runs over all test
nucleons with isospin τ that contribute to the lattice site α.
This equivalently gives each test particle a form factor S
compared with Eq. (18). By doing this, the movement of a test
particle leads to a continuous variation of the local nucleon
density of the nearby lattice sites, which is useful to smooth
the nucleon distribution functions in phase space. It should
be noted that the form factor S actually modifies the relation

between test particles and the Wigner function f . At this
point, we would like to point out that in principle, a similar
form factor in momentum space can also be introduced in
Eq. (20), which is expected to improve the calculations with
momentum-dependent mean-field potentials. In the present
work, we only adopt the form factor in coordinate space, and
in the future it would be definitely interesting to perform a
systematic investigation on the effects of a form factor in mo-
mentum space in heavy-ion transport model calculations. The
local nucleon density at lattice sites, or LHV density, is then
given by integrating f̃τ (�rα, �p, t ) with respect to momentum,
i.e.,

ρ̃τ (�rα, t ) = 2
∫

f̃
d �p

(2π h̄)3
= 1

NE

α,τ∑
i

S[�ri(t ) −�rα]. (21)

Note that here we distinguish the realistic phase space dis-
tribution function f (�r, �p) and local density ρ(�r) from the
LHV phase space distribution function and density expressed
in Eqs. (20) and (21), respectively, and will explore their
distinctions in Sec. III B. Substituting Eq. (20) into Eq. (4),
the lattice Hamiltonian HL is then expressed in terms of the
coordinates and momenta of test nucleons, and subsequently
they can be treated as the canonical variables of the lattice
Hamiltonian. The equation of motion for the ith test nucleon
is then governed by the Hamilton equation of total lattice
Hamiltonian of all ensembles NEHL, i.e.,

d�ri

dt
= NE

∂HL[�r1(t ), . . . ,�rA×NE (t ); �p1(t ), . . . , �pA×NE (t )]

∂ �pi
= �pi(t )

m
+ NElxlylz

∑
α∈Vi

∂H̃MD
α

∂ �pi
, (22)

d �pi

dt
= −NE

∂HL[�r1(t ), . . . ,�rA×NE (t ); �p1(t ), . . . , �pA×NE (t )]

∂�ri

= −NElxlylz
∑
α∈Vi

[
n,p∑
τ

(
∂H̃loc

α

∂ρ̃τ,α

+ ∂H̃Cou
α

∂ρ̃τ,α

+ ∂H̃DD
α

∂ρ̃τ,α

+ ∂H̃grad
α

∂ρ̃τ,α

+
∑

n

(−1)n∇n ∂H̃grad
α

∂∇nρ̃τ,α

)
∂ρ̃τ,α

∂�ri
+ ∂H̃MD

α

∂�ri

]
. (23)

In the above two equations, A is the nucleon number of the system, while the subscripts α for various quantities denote their
values at lattice site α. The sums run over all lattice sites inside Vi, where the form factor of the ith test nucleon covers. A tilde
above the Hamiltonian density, e.g., H̃loc(�rα ), denotes that in its expression in Sec. II B, the realistic phase space distribution
function and local density are replaced by the LHV phase space distribution function and density. The Coulomb interaction
contributes to the Hamiltonian density through

HCou(�rα ) = e2ρp(�rα )

{
1

2

∫
ρp(�r′)

|�rα −�r′|d�r′ − 3

4

[
3ρp(�rα )

π

]1/3}
≈ H̃Cou(�rα ) = e2ρ̃p(�rα )

{
1

2

∑
α′ �=α

ρ̃p(�rα′ )lxlylz
|�rα −�rα′ | − 3

4

[
3ρ̃p(�rα )

π

]1/3}
,

(24)

among which the minus term represents the contribution from the exchange term of Coulomb energy. Further testing shows that
the Coulomb energy H̃Cou(�rα ) defined in the above equation has already converged at lattice spacing of lx = ly = lz = 0.5 fm
used in the present work. The partial derivative of ρ̃τ,α in Eq. (23) can be calculated in terms of the spatial derivative of S, i.e.,

∂ρ̃τ,α

∂�ri
= ∂

∂�ri

τ j=τ∑
�r j∈Vα

S(�r j −�rα ) =
{

∂S(�ri−�rα )
∂�ri

, τi = τ,

0, τi �= τ.
(25)

The momentum-dependent parts of the equation of motion of test particles in Eqs. (22) and (23) are obtained by substituting
the momentum-dependent part of the Hamiltonian density, i.e., Eq. (7) into Eqs. (22) and (23) after replacing fτ (�r, �p) in Eq. (7)
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with the semiclassical LHV phase space distribution expressed in Eq. (20). The integrals in Eq. (7) turn out to be summations of
test particles,

∂H̃MD(�rα )

∂�ri
= 2

∂S[�ri(t ) −�rα]

∂�ri

⎧⎨
⎩

∑
j∈Vα

S[�r j (t ) −�rα]Ks[ �pi(t ), �p j (t )] +
τ j=τi∑
j∈Vα

S[�r j (t ) −�rα]Kv
[ �pi(t ), �p j (t )

]⎫⎬⎭, (26)

∂H̃MD(�rα )

∂ �pi
= 2S[�ri(t ) −�rα]

⎧⎨
⎩

∑
j∈Vα

S[�r j (t ) −�rα]
∂Ks[ �pi(t ), �p j (t )]

∂ �pi
+

τ j=τi∑
j∈Vα

S[�r j (t ) −�rα]
∂Kv[ �pi(t ), �p j (t )]

∂ �pi

⎫⎬
⎭. (27)

Based on Eqs. (22)–(27), we can calculate the time evolution
�ri(t ) and �pi(t ) of test nucleons, and then calculate physical
observables based on Eq. (20).

In the present work, the factor S(�ri −�r) is chosen to be
triangle form,

S(�ri −�r) = 1

(nl/2)6
g(	x)g(	y)g(	z), (28)

g(q) =
(

nl

2
− |q|

)
θ

(
nl

2
− |q|

)
, (29)

where θ is the Heaviside function, and n is an integer which
determines the range of S. Calculations based on lattices gen-
erally break Galilean invariance, and thus violate momentum
conservation. In the present work we choose n = 4, which is
large enough to conserve the total momentum to a high degree
of accuracy [56].

Generally speaking, the choice of S(�ri −�r) is somewhat
arbitrary. Besides the triangle form used in the present work,
alternative forms used in previous literature are trapezoid [36],
double parabolic [38], and Gaussian [83] form. However, in
order to ensure particle number conservation, S(�ri −�r) should
satisfy the following equation:

∑
α

ρ̃(�rα )lxlylz = lxlylz
NE

∑
α

∑
i

S(�ri −�rα ) = A. (30)

It should be mentioned that in the conventional test particle
method, the Hamiltonian equations of motion for the test
particles are derived from the single particle Hamiltonian,
which makes it difficult to exactly conserve energy of the
system in the dynamic process [1,56]. On the other hand,
in the LHV method, the Hamiltonian equations of motion
for the test particles, namely, Eqs. (22) and (23), are derived
from the total Hamiltonian of the system of test particles,
which guarantees the exact energy conservation of the system
in the dynamic process [56]. In addition, we would like
to mention that the present LHV method is implemented
based on GPU parallel computing [84], which increases the
computational efficiency and makes it possible to obtain more
reliable results with the use of much more ensembles.

B. Initialization of nuclear ground state

In the present framework, the Vlasov ground state of nuclei
at zero temperature is obtained by varying the Hamiltonian
with respect to the nuclear radial density. Such kind of initial-
ization in one-body transport model is sometimes referred to

as Thomas-Fermi (TF) initialization [36,56,85,86]. Within the
one-body transport models, at zero temperature, for a nucleus
in ground state, its Wigner function satisfies

fτ (�r, �p) = 2

(2π h̄)3
θ [| �p| − pF

τ (�r)], (31)

where pF
τ (�r) is local Fermi momentum and fulfills

pF
τ (�r) = h̄[3π2ρτ (�r)]1/3. (32)

For simplicity in the following we assume the nucleus is
spherical. The total energy of a ground state nucleus at zero
temperature can be then treated as a functional of radial
density ρ(r) and its spatial gradients ∇n

r ρ(r), i.e.,

E =
∫

H[r, ρτ (r),∇ρτ (r),∇2ρτ (r) . . . ]dr. (33)

After varying the total energy with respect to ρτ (r) and its
spatial gradients, and considering Eqs. (4) and (31), we obtain
the neutron/proton radial density in a ground state nucleus
[note that the contribution from the Coulomb interaction in
Eq. (24) for protons should also be included in the Hamilto-
nian density),

1

2m

{
pF

τ [ρτ (r)]
}2 + Uτ

{
pF

τ [ρτ (r)], r
} = μτ , (34)

where μτ is the chemical potential of proton or neutron
inside the nucleus and Uτ {pF

τ [ρτ (r)], r} is the single nucleon
potential of the nucleon at the Fermi surface. The single
nucleon potential is defined as the variation of Hamiltonian
density with respect to the phase space distribution function
(or local density for the zero-temperature case) and density
gradients. For the N3LO Skyrme pseudopotential, the detailed
expression can be found in Ref. [54]. Equation (34) has a very
intuitive physical significance; in a classical point of view, it
means within a ground state nucleus, the nucleons possessing
different Fermi momentum in different radial position have
the same chemical potential. The local density ρ(�r) for ground
state spherical nucleus is obtained by solving Eq. (34) subject-
ing to the boundary condition

∂ρ(r)

∂r

∣∣∣∣
r=0

= ∂ρ(r)

∂r

∣∣∣∣
r=rB

= 0, (35)

where rB is the boundary of the nucleus satisfying ρ(rB) = 0,
and needs to be determined when solving Eq. (34). Since
the way we deal with the ground state is semiclassical, the
gradient parameter E [2] is readjusted for each interaction in
order that the solution of Eq. (34) reproduces roughly the

044609-6



NUCLEAR COLLECTIVE DYNAMICS IN THE LATTICE … PHYSICAL REVIEW C 99, 044609 (2019)

experiment binding energy and charge radius of 208Pb. For
MSL1 interaction, the results in Sec. IV are based on the
readjusted gradient parameters.

In the present LHV method, the initial coordinates of test
nucleons are generated according to the solution of Eq. (34),
while their initial momenta follow zero-temperature Fermi
distribution with the Fermi momentum in Eq. (32) determined
by local density.

Careful readers might realize that the obtained ground
state LHV density ρ̃(�r) is smeared due to the form factor
introduced in Eq. (20), and thus slightly different from the
solution of Eq. (34). Contrary to the Gaussian wave packet in
quantum molecular dynamics [87], we do not attach any phys-
ical meaning to the form factor S(�r −�r′) and the smoothed
LHV density ρ̃, and regard them as numerical techniques
introduced in the test-particle approach so that we can obtain
well-defined densities and mean fields.

In order to compensate for effects caused by the smearing
of the local density due to the form factor, an additional
gradient term should appear in the local density based on the
following argument. The LHV density ρ̃ can be regarded as
the convolution of the realistic local density,

ρ̃(�r) =
∫

ρ(�r′)S(�r −�r′)d�r′. (36)

To express ρ in terms of ρ̃, formally we have

ρ(�r) =
∫

ρ̃(�r′)S−1(�r′ − �r)d�r′

=
∫ [ ∞∑

n=0

1

n!
∇nρ̃(�r)(�r′ − �r)n

]
S−1(�r′ − �r)d�r′

≈ ρ̃(�r) + c∇2ρ̃(�r), (37)

where S−1(�r −�r′) is the inverse of S(�r −�r′) which satisfies∫
S(�r −�r′′)S−1(�r′′ − �r′)d�r′′ = δ(�r −�r′). (38)

The parameter c, defined as

c ≡
∫

1

2
(�r′ − �r)2S−1(�r′ − �r)d�r′, (39)

is a constant only depending on the form of S.
In the LHV method, the direct correction on ρ̃(�r) is not

feasible since numerically the density in Eq. (37) is not always
positively defined. In practice, to compensate the smearing
of density due to the form factor, we introduce an additional
gradient term Ẽ [2]∇2ρ̃(�r) into the Hamiltonian. To demon-
strate this, one need only substitute Eq. (37) into Eq. (4),
and after several necessary approximations, an additional term
proportional to cρ̃(�r)∇2ρ̃(�r) will show up in the Hamiltonian.
Though ρ̃ is not a constant, in the present work, for simplicity
the additional gradient term is recast effectively into Ẽ [2]∇2ρ̃,
with Ẽ [2] being a constant. This is equivalent to replace the
gradient term coefficient E [2] by E [2] + Ẽ [2]. Since in princi-
ple the rms radius in exact ground state does not change with
time, Ẽ [2] here is adjusted roughly to obtain the ground state
rms radius evolution with the smallest oscillation. It should be
mentioned that this correction on gradient term only improves

TABLE III. The gradient parameters, both E [2] and Ẽ [2] for SP6s,
SP6m, SP6h, and MSL1 used in the present work. The obtained
binding energy and proton rms radius of 208Pb of TF initialization
and LHV calculations are also shown.

SP6s SP6m SP6h MSL1 Expt.

E [2] (MeV fm5) −250.0 −200.0 −150.0 −250.0
Ẽ [2] (MeV fm5) −15.0 −10.0 −10.0 −20.0
BE (MeV) 1637.2 1669.7 1654.5 1632.7 1636.4√〈r2〉p (fm) 5.48 5.44 5.40 5.51 5.45
BE (MeV) in LHV 1557.2 1585.1 1565.1 1553.5√〈r2〉p (fm) in LHV 5.52 5.49 5.44 5.56

the stability of ground state evolution (rms radius and radial
density profile) slightly, and does not cause much difference
on the result of collective motions in Sec. IV. Needless to
say, in ideal cases with NE approaching infinity and lattice
spacing approaching zero, LHV local density will approach
the realistic local density, and Ẽ [2] will become zero.

In Table III, for the interactions used in the present work,
namely SP6s, SP6m, SP6h, and MSL1, we list their param-
eters E [2] and Ẽ [2], as well as, for 208Pb, the binding energy
and proton rms radius based on TF initialization, i.e., the
solution of Eq. (34), and in LHV calculations. We note from
the table that after the smearing of S in the LHV method, the
total energy decreases and the rms radius of proton increases
slightly. However, this difference affects the stability of the
ground state very little, as we will see in Sec. IV A.

C. Nuclear giant resonance within the Vlasov equation

We consider a perturbative excitation of the Hamiltonian at
the initial time, i.e.,

Ĥex(t ) = λQ̂δ(t ), (40)

where Q̂ is the excitation operator we are interested in and λ is
supposed to be small. Within the linear response theory [88],
the response of the excitation operator Q̂ as a function of time
is given by

	〈Q̂〉(t ) = 〈 f |Q̂| f 〉(t ) − 〈0|Q̂|0〉(t )

= −2λθ (t )

h̄

∑
f

|〈 f |Q̂|0〉|2sin
(E f − E0)t

h̄
, (41)

where |0〉 is the ground state for unperturbed system, | f 〉 is
the energy eigenstate of the excited system, E0 and E f are
the eigenenergy of the system before and after excitation,
respectively.

We define the strength function S(E ) as usual through

S(E ) ≡
∑

f

|〈 f |Q̂|0〉δ(E − E f − E0). (42)

The S(E ) can be expressed as the Fourier integral of 	〈Q̂〉(t )
by taking advantage of Eq. (41), i.e.,

S(E ) = − 1

πλ

∫ ∞

0
dt	〈Q̂〉(t )sin

Et

h̄
. (43)
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By evaluating the time evolution of the response of Q̂ within
the LHV method, we can obtain the strength function.

We assume Q̂ is a one-body operator, which means it can
be expressed as the sum of operators q̂ acting on each nucleon,
i.e.,

Q̂ =
A∑
i

q̂. (44)

The expectation of Q̂ then can be calculated as follows:

〈Q̂〉 = 〈 f |Q̂| f 〉
=

∫
〈 f |�r1 . . .�rN 〉〈�r1 . . .�rN |Q̂|�r′

1 . . .�r′
N 〉

× 〈�r′
1 . . .�r′

N | f 〉d�r1 . . . d�rN d�r′
1 . . . d�r′

N , (45)

where we have added two identity operators. Considering the
definition of the one-body density matrix,

ρ(�r1,�r′
1) = A

∫
〈�r1�r2 . . .�rN |�〉〈�|�r′

1�r2 . . .�rN 〉d�r2 . . . d�rN ,

and combining with Eq. (44), we rewrite Eq. (45) as

〈Q̂〉 =
∫

ρ(�r′
1,�r1)〈�r1|q̂|�r′

1〉d�r1d�r′
1. (46)

For convenience in the following we change the variables of
the integral, �r1 = �r + �s

2 and �r′
1 = �r − �s

2 . Since f (�r, �p) is the
Wigner transform of density matrix, in coordinate space the
density matrix can be expressed as

ρ

(
�r − �s

2
,�r + �s

2

)
=

∫
f (�r, �p)exp

(
i
�p
h̄
�s
)

d �p. (47)

We define the Wigner transform of q̂ in coordinate space,

q(�r, �p) ≡
∫

exp

(
−i

�p
h̄

· �s
)

q

(
�r + �s

2
,�r − �s

2

)
d�s, (48)

where

q

(
�r + �s

2
,�r − �s

2

)
=

〈
�r + �s

2
|q̂|�r − �s

2

〉
(49)

is the matrix element of q̂ in coordinate space. Substituting
Eq. (47) and the inverse transform of Eq. (48) into Eq. (46),
we reduce the expectation of Q̂ into the following form:

〈Q̂〉 =
∫

f (�r, �p)q(�r, �p)d�rd �p. (50)

In the LHV method, the f (�r, �p) is replaced by f̃ (�r, �p)
expressed in Eq. (20). It can be demonstrated that the effect of
the external excitation λQ̂δ(t − t0) is to change the positions
and momenta of the test nucleons as follows [83]:

�ri −→ �ri + λ
∂q(�ri, �pi )

∂ �pi
, �pi −→ �pi − λ

∂q(�ri, �pi )

∂�ri
. (51)

For the isoscalar monopole and isovector dipole excitation,
the specific form of Eq. (51) will be given in Secs. IV B and
IV C, respectively.

FIG. 1. The time evolution of radial density profile of ground
state 208Pb based on the present LHV method, with N3LO Skyrme
pseudopotential SP6m up to 200 fm/c.

IV. RESULT AND DISCUSSION

In the following, we are going to examine the ability of the
present LHV method in dealing with the (near-)equilibrium
nuclear dynamics. Specifically, we will study the ground
state evolution, isoscalar monopole and isovector dipole mode
of 208Pb. Under such (near-)equilibrium states, most of the
nucleon-nucleon collisions are blocked according to the Pauli
exclusive principle, thus in principle the BUU equation with
the absence of the collision term, or the Vlasov equation, is
still applicable.

A. Ground state evolution of finite nuclei

As mentioned in Sec. III B, the initial phase space informa-
tion of a ground state nucleus is obtained self-consistently by
varying the total energy with respect to nucleon radial density
ρ(r). The initial coordinates of test nucleons are generated
according to the solution of Eq. (34), and the LHV density ρ̃

is obtain via Eq. (21). Shown in Fig. 1 is the time evolution
of radial profile of LHV density for a single 208Pb in ground
state up to 200 fm/c, obtained from the present LHV method
with NE = 10 000 and time step 	t = 0.4 fm/c by using
the N3LO Skyrme pseudopotential SP6m. We notice from
Fig. 1 that the LHV density approximates reasonably well the
realistic ground state of the Vlasov equation, or the solution
of Eq. (34), since the profile of the LHV density only exhibits
very small fluctuations.

To see more clearly the stability of the ground state evo-
lution of 208Pb within the present LHV method, the ground
state evolution is continued up to 1000 fm/c, and we present
in Fig. 2 the radial profiles of LHV density with a time interval
of 200 fm/c. Again, only small fluctuations are observed
in Fig. 2, which indicates that the present LHV method is
capable of studying long-time nuclear processes, e.g., heavy-
ion fusion reactions and nuclear spallation reactions.

Apart from the radial density profile, other properties con-
cerning the stability of the LHV method are also examined. To
that end, the time evolution of rms radius, fraction of bound
nucleons, and binding energy are presented in Fig. 3. The
calculations are performed with time step 	t = 0.4 fm/c,
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FIG. 2. Same as Fig. 1 but up to 1000 fm/c.

and NE = 5000 and 10 000, respectively. Free test nucleons
are those who do not interact with other test nucleons (which
means their form factors S do not overlap), and they are
excluded in calculating the fraction of bound nucleon and
rms radius. We notice from Fig. 3(a) that both cases with
different NE give fairly stable evolution of rms radius. For the
NE = 5000 case, the rms radius starts to decrease after about
800 fm/c. This decrease is due to the evaporation of nucleons
from the bound nuclei, which is demonstrated in Fig. 3(b).
Such evaporation of nucleons is inevitable in transport model
simulations due to the limited precision in the numerical
realization, whereas it can be suppressed by increasing NE, as
can be seen in Fig. 3(b), though the result with EE = 5000 is
already satisfactory. Owing to the advantage of lattice Hamil-
tonian framework, the binding energy of the given nucleus
conserves almost exactly in both cases, as shown in Fig. 3(c).

Figure 3 indicates that the present LHV method is able to
give fairly stable time evolution. Due to the high efficiency
of GPU parallel computing, including more ensembles in the

FIG. 3. Time evolution of (a) rms radius, (b) the fraction of
bound nucleons, and (c) binding energy of ground state 208Pb with
N3LO Skyrme pseudopotential SP6m up to 1000 fm/c. Calculations
are performed with time step 	t = 0.4 fm/c, and NE = 5000 and
10 000, respectively.

FIG. 4. The time evolution of 	〈Q̂〉ISM of 208Pb after a perturba-
tion of Ĥex (t ) = λQ̂ISMδ(t ) with λ = 100 MeV fm−1/c. The results
correspond to three N3LO Skyrme pseudopotentials, SP6s, SP6m,
SP6h, and one conventional Skyrme interaction MSL1, respectively.

LHV calculation becomes possible. However, as a balance
between computational resources and numerical accuracy,
unless otherwise specified, the following calculations are per-
formed with time step 	t = 0.4 fm/c and NE = 5000.

B. Isoscalar monopole mode of 208Pb

During the past several decades, a lot of studies on the
isoscalar giant monopole resonance (ISGMR) of finite nuclei
have been performed, since it provides the information about
both the symmetric and asymmetric part of the nuclear matter
incompressibility [89–94], which are fundamental quantities
characterizing the EOS of nuclear matter. In the experimental
aspect, the isoscalar monopole mode is measured through
scattering off nucleus with isoscalar light particles, and recent
experiments have been performed with inelastic α-particle
and deuteron scatterings [91–96].

In the one-body transport model point of view, the isoscalar
monopole mode is regarded as a compressional breathing of
nuclear fluid. Such mode can be generated in the LHV frame-
work through the following procedures. For the isoscalar
monopole mode, we have

Q̂ISM = 1

A

A∑
i

r̂2
i , q̂ISM = r̂2

A
, (52)

and thus according to Eq. (48), we obtain

qISM(�r, �p) = �r2

A
. (53)

Note that the square root of the expectation value of Q̂ISM is
the rms radius of the given nucleus. According to Eq. (51), to
obtain the isoscalar monopole mode, the initial phase space
information of test nucleons are changed with respect to that
of the ground state by

�pi −→ �pi − 2λ
�ri

A
. (54)

The spatial coordinators of test nucleons remain unchanged
since the qISM is independent of momentum.

In Fig. 4 we show the time evolution of 	〈Q̂〉ISM with
three N3LO Skyrme pseudopotentials, namely, SP6s, SP6m,
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FIG. 5. Strength function of isoscalar monopole mode calculated
based on the LHV method with SP6s, SP6m, SP6h, and MSL1. The
experimental peak energy and that from RPA calculation with MSL1
are also included for comparison.

and SP6h, as well as one conventional Skyrme interac-
tion MSL1. The perturbation parameter λ is chosen to be
100 MeV fm−1/c in the calculation. We notice from the figure
that the time evolution of 	〈Q̂〉ISM, or equivalently the rms ra-
dius, exhibits a very regular oscillation, and the rapid increase
which is commonly observed in most BUU simulations using
the conventional test particle method is not shown here. Be-
sides that, only a slight damping is observed in the oscillation,
which is anticipated since the only damping mechanism in
the Vlasov framework is Landau damping. Landau damping
is caused by one-body dissipation which is governed by a
coupling of single-particle and collective motion. It should
be mentioned that in the RPA framework, the damping also
only comes from one-body dissipation, since the coupling
to more complex states like two-particle–two-hole (2p-2h)
states is missing in RPA [97]. In the semiclassical framework,
effects analogous to the 2p-2h excitation can be included via
a nucleon-nucleon collision term [98], and the width of the
strength indeed increases due to the inclusion of the collision
term [85], but this is beyond the scope of the present work,
and will be pursued in the future.

The strength function is obtained based on the time evolu-
tion of the response presented in Fig. 4 and Eq. (44). When
calculating the strength function, the response 	〈Q̂〉(t ) is
multiplied by an exponential attenuation e−γ t/2h̄, which is a
common practice in many giant resonance calculations within
the BUU model [83,99]. The reason for introducing such an
attenuation is to avoid oscillations in the Fourier transforms of
Eq. (43), which is caused by the finite period of the evolution.
In this work the attenuation parameter γ is set to be 2 MeV, as
well as in Sec. IV C for the isovector dipole mode. However,
this exponential attenuation will not affect the peak energy of
the strength, on which we mainly focus.

The obtained strength functions of the isoscalar monopole
mode with SP6s, SP6m, SP6h, and MSL1 are presented in
Fig. 5. The grey band represents the peak energy of 13.91 ±
0.11 MeV from inelastic α scattering off 208Pb performed

at TAMU [89] while the cyan band of 13.7 ± 0.1 MeV rep-
resents that from the Research Center for Nuclear Physics
(RCNP) [93]. We notice from the figure that all these inter-
actions give peak energies consistent with that of the exper-
iment, which is a consequence of the proper nuclear incom-
pressibility of the given interactions, as shown in Table II by
K0. In order to compare the results from the LHV method
with that from different approaches, we calculate the strength
function of MSL1 based on RPA. The Skyrme-RPA code by
Colo et al. [100] is employed. The obtained peak energy is
indicated by a green arrow. The peak energies of MSL1 with
different approaches are generally comparable, and the small
discrepancy comes from the difference between semiclassical
and quantum nature.

C. Isovector dipole mode of 208Pb

The isovector giant dipole resonance (IVGDR) of finite
nuclei is the oldest known nuclear collective motion. System-
atic experimental studies on IVGDR based on photonuclear
reactions can be traced back to more than forty years ago
[101]. Recent measurements on isovector dipole response
have been performed based on inelastic proton scattering
at RCNP for 48Ca [102], 120Sn [103], and 208Pb [104], as
well as by using Coulomb excitation in inverse kinematics
at GSI for 68Ni [105]. It is interesting to mention that in
recent years a low-lying mode called pygmy dipole resonance
(PDR) has attracted a lot of attention both experimentally
[106–109] and theoretically [83,110–112]. It is well known
from theoretical studies based on various models that the
PDR, IVGDR, and electric dipole polarizability αD, which is
dominated by these isovector dipole modes, provide sensitive
probes of the density dependence of the nuclear symmetry
energy [99,113–118].

Within the LHV method, the external perturbation for the
isovector dipole mode can be expressed in the following form:

Q̂IVD = N

A

Z∑
i

ẑi − Z

A

N∑
i

ẑi, (55)

which is defined so that the center of mass of the nucleus stays
at rest. Similar to the case in the isoscalar monopole mode, the
excited system is obtained by changing the initial phase space

FIG. 6. Same as Fig. 4 but for isovector dipole mode.
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FIG. 7. Same as Fig. 5 but for isovector dipole mode.

coordinates of test nucleons according to

pz −→
{

pz − λN
A , for protons,

pz + λ Z
A , for neutrons.

(56)

After initializing and exciting the nucleus, we observe in
Fig. 6 the damped oscillations of the isovector dipole response
in 208Pb with SP6s, SP6m, SP6h, and MSL1. In the isovec-
tor dipole case, λ is set to be 25 MeV/c. Similar to the
isoscalar monopole case, in Fig. 7 the corresponding strength
functions of the isovector dipole response are displayed. The
vertical cyan line represents the experimental peak energy of
13.4 MeV obtained from 208Pb(p, p′) reaction performed at
RCNP [104] and the green arrow indicates the peak energy
from the RPA calculation in MSL1. Since these interactions
give a reasonable description for the empirical isospin de-
pendent behaviors in (sub)saturation density, as indicated in
Table II, the peak energy from different interactions is consis-
tent with experimental data. The peak energies of MSL1 from
the LHV method and the RPA calculation are comparable as
well.

In Fig. 6, the obtained responses with SP6s, SP6m, and
MSL1 show clearly nonsingle frequency behavior. This is also
evident in Fig. 7 from the additional strength or even extra
bumps in the high energy region. Further tests show that the
bump of the high energy part is related to the magnitude of
the gradient terms in Eq. (10), which provides an additional
restoring force out of phase with that from the local part. This
indicates that the effect of the gradient terms, usually omitted
in one-body transport models, should not be overlooked. We
notice that such high-energy bumps or peaks have also been
observed in previous studies based on one-body transport
models with gradient terms [119,120]. One possible reason is
that the larger the gradient term, the easier for the isovector
dipole excitation to invoke other modes, and other modes
then react upon the isovector dipole mode and thus cause the
additional high-energy strength. In principle, such nonlinear
modes can be avoided if the perturbation parameter λ is small
enough [121]. However, this is impracticable in one-body

transport model simulations due to the limited precision in
the numerical realization. Since the high-energy bump or
peak is absent in experimental data [104], we attribute it to a
numerical problem, and further investigation is needed in the
future.

V. SUMMARY AND OUTLOOK

We have developed a one-body transport model by employ-
ing the lattice Hamiltonian method to solve the Vlasov equa-
tion with nuclear mean-field obtained from the N3LO Skyrme
pseudopotential. The ground states of nuclei are obtained
with the same interactions through varying the total energy
with respect to the nucleon density distribution. Owing to the
self-consistent treatment of initial nuclear ground state and
the exact energy conservation of the LHV method, the present
framework for solving the Vlasov equation exhibits very sta-
ble nuclear ground state evolution. As a first application of the
new LHV method, we have calculated the isoscalar monopole
and isovector dipole modes of finite nuclei. The obtained peak
energies of ISGMR and IVGDR in 208Pb with the N3LO
Skyrme pseudopotentials are consistent with the experimental
data. In addition, the use of the Skyrme interaction enables
us to compare the LHV results with that from conventional
nuclear structure method, i.e., the RPA calculation, and the
obtained peak energies of ISGMR and IVGDR in 208Pb have
been shown to be comparable in the LHV method and the RPA
calculation.

Our results have demonstrated the capability of the present
LHV method in dealing with the ground state of finite nuclei
and the near-equilibrium nuclear dynamics. The present work
provides a solid foundation not only for long-time Vlasov
calculation of low energy heavy-ion reactions, but also for
the BUU calculation with a nucleon-nucleon collision term.
Based on the future lattice Hamiltonian BUU method, one
can use the Skyrme pseudopotentials to simultaneously ex-
plore both the structure properties of finite nuclei and heavy-
ion collisions at intermediate to high energies. Crosschecks
for nuclear effective interactions and thus for the EOS of
asymmetric nuclear matter from the nuclear structure and
heavy-ion collisions thus become possible. Such studies are
in progress and will be reported elsewhere.
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Fujita, Y. Fujita, E. Ganioǧlu, K. Hatanaka, E. Ideguchi, C.
Iwamoto, T. Kawabata, N. T. Khai, A. Krugmann, D. Martin,
H. Matsubara, K. Miki et al., Phys. Rev. C 92, 031305(R)
(2015).

[104] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T.
Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K.
Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata, Y.
Kalmykov, A. M. Krumbholz, E. Litvinova, H. Matsubara, K.
Nakanishi, R. Neveling et al., Phys. Rev. Lett. 107, 062502
(2011).

[105] D. M. Rossi, P. Adrich, F. Aksouh, H. Alvarez-Pol, T.
Aumann, J. Benlliure, M. Böhmer, K. Boretzky, E. Casarejos,
M. Chartier, A. Chatillon, D. Cortina-Gil, U. Datta Pramanik,
H. Emling, O. Ershova, B. Fernandez-Dominguez, H. Geissel,
M. Gorska, M. Heil, H. T. Johansson et al., Phys. Rev. Lett.
111, 242503 (2013).

[106] N. Ryezayeva, T. Hartmann, Y. Kalmykov, H. Lenske,
P. von Neumann-Cosel, V. Y. Ponomarev, A. Richter, A.
Shevchenko, S. Volz, and J. Wambach, Phys. Rev. Lett. 89,
272502 (2002).

[107] LAND-FRS Collaboration, P. Adrich, A. Klimkiewicz, M.
Fallot, K. Boretzky, T. Aumann, D. Cortina-Gil, U. Datta
Pramanik, T. W. Elze, H. Emling, H. Geissel, M. Hellström,
K. L. Jones, J. V. Kratz, R. Kulessa, Y. Leifels, C. Nociforo,
R. Palit, H. Simon, G. Surówka, K. Sümmerer, and W. Waluś,
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