
PHYSICAL REVIEW C 99, 044608 (2019)
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Earlier work showed how a nucleon optical model wave function could be defined as a projection of a many-
nucleon scattering state within a translationally invariant second quantized many-body theory. In this paper,
an optical potential operator that generates this optical model wave function is defined through a particular
off-shell extension of the elastic transition operator. The theory is expressed explicitly in terms of the many-
nucleon Hamiltonian in a mixed representation in which localized target nucleus states feature. No reference to
a mean-field concept is involved in the definition. It is shown that the resulting optical model operator satisfies
the requirements of rotational invariance and translational invariance and has standard behavior under the time-
reversal transformation. The contributions to the optical potential from two different exchange mechanisms are
expressed in terms of an effective Hamiltonian involving a nucleon-number-conserving one-body interaction. In
the weak-binding limit, the method reduces to a version of Feshbach’s projection operator formulation of the
optical potential with a truncated nucleon-nucleon potential including exchange terms and recoil corrections.
Definitions of the nucleon single-particle Green’s function and the corresponding Dyson self-energy modified
by corrections for translational invariance are presented, and different definitions of the optical potential operator
are compared.
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I. INTRODUCTION

Theories describing nucleon scattering from an A-nucleon
target in terms of fundamental two- and three-body inter-
nucleon interactions are of considerable current interest. An
extensive recent review of the optical potential approach is
given in Ref. [1]. Apart from the case of very light targets,
all theories cited in Ref. [1] ignore the full implications of
translational invariance.

As a step towards correcting this situation, earlier work
[2] showed how a nucleon optical model wave function could
be defined as a projection of a many-nucleon scattering state
within a translationally invariant second quantized many-body
theory. In Secs. II A and II B the results of Ref. [2] are
reviewed briefly. In Secs. II C and II D, in a natural develop-
ment of Ref. [2], an optical potential operator that generates
the optical model wave function is defined in terms of a
particular off-shell extension of the elastic transition operator
and expressed explicitly in terms of the many-nucleon Hamil-
tonian. No reference to a mean-field concept is involved in
this definition which is shown to produce an optical potential
that satisfies the requirements of rotational invariance and
translational invariance and has a standard behavior under the
time-reversal transformation.

In Secs. II E–II G the new definition is used to distinguish
the contributions from two different exchange mechanisms to
the optical potential, knockout exchange and heavy-particle
stripping. For an A-nucleon target, these two contributions
are expressed in terms of an effective Hamiltonian involving
a nucleon-number-conserving interaction acting within
A-nucleon and (A − 1)-nucleon subspaces. Section III shows
how the heavy-particle stripping term is related to the

hole term in the Lehmann, Symanzik, and Zimmermann
(LSZ) representation of the transition operator [3]. In Sec. IV,
it is shown that in the weak-binding limit the theory reduces
to a modified version of Feshbach’s original theory of the
optical potential [4].

In Sec. V, a modified single-particle Green’s function and
Dyson self-energy are derived. The associated definition of an
optical potential is compared with that given in Sec. II.

Concluding discussions can be found in Sec. VI, and an
acknowledgment follows. Details of some of the derivations
are collected in Appendices A–E.

The inclusion of recoil effects in many-body theories of
the optical potential was discussed by Redish and Villars
[5]. Their work derived corrections to systematic perturbation
methods about a mean field. Although much of the analysis in
this paper shares with Ref. [5] the use of techniques developed
in Ref. [3], no attempt is made here to develop a perturbation
theory. The motivation here is rather to write down a the-
ory of the optical potential that explicitly satisfies antisym-
metry and translational invariance requirements and brings
out the physical content in a way that bridges the gap be-
tween many-body theory and standard nuclear reaction theory
ideas.

II. THEORY OF THE NUCLEON OPTICAL POTENTIAL

A. The optical model wave function

In Ref. [2], the optical model wave-function ξ ε
E ,k0

(r),
corresponding to the elastic scattering of a nucleon of mo-
mentum k0 in the overall c.m. system by an A-nucleon
target in its ground state was formally defined as a matrix
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element between many-nucleon states in Fock space through
the formula,

ξ ε
E ,k0

(r) = 〈〈�(0, x = 0)|ψ (r)
∣∣�ε

E ,k0

〉〉
. (1)

The operator ψ (r) destroys a nucleon at a point labeled r. The
notation r will be taken to include spin and isospin coordinates
of a nucleon unless it is obvious that only space coordinates
are referred to by the context. The notation | 〉〉 and 〈〈 | denotes
kets and bras in Fock space.

The ground-state energy will be taken to be the zero of
energy so that total c.m. energy E is related to k0 on the energy
shell by

E = h̄2k2
0

2μmA
, (2)

where μmA is the nucleon-target reduction mass,

μmA = A

(A + 1)
m. (3)

In order to make subsequent formulas have a simpler appear-
ance, the difference between neutron and proton rest masses
will be ignored.

The ket on the right of Eq. (1) is the Fock-space scattering
state [2],∣∣�ε

E ,k0

〉〉 = ıε

E − H + ıε
(2π )3/2a†

k0
|−k0, ψ0〉〉. (4)

where H is the many-nucleon Hamiltonian operator in Fock
space.

In the limit ε → 0+, the ket |�ε
E ,k0

〉〉 describes an antisym-
metric (A + 1)-nucleon scattering state of total momentum
zero in the overall c.m. system. The incident channel has
an incident nucleon with momentum k0. In this channel, the
A-nucleon target has a total momentum −k0 and is in its
ground-state ψ0. All other channel components of |�ε

E ,k0
〉〉

have purely outgoing waves asymptotically. It will be assumed
that all Coulomb interactions are screened at large separations.
The factor (2π )3/2 arises because a†

k0
creates a normalized

plane-wave state, whereas scattering states are conventionally
normalized to an incoming plane wave of unit amplitude.

The bra 〈〈�(0, x = 0)| on the right of Eq. (1) describes
a state in which the target is in its ground state and its c.m.
is located at the origin of coordinates x = 0. This is one of
the complete set of A-nucleon Fock-space states |�(n, x)〉〉,
formed from an intrinsic state ψn(r1, . . . , rA), and and having
a c.m. located at position x. Explicitly [2],

|�(n, x)〉〉 = 1√
A!

∫
dr1dr2 · · · drAδ(RA − x)ψn

×(r1, . . . , rA)ψ†(rA) · · · ψ†(r1)|0〉〉, (5)

where

RA = (r1 + · · · + rA)

A
. (6)

State ψn is an eigenstate of the intrinsic part of the A-nucleon
Hamiltonian HA,

HA − (P)2

2Am
, (7)

where P is the momentum operator in Fock space,

P = h̄
∫

dk ka†
ka†

k. (8)

State ψn(r1, . . . , rA) is an eigenfunction of P with eigenvalue
zero. The ket |−k0, ψ0〉〉 in Eq. (4) is an eigenfunction of P
with eigenvalue −k0.

In Eq. (1), the argument r of ξ ε
E ,k0

(r) can be interpreted as
the position of the incident nucleon relative to the c.m. of the
target, although of course in the scattering state the target c.m.
is not at rest in the overall c.m. system. This is reflected in the
complete uncertainty of the momentum of the bra 〈〈�(0, x =
0)|ψ (r). The translational invariance of H means that only the
zero total momentum component of this bra contributes to the
matrix element (1).

B. Source equation for the optical model wave function

The optical model wave function defined by Eq. (1) satis-
fies [2](

h̄2k2
0

2μmA
+ ıε + h̄2

2μmA
∇2

r

)
ξ ε

E ,k0
(r) = F ε

k0
(r) + ıε exp(ık0 · r),

(9)
where

F ε
k0

(r) = 〈〈�(0, x = 0)|[ψ (r),V ]−
∣∣�ε

E ,k0

〉〉
. (10)

The form Eq. (9) takes in the ε → 0 is derived in Sec. V of
Ref. [2]. A straightforward modification of the argument given
there gives the finite ε version, Eq. (9).

The optical potential operator V̂ opt (E ) will be defined as
an operator in barycentric space (B space), the space of a
fictitious particle of mass μmA, spin-1/2, position operator r̂,
and momentum operator p̂ = −ı h̄∇r , that enables Eq. (9) to
be written in the equivalent form(

h̄2k2
0

2μmA
+ ıε + h̄2

2μmA
∇2

r

)
ξ ε

E ,k0
(r)

= V̂ opt (E )ξ ε
E ,k0

(r) + ıε exp(ık0 · r). (11)

The “hat” notation over a quantity will be used to denote
operators in B space as opposed to the bare-headed operators
of Fock space.

In general, V opt (E ) will be a nonlocal operator with matrix
elements in the r representation in B-space V̂ opt (E ; r, r′) so
that the first term on the right in Eq. (9) has the form

V̂ opt (E )ξ ε
E ,k0

(r) =
∫

dr′V̂ opt (E ; r, r′)ξ ε
E ,k0

(r′). (12)

To achieve the identification of this operator, Eq. (9) must
be written as a relation between operators and kets in B
space. This can be achieved in many ways. The choice made
here results in an operator that conserves the total angular
momentum in B space and has features which permits a
transparent representation of the physical processes involved.

F ε
k0

(r), given in Eq. (10), is first rewritten using an expres-
sion for the scattering state, Eq. (4), as a plane wave in the
incident channel plus outgoing wave components. This step
uses the Green’s function identity [3], Eq. (3.42), p. 315,

G(z)a†
k0

= a†
k0

G
(
z − εk0

) + G(z)
[
V, a†

k0

]
−G

(
z − εk0

)
, (13)

044608-2



ANTISYMMETRIZED, TRANSLATIONALLY INVARIANT … PHYSICAL REVIEW C 99, 044608 (2019)

where G(z) = 1
(z−H ) for arbitrary complex z and

εk0 = h̄k2
0

2m
. (14)

It has been assumed that H can be expressed as the sum of a nucleon kinetic-energy term T and an internucleon potential-energy
term V .

Acting on the ket |−k0, ψ0〉〉,

ıεG
(
E + ıε − εk0

)|−k0, ψ0〉〉 = ıε
1(

E + ıε − εk0 − 1
Aεk0

) |−k0, ψ0〉〉 = |−k0, ψ0〉〉, (15)

when Eq. (2) is satisfied. The definition (4) can therefore be rewritten

(2π )−3/2
∣∣�ε

E ,k0

〉〉 = a†
k0

|−k0, ψ0〉〉 + G(E + ıε)
[
V, a†

k0

]
−|−k0, ψ0〉〉, (16)

and the expression (10) for F ε
k0

(r) becomes

F ε
k0

(r) = (2π )3/2[〈〈�(0, x = 0)|[ψ (r),V ]−a†
k0

|−k0, ψ0〉〉 + 〈〈�(0, x = 0)|[ψ (r),V ]−G(E + ıε)
[
V, a†

k0

]
−|−k0, ψ0〉〉

]
. (17)

The first term on the right involves ground-state–ground-state matrix elements of V . In the second term, the ground state is
coupled to a complete set of intermediate (A + 1)-nucleon states.

Recall that by definition in state |−k0, ψ0〉〉 the A-nucleon c.m. is in a plane-wave state of momentum −k0 and unit amplitude
and hence

|−k0, ψ0〉〉 =
∫

dx exp(−ık0 · x)|�(0, x)〉〉, (18)

where |�(0, x)〉〉 is one of the states defined in Eq. (5). Equation (17) can now be developed as

F ε
k0

(r) = (2π )3/2
∫

dx exp(−ık0 · x)
[〈〈�(0, x = 0)|[ψ (r),V ]−a†

k0
|�(0, x)〉〉

+〈〈�(0, x = 0)|[ψ (r),V ]−G(E + ıε)
[
V, a†

k0

]
−|�(0, x)〉〉] =

∫
dr′T̂0,0(E + ıε; r, r′) exp(ık0.r′), (19)

where

T̂0,0(E + ıε; r, r′) =
∫

dx[〈〈�(0, x = 0)|[ψ (r),V ]−ψ†(r′ + x)|�(0, x)〉〉

+ 〈〈�(0, x = 0)|[ψ (r),V ]−G(E + ıε)[V, ψ†(r′ + x)]−|�(0, x)〉〉]. (20)

The role of the integration over x is to pick out the momentum zero component of the ket ψ†(r′ + x)|�(0, x)〉〉. This is
particularly transparent when the properties of the total momentum operator P are used to write∫

dx ψ†(r′ + x)|�(0, x)〉〉 =
∫

dx exp(−ıx · P)ψ†(r′)|�(0, x = 0)〉〉 = (2π )3δ(P)ψ†(r′)|�(0, x = 0)〉〉. (21)

Equation (20) defines a fully off-shell transition matrix that is independent of the direction of the incident momentum k0. This
feature will be essential for the angular momentum conserving property of the optical model defined in the next section.

All the terms on the right in Eq. (20) involve matrix elements between spatially localized A-nucleon states. The range of
integration of the c.m. coordinate x is also strongly limited in realistic physical situations. The range of nonlocality associated
with the distance |r − r′| is limited by the range of nonlocality of V and the spatial dimensions of the target. The range of the
variable x, i.e., the change in the c.m. position of the target during the collision, can be estimated from

(Speed of c.m.)(Time for nucleon to travel |r − r′|) = h̄k0

Am

|r − r′|
h̄k0/m

= |r − r′|
A

. (22)

This estimate is finite for all A and since (|r − r′|)max ∝ A1/3 decreases like A−2/3 for large A.
The momentum space matrix element between general normalized plane-wave states of momenta k, k′ that correspond to

T̂0,0(E + ıε; r, r′) is

T̂0,0(E + ıε; k, k′) =
∫

dr
∫

dr′ exp(−ık · r)

(2π )3/2
T̃0,0(E + ıε; r, r′)

exp(ık′ · r′)
(2π )3/2

= 〈〈�(0, x = 0)|[ak,V ]−a†
k′ |−k′, ψ0〉〉 + 〈〈�(0, x = 0)|[ak,V ]−G(E + ıε)[V, a†

k′]−|−k′, ψ0〉〉. (23)
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The quantities T̂0,0(E + ıε; r, r′) and T̂0,0(E + ıε; k, k′) can be thought of as matrix elements of an operator in B-space
T̂0,0(E + ıε). Using this identification, Eq. (9) can know be expressed entirely in terms of operators and kets in B space,(

ε̃k0 + ıε − T̂
)∣∣ξ ε

E ,k0

〉 = T̂0,0(E + ıε)(2π )3/2|k0〉 + ıε(2π )3/2|k0〉, (24)

where

〈r|T̂ |r′〉 = − h̄2

2μmA

[∇2
r δ(r − r′)

]
(25)

is the kinetic operator in B space for a particle of mass μmA. The notation | 〉 is used for kets in B space.
Equation (24) has the solution,∣∣ξ ε

E ,k0

〉 = ĝ0(E + ıε)T̂0,0(2π )3/2|k0〉 + ıε(2π )3/2ĝ0(E + ıε)|k0〉 = ĝ0(E + ıε)T̂0,0(2π )3/2|k0〉 + ı(2π )3/2|k0〉, (26)

where

ĝ0(E + ıε) = 1

(E + ıε − T̂ )
. (27)

and where, for E = h̄k2
0/2μmA, the result ıεĝ0(E + ıε)|k0〉 =

|k0〉 has been used.
Hence, ∣∣ξ ε

E ,k0

〉 = �̂(E + ıε)(2π )3/2|k0〉, (28)

where

�̂(E + ıε) = [1 + ĝ0(E + ıε)T̂0,0]. (29)

The notation used for T̂0,0(E + ıε) reflects the fact that, in
the limit ε → 0, between plane-wave states of unit amplitude
and on-energy-shell wave numbers, this operator gives the
elastic-scattering transition amplitude and is related to the
elastic-scattering amplitude f0,0(k′

0, k0),

〈k′
0, ψ0|T (E )|k0, ψ0〉

=
∫

dr
∫

dr′ exp(−ık′
0 · r)T̃0,0(E + ıε; r, r′) exp(ık0 · r′)

= 〈k′
0|V opt

∣∣ξ ε
E ,k0

〉
= −2π

h̄2

μA
f0,0(k′

0, k0). (30)

C. Definition of the optical potential operator

Standard many-body approaches to the definition of the op-
tical model operator proceed through through the definition of
the mass operator associated with the nucleon single-particle
Green’s function [1]. A different path via the off-shell elastic
transition operator is followed here. The optical potential will
be defined as the nonlocal operator in B space that is related
to T̂0,0(E + ıε) by

V̂ opt (E + ıε)

= T̂0,0(E + ıε) − V̂ opt (E + ıε)ĝ0(E + ıε)T̂0,0(E + ıε).

(31)

This definition assumes that the operator �̂ defined in Eq. (29)
has an inverse so that Eq. (31) has the solution,

V̂ opt (E + ıε) = T̂0,0(E + ıε)�̂(E + ıε)−1. (32)

To verify that the definition (31) produces an equation for
ξ ε

E ,k0
(r) of the form (11) note that, if V̂ opt satisfies Eq. (31),

then

V̂ opt (E + ıε)
∣∣ξ ε

E ,k0

〉 = V̂ opt (E + ıε)�̂(E + ıε)(2π )3/2|k0〉,
= T̂0,0(E + ıε)(2π )3/2|k0〉. (33)

Referring to Eq. (24), the equality (33) implies that ξ ε
E ,k0

(r)
satisfies

(E + ıε − T̂ )ξ ε
E ,k0

(r)

=
∫

dr′V̂ opt (E + ıε; r, r′)ξ ε
E ,k0

(r′) + ıε exp(ık0 · r), (34)

confirming that V̂ opt does indeed plays the role of an optical
potential operator.

D. Nonuniqueness of V̂ opt

The optical potential V̂ opt as defined by Eq. (31) is not
unique because the operator T̂0,0(E + ıε) is not unique. Any
operator T̂ ′

0,0(E + ıε) with the property,

T̂ ′
0,0(E + ıε)|k0〉 = T̂0,0(E + ıε)|k0〉, (35)

when the half-on-shell condition E = h̄k2
0/2μmA is satis-

fied, will generate the same optical model wave function as
T̂0,0(E + ıε) when used in Eq. (11). However, when used in
Eq. (31), it will give a different V̂ opt (E ) if its half-off-shell
momentum matrix elements T̂ ′

0,0(E + ıε)|k〉 with k 	= k0 dif-
fer from those of T̂0,0(E + ıε) because these matrix elements
will contribute to the explicit solution, Eq. (32). An example
of an alternative definition of the optical potential is discussed
in Sec. V C.

The particular choice of off-shell extensions for T̂0,0(E +
ıε) as defined in Eqs. (20) and (23) have the feature that the re-
sulting operator conserve angular momentum in B space (see
Appendix A 1) and have standard transformation properties
under time reversal (see Appendix A 2).

E. Interpretation of the optical potential operator
defined by Eq. (31)

The formal expressions (20) and (23) for the the transition
operator T̂0,0 describe the many different reaction mechanisms
that contribute to elastic scattering, such as direct and ex-
change scatterings and heavy-particle stripping. The relative
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importance of these mechanisms vary with, for example, the
incident energy and the mass of the target. In this section, it
is shown how some of these effects can be separated out from
the formal expressions.

The definition in Eq. (23) is repeated here for convenience,

T̂0,0(E + ıε; k, k′)

= 〈〈�(0, x = 0)|[ak,V ]−a†
k′ |−k′, ψ0〉〉

+〈〈�(0, x = 0)|[ak,V ]−G(E + ıε)[V, a†
k′]−|−k′, ψ0〉〉.

(36)

The first, Born, term on the right of Eq. (36) is the sum of two
terms that describe quite different physical processes. Using

[ak,V ]−a†
k′ = {[ak,V ]−, a†

k′ }+ − a†
k′[ak,V ]− (37)

gives

T̂ Born
0,0 = T̃ Born(0)

0,0 + T̃ Born(HPS)
0,0 , (38)

where

T̂ Born(0)
0,0 (E + ıε; k, k′)

= 〈〈�(0, x = 0)|{[ak,V ]−, a†
k′ } + |−k′, ψ0〉〉, (39)

and

T̂ Born(HPS)
0,0 (E + ıε; k, k′)

= −〈〈�(0, x = 0)|a†
k′[ak,V ]−|−k′, ψ0〉〉. (40)

The significance of this separation becomes clear when the
commutator and anticommutator are evaluated for a general
additive nonlocal two-body interaction V . In a momentum-
space basis,

V = 1

4

∫
dk1dk2dk3dk4〈k1, k2|VA|k3, k4〉a†

k1
a†

k2
ak4 ak3 ,

(41)

where the subscript A indicates that the matrix element in-
volves normalized antisymmetrized two-body states.

For this V , the commutator and anticommutator that appear
in the Born terms give

[ak,V ]− = 1

2

∫
dk2dk3dk4〈k, k2|VA|k3, k4〉a†

k2
ak4 ak3 , (42)

and

{[ak,V ]−, a†
k′ }+ =

∫
dk2dk4〈k, k2|VA|k′, k4〉a†

k2
ak4 , (43)

or, in terms of nonantisymmetrized matrix elements of V ,

{[ak,V ]−, a†
k′ }+

=
∫

dk2dk4〈k, k2|V (|k′, k4〉 − |k4, k′〉)a†
k2

ak4 . (44)

The anticommutator term (43) has the form of a nucleon-
number-conserving effective one-body operator including di-
rect and exchange matrix elements of the nucleon-nucleon
interaction. Scattering and excitations of the target induced
by this operator can proceed through low nucleon momentum

components in the target ground-state and momentum transfer
components that can be found in the short-range interaction V .

On the other hand T̂ Born(HPS)
0,0 , Eq. (40) describes quite

different processes. The explicit expression (42) shows that
the state [ak,V ]|−k′, ψ0〉〉 that appears in Eq. (40) only in-
volves interactions between pairs of nucleons that are initially
in the target ground state and produce an outgoing nucleon
with momentum k. The bra 〈〈�(0, x = 0)|a†

k′ shows that the
incoming momentum k′ has to be found in the target ground-
state wave function. These are heavy-particle stripping terms
in standard textbook language [6], p. 93. In contrast, the first
interactions in T̂ Born(0)

0,0 are direct and exchange scatterings of
the incident nucleon by a target nucleon. It would be expected
that, except at very low incident energies and/or very small A
when momentum components arising from target recoil may
be comparable to the incident momentum, elastic scattering
would be dominated by the processes described in T̂ Born(0)

0,0 and
their iterations.

For given values of k and k′ the right-hand side of Eq. (39)
is the matrix element of a one-body interaction in Fock-space
V ,

T̂ Born(0)
0,0 (E + ıε; k, k′)=〈〈�(0, x = 0)|V (k, k′)|−k′, ψ0〉〉,

(45)

where

V (k, k′) =
∫

dk2

∫
dk4〈k, k2|VA|k′, k4〉a†

k2
ak4 . (46)

In the next several subsections, it will be shown that the
complete transition operator T̃0,0 can be written

T̂0,0 = T̃ (1)
0,0 + T̃ Born(HPS)

0,0 , (47)

where T̃ (1)
0,0 and not only the Born contribution T̃ Born(0)

0,0 can
be expressed entirely in terms of matrix elements of V in the
A-nucleon subspace.

F. Development of T̃ (1)
0,0

The second term on the right in Eq. (36) for T̂0,0 can be
expressed in terms of V , Eq. (46), by examining the explicit
formulas for the commutators [ak,V ]− [see Eq. (42)] and
[V, a†

k′ , ]−,

[ak,V ]− = 1

2

∫
dk3V (k, k3)ak3 . (48)

and

[V, a†
k′]− = 1

2

∫
dk3a†

k3
V (k3, k′). (49)

Note that, if the nucleon-nucleon interaction V is Hermitian,
then

[V (k′, k)]† = V (k, k′). (50)

Equation (36) for T̂0,0 can now be written

T̂0,0 = T̃ (1)
0,0 + T̃ Born(HPS)

0,0 , (51)

where

T̂ (1)
0,0 (E + ıε; k, k′)

= 〈〈�(0, x = 0)|V (k, k′)|−k′, ψ0〉〉
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+ 1

4

∫
dk′

3

∫
dk′

3〈〈�(0, x = 0)|V (k, k3)ak3

× G(E + ıε)a†
k′

3
V (k′

3, k′)|−k′, ψ0〉〉. (52)

It will be shown below that, acting on the A-nucleon inter-
mediate states that contribute to the Green’s function term in
Eq. (52), the operator G(E + ıε)a†

k′
3

can be expressed in terms
of matrix elements of V in the A-nucleon subspace.

For a translationally invariant nucleon-nucleon interaction
V matrix, elements of the operator V satisfy

〈〈−k′′, ψn|V (k, k′)|−k′′′, ψm〉〉
= (2π )3δ[k − k′′ − (k′ − k′′′)]

×〈〈�(n, x = 0)|V (k, k′)|−k′′′, ψm〉〉. (53)

This result is most simply derived by noting that the δ-
function dependence on the momenta k, k′′, k′, k′′′ follows
from the momentum conservation properties of the matrix
elements of V and the structure of V in terms of creation and
destruction operators. Choosing k, k′, k′′′ as the independent
variables and integrating over k′′ using∫

dk′′ exp(ık′′ · x)|−k′′, ψn〉〉 = (2π )3|�(n, x)〉〉 (54)

gives the result (53).
A similar useful formula results when k, k′, k′′ are chosen

as the independent variables,

〈〈−k′′, ψn|V (k, k′)|−k′′′, ψm〉〉
= (2π )3δ[k − k′′ − (k′ − k′′′)]

×〈〈−k′′, ψn|V (k, k′)|�(m, x = 0)〉〉. (55)

Equations (53) and (55) are special cases of a more general
result derived in Appendix A 4.

Note that Eqs. (53) and (55) imply that

〈〈−k′′, ψn|V (k, k′)|�(m, x = 0)〉〉
= 〈〈�(n, x = 0)|V (k, k′)|−(k′′ + k′ − k), ψm〉〉. (56)

Using Eqs. (53) and (55) together with the result, valid for
a translationally invariant H ,

〈〈−k′′′
3 , ψn|ak′′

3
G(E + ıε)a†

k′
3
|−k′

3, ψn′ 〉〉
=δ(k′′′

3 −k′′
3 )(2π )3〈〈�(n, x=0)|ak′′

3
G(E +ıε)a†

k′
3
|−k′

3, ψn′ 〉〉
(57)

allows Eq. (52) to be written

T̃ (1)
0,0 (E + ıε; k, k′)

= 〈〈�(0, x = 0)|V (k, k′)|−k′, ψ0〉〉
+ 1

4

∑
n,n′

∫
dk′

3

∫
dk′′

3〈〈�(0, x=0)|V (k, k′′
3 )|−k′′

3, ψn〉〉

× 〈〈�(n, x = 0)|ak′′
3
G(E + ıε)a†

k′
3
|−k′

3, ψn′ 〉〉
× 〈〈�(n′, x = 0)|V (k′

3, k′)|−k′, ψ0〉〉. (58)

It is convenient here to generalize the concept of B space
introduced at the beginning of Sec. II B to include the space

of A-nucleon target states ψn. These target nucleons interact
with the fictitious particle of reduced mass introduced in
Sec. II B, but they are not identical to it. A basis in this
space is, by definition, an orthonormal set of states |k, n〉, n =
0, . . . ,∞, where the fictitious particle has momentum k and
the target nucleons have an intrinsic state n and a total momen-
tum −k. The interaction between the particle and the target is
described by an operator Û in this extended space with matrix
elements defined in terms of the Fock-space elements of V̄ by

〈k, n|Û |k′, n′〉 = 1
2 〈〈�(n, x = 0)|V (k, k′)|−k′, ψn′ 〉〉, (59)

where V is the interaction defined in Eq. (46). The Hamilto-
nian of the system “fictitious particle + A target nucleons” is

Ĥ = T̂ + ĥA + Û , (60)

where T̂ is the kinetic-energy operator associated with a
particle of mass A

(A+1) m and ĥA is diagonal in the |k, n〉 basis
with eigenvalues En,

〈k′, n′|ĥA|k, n〉 = δ(k − k′)δn,n′En. (61)

The introduction of this extended space is useful because
the Fock-space states G(E + ıε)a†

k|−k, ψn〉〉 that appear in
Eq. (52) can be expressed in terms of the Green’s function
associated with the Hamiltonian Ĥ.

It is shown in Appendix B that states G(E +
ıε)a†

k|−k, ψn〉〉, E fixed k, n, arbitrary, satisfy the set of
coupled equations Eq. (B5). In terms of matrix elements in
extended B space these equations can be written∫

dk′ ∑
n′

G(E+)a†
k′ |−k′, ψn′ 〉〉〈k′, n′|(E+ − Ĥ)|k, n〉

= a†
k|−k, ψn〉〉, (62)

with the solution,

G(E + ıε)a†
k|−k, ψn〉〉

=
∑

n′

∫
dk′a†

k′ |−k′, ψn′ 〉〉〈k′, n′| 1

(E + ıε − Ĥ)
|k, n〉.

(63)

The quantity on the left is a ket in Fock space, and the
right-hand side is a linear combination of Fock-space kets
with coefficients that are matrix elements in the extended B
space introduced before Eq. (60).

Using (63) in Eq. (58) for T̃ (1)
0,0 gives

T̃ (1)
0,0 (E + ıε; k, k′)

= 〈〈�(0, x = 0)|V (k, k′)|−k′, ψ0〉〉
+ 1

4

∑
n,n′

∫
dk′

3

∫
dk′′

3〈〈�(0, x=0)|V (k, k′′
3 )|−k′′

3, ψn〉〉

×
∑

n′′

∫
dk′′′

3 〈〈�(n, x=0)|ak′′
3
a†

k′′′
3
|−k′′′

3 , ψn′′ 〉〉〈k′′′
3 , n′′|

× 1

(E + ıε − T̂ − ĥA − Û )
|k′

3, n′〉

× 〈〈�(n′, x = 0)|V (k′, k′
3)|−k′, ψ0〉〉, (64)
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or, expressed entirely in terms of matrix elements of operators
in the extended B space,

T̃ (1)
0,0 (E + ıε; k, k′)

= 2〈k, 0|Û |k′, 0〉 + 〈k, 0|ÛK̂AĜ(E + ıε)Û |k′, 0〉, (65)

where

Ĝ(E + ıε) = 1

(E + ıε − T̂ − ĥA − Û )
, (66)

and

〈k, n|K̂A|k′
3, n′′〉 = 〈〈�(n, x = 0)|aka†

k′ |−k′, ψn′′ 〉〉 (67)

is the matrix of one-nucleon transition density matrices of the
A-nucleon system in momentum space.

G. Summary of Sec. II

From Eqs. (40) and (65) the complete exact formula for the
off-shell transition matrix is

T̃0,0(E + ıε; k, k′)

= 2〈k, 0|Û |k′, 0〉 + 〈k, 0|ÛK̂AĜ(E + ıε)Û |k′, 0〉〉
− 〈〈�(0, x = 0)|a†

k′[ak,V ]−|−k′, ψ0〉〉. (68)

Explicit expressions relating the matrix elements of Û in
the |k, n〉 basis and matrix elements of the nucleon-nucleon
interaction V between Fock-space states follow from Eqs. (59)
and (46):

〈k, n|Û |k′, n′〉 = 1

2
〈〈�(n, x = 0)|V (k, k′)|−k′, ψn′ 〉〉

= 1

2

∫
dk2

∫
dk4〈k, k2|VA|k′, k4〉

× 〈〈�(n, x = 0)|a†
k2

ak4 |−k′, ψn′ 〉〉. (69)

The first two terms on the right in Eq. (68) are expressed
in terms of matrix elements of a one-body nucleon-number-
conserving nucleon-nucleus interaction between eigenstates
of the A-nucleon Hamiltonian. In this sense, they have a
similar structure to Feshbach’s theory of the optical model
[4] but with both direct and exchange components of the
nucleon-nucleon interaction included in Û . However, because
of the factor 2 in front of the first term and the occurrence
of K̂A, the first two terms do not have the standard form
expected for the transition matrix associated with the Hamil-
tonian Ĥ of Eq. (60). If they did, and the heavy-particle
stripping term was neglected, the solution of Eq. (31) for the
nucleon optical model operator would simply be the operator
defined by Feshbach (see Appendix D) corresponding to
Ĥ but with a nucleon with the appropriate nucleon-target
reduced mass and matrix elements of the nucleon-nucleon
corrected for recoil as in Eq. (69). It will be shown in
Sec. IV that in the weak-binding limit1 this identification
can be made with a modified definition of Û , but there
appears to be no general justification for optical model de-
velopments that attempt to take antisymmetry into account

1The terminology of Ref. [7] is used.

in Feshbach’s approach by simply adding knockout ex-
change terms, even when the heavy-particle stripping term is
neglected.

III. THE HEAVY-PARTICLE STRIPPING TERM
AND THE LEHMANN, SYMANZIK,

AND ZIMMERMANN REPRESENTATION

In standard many-body theories of the optical model that
make the link with the nucleon single-particle Green’s func-
tion, the second term on the right in Eq. (68), referred to here
as the heavy-particle stripping term, is transformed using the
identity,

〈〈�(0, x = 0)|a†
k′[ak,V ]−|−k′, ψ0〉〉

= 〈〈�(0, x = 0)|[V, a†
k′ ]

1(
E0 + εk

A − εk′ − H
)

× [ak,V ]−|−k′, ψ0〉〉. (70)

This result is derived in Appendix C. The convention of a
zero value for the target ground-state intrinsic energy E0 has
been abandoned temporarily to aid comparison with other
treatments [1,3]. Note that for a stable ground state the de-
nominator ( εk

A − εk′ + E0 − H ) never vanishes for A > 1.
Equation (70) displays the heavy-particle stripping contri-

bution in terms of coupling between the A-nucleon ground
state and a complete set of (A − 1)-nucleon intermediate
states. Using Eq. (70) and (36)–(40), the complete on-shell
(εk′ = εk) elastic transition amplitude can be written

T̂0,0

(
E0 + (A + 1)

A
εk; k, k′

)

= 〈〈�(0, x = 0)|{[ak,V ]−, a†
k′ }|−k′, ψ0〉〉

+ 〈〈�(0, x = 0)|[ak,V ]−G

(
E0 + (A + 1)

A
εk + ıε

)

× [V, a†
k′]−|−k′, ψ0〉〉〈〈�(0, x = 0)|

× [V, a†
k′]

1(
E0 − (A−1)

A εk − H
) [ak,V ]−|−k′, ψ0〉〉. (71)

The structure of the denominator in the third term on the right
can be understood as follows. A state of energy E0 + εk′/A −
εk is obtained when a nucleon of momentum k is knocked out
of an incident channel A-nucleon state that has momentum −k
and energy E0 + εk′/A. The appropriate on-shell intermediate
(A − 1)-nucleon energy that should appear in the denominator
is therefore E0 + εk′/A − εk . For on-shell elastic scattering
(εk′ = εk), this reduces to E0 − (A−1)

A εk .
Equation (71) is the LSZ formula for the elastic transition

operator, when the third contribution is referred to as the
“hole term.” The LSZ formalism usually appears in a time-
dependent version of scattering theory. The development here
closely follow the methods of Ref. [3] modified to incorporate
the requirements of translational invariance along the lines of
Ref. [2]. The LSZ formula lends itself well to a systematic
development in terms of all contributions from the nucleon-
nucleon interaction V , including those in the ground-state
wave function. A new definition of the one-particle Green’s
function used in this approach, including recoil corrections

044608-7



R. C. JOHNSON PHYSICAL REVIEW C 99, 044608 (2019)

not included in standard treatments, is described in Sec. V A
below.

Using the techniques described in Sec. II F, the heavy-
particle stripping term, as expressed in the LSZ form,
Eq. (70), can also be written in terms of in terms of
matrix elements of the one-body nucleon-nucleus inter-
action V but between eigenstates of the (A − 1)-nucleon
Hamiltonian.

IV. THE WEAK-BINDING LIMIT

The weak-binding limit is discussed at length in Ref. [7],
pp. 775–780. The essential idea is that for sufficiently high
incident momentum k′ and a sufficiently weakly bound target
it is improbable that a nucleon in the target nucleus will be
found with momentum greater than k′. In the present context,
these ideas can be exploited by using an alternative exact form
for the commutator [ak,V ]−, Eq. (42),

[V, a†
k′]− =

∫
dk2dk3dk4θ (k3 − k2)〈k3, k2|VA|k′, k4〉a†

k3
a†

k2
ak4 . (72)

The θ -function θ (x) is defined by

θ (x) = 1, x > 0

= 0, x < 0. (73)

The θ function means that the integration is restricted to the region |k3| > |k2. There is no restriction on the limits on any of the
other eigenvalues (momentum direction, spin, and isospin) involved in the definition of the single nucleon states |k〉.

Under weak-binding assumptions, in the ket [V, a†
k′]−|−k′, ψ0〉〉 that appears in the second term on the right in Eq. (36), the

expression (72) can be replaced by the approximate form

[V, a†
k′]− ≈

∫
dk3a†

k3

∫
dk2dk4θ (k3 − k2)θ (k′ − k4)〈k3, k2|VA|k′, k4〉a†

k2
ak4 . (74)

Similarly, Eq. (42) can be replaced by

[ak,V ]− ≈
∫

dk2dk3dk4θ (k − k2)θ (k3 − k4)〈k, k2|VA|k3, k4〉a†
k2

ak4 ak3 . (75)

To this approximation both [ak,V ]− and [V, a†
k′]− can be written in terms of a new one-body operator V̄ defined by

V̄ (k, k′) =
∫

dk2

∫
dk4θ (k − k2)θ (k′ − k4)〈k, k2|VA|k′, k4〉a†

k2
ak4 , (76)

as

[V, a†
k′]− ≈

∫
dk3a†

k3
V̄ (k3, k′), [ak,V ]− ≈

∫
dk3V̄ (k, k3)ak3 . (77)

Similarly, from Eqs. (39) and (43), the Born term T̂ Born(0)
0,0 can also be written in terms of V̄ ,

T̂ Born(0)
0,0 (E + ıε; k, k′)

= 〈〈�(0, x = 0)|{[ak,V ]−, a†
k′ }+|−k′, ψ0〉〉

=
∫

dk2dk4[θ (k − k2)θ (k′ − k4) + θ (k2 − k)θ (k4 − k′)

+ θ (k2 − k)θ (k′ − k4) + θ (k − k2)θ (k4 − k′)]〈k, k2|VA|k′, k4〉〈〈�(0, x = 0)|a†
k2

ak4 |−k′, ψ0〉〉
≈ 〈〈�(0, x = 0)|V̄ (k, k′)|−k′, ψ0〉〉, (78)

where in the neglected terms in the last line at least one nucleon of an interacting pair that has a momentum to be found in the
ground state and greater than k or k′. The same approximation eliminates the heavy-particle stripping term.

Proceeding as in Sec. II F, Eq. (68) is replaced by the the weak-binding elastic transition matrix,

T̃ W B
0,0 (E + ıε; k, k′) = 〈k, 0|ÛW B|k′, 0〉 + 〈k, 0|ÛW BĜW B(E + ıε)ÛW B|k′, 0〉〉, (79)

where

ĜW B(E + ıε) = 1

(E + ıε − ĤW B)
, (80)

and

ĤW B = T̂ + ĥA + ÛW B. (81)
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It is consistent with the weak-binding assumptions to use the approximation,

〈k, n|K̂A|k′
3, n′〉 = 〈〈�(n, x = 0)|aka†

k′ |−k′, ψn′ 〉〉
= 〈〈�(n, x = 0)|δ(k − k′)|−k′, ψn′ 〉〉 − 〈〈�(n, x = 0)|a†

k′ak|−k′, ψn′′ 〉〉
≈ δ(k − k′)δn,n′ . (82)

The interaction ÛW B that appears in T̃ W B
0,0 is an operator in extended B space and is defined in terms of the nucleon-nucleon

interaction V by, c.f. Eq. (69),

〈k, n|ÛW B|k′, n′〉 = 〈〈�(n, x = 0)|V̄ (k, k′)|−k′, ψn′ 〉〉
=

∫
dk2

∫
dk4θ (k − k2)θ (k′ − k4)〈k, k2|VA|k′, k4〉〈〈�(n, x = 0)|a†

k2
ak4 |−k′, ψn′ 〉〉. (83)

Equation (79) will be recognized as the standard formula
for the off-shell elastic transition matrix associated with the
Hamiltonian (81), including all target excitations induced by
the interaction ÛW B. This is just the physical system studied
by Feshbach [4], except that here all nucleon-nucleon interac-
tions include both direct and exchange terms and with appro-
priate modifications of matrix elements to take into account
recoil and the weak-binding assumption. It can immediately
be deduced using the techniques outlined in Appendix D that
an alternative expression for the operator in B-space T̂ W B

0,0 is

T̂ W B
0,0 = UW B opt

0,0 + UW B opt
0,0

1

E + ıε − T̂ − UW B opt
0,0

UW B opt
0,0 ,

(84)
where, in the notation of Eq. (83),

〈k|UW B opt
0,0 |k′〉 = 〈k, n = 0|ÛW B opt|k′, n = 0〉, (85)

and ÛW B opt is defined as in Eq. (D8) of Appendix D with V̂
replaced by ÛW B. This implies that according to the definition
(31) of Sec. II C, in the weak-binding limit the optical poten-

tial operator is

V opt = UW B opt
0,0 . (86)

In particular, if the incident energy is below the threshold for
exciting the target, the operator ÛW B opt is Hermitian and so is
the predicted optical potential V opt. If all target excitations are
neglected, the corresponding optical potential is the ground-
state expectation value of the truncated nucleon-nucleon po-
tential defined in ÛW B, Eq. (83).

It also follows from this analysis that in the weak-binding
limit Watson’s multiple-scattering theory and the associated
optical model can be modified to include antisymmetry and
translational invariance by simply replacing the nucleon-
nucleon interaction by the antisymmetrized and truncated
form that appears in Eq. (83). This result is consistent with
the work of Ref. [8] on the weak-binding limit and described
in Ref. [7], pp. 775–780 but without recoil corrections.

V. NUCLEON SINGLE-PARTICLE GREEN’S FUNCTION
AND THE DYSON SELF-ENERGY

A. The single-particle Green’s function

The off-shell elastic transition operator defined by
Eqs. (36), (37), and (70) has the form

T̂0,0(E +ıε; k, k′) = 〈〈�(0, x = 0)|{[ak,V ]−, a†
k′ }|−k′, ψ0〉〉 + 〈〈�(0, x = 0)|[ak,V ]−

1

(E + ıε − H )
[V, a†

k′]−|−k′, ψ0〉〉

+ 〈〈�(0, x = 0)|[V, a†
k′]

1(
εk′ − εk

A + H
) [ak,V ]−|−k′, ψ0〉〉. (87)

The requirements of translation invariance lead to the different energy parameters in the denominators of the two terms on the
right. Correspondingly, the usual definition of the nucleon single-particle Green’s function that ignores translational invariance
must be modified. The definition used here for general complex ω is

G0,0(k, k′; ω) = 〈〈�(0, x = 0)|ak
1

ω − H
a†

k′ |−k′, ψ0〉〉 + 〈〈�(0, x = 0)|a†
k′

1

ω − (εk′+εk )
A + H

ak|−k′, ψ0〉〉. (88)

This differs from the usual definition, e.g., Ref. [3],
Eq. (3.65), p. 321, by the 1/A terms in the energy denom-
inator in the second term, and the appearance of a ground
state with its c.m. localized at the origin of coordinates in
the bra and a ground state of total momentum −k′ in the

ket. With this choice shown in Eq. (88) the two energy
denominators reduce to the appropriate values shown in the
transition matrix formula Eq. (71) in the on-shell limit ω =
(A+1)

A εk, εk′ = εk . It will be shown below that these differ-
ences are essential if the Green’s function is to have the
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standard relation to the on-shell transition matrix [3], Eq.
(3.66), p. 321.

B. Relation between the Green’s function
and the transition operator

The derivation of the relation among this Green’s function,
the free Green’s function for a particle of reduced mass

A
(A+1) m, and the transition operator defined in a momentum
basis by Eq. (23) uses similar techniques to Ref. [3]. Frequent
use is made of the relation (13) but with an abbreviated nota-

tion. The integers 1 and 2 will replace k′ and k, respectively,
and J1 and J†

1 will denote

J1 = [a1,V ],

J†
1 = [V, a†

1]. (89)

In this notation Eq. (13) becomes

Ha†
1 = a†

1H + ε1a†
1 + J†

1 ,

Ha1 = a1H − ε1a1 − J1. (90)

The second term in G0,0(2, 1; ω), Eq. (88) gives

(
ω − (A + 1)

A
ε2

)
G(2)

0,0(2, 1; ω)

= 〈〈�(0, x = 0)|a†
1

1

ω − (ε1+ε2 )
A + H

(
ω − (A + 1)

A
ε2

)
a2|−k1, ψ0〉〉

= 〈〈�(0, x = 0)|a†
1

1

ω − (ε2+ε2 )
A + H

(
ω − (ε1 + ε2)

A
+ H − (A + 1)

A
ε2 + (ε1 + ε2)

A
− H

)
a2|−k1, ψ0〉〉

= 〈〈�(0, x = 0)|a†
1a2|−k1, ψ0〉〉 + 〈〈�(0, x = 0)|a†

1

1

ω − (ε1+ε2 )
A + H

(
− (A + 1)

A
ε2a2 − a2H

+ ε2a2 + J2 + (ε1 + ε2)

A
a2

)
|−k1, ψ0〉〉

= 〈〈�(0, x = 0)|a†
1a2|−k1, ψ0〉〉 + 〈〈�(0, x = 0)|a†

1

1

ω − (ε1+ε2 )
A + H

J2|−k1, ψ0〉〉, (91)

where use has been made of

H |−k1, ψ0〉〉 = h̄2(−k1)2

2Am
|−k1, ψ0〉〉 = 1

A
ε1|−k1, ψ0〉〉. (92)

Similarly,(
ω − (A + 1)

A
ε1

)(
ω − (A + 1

A
ε2

)
G(2)

0,0(2, 1; ω)

=
(

ω − (A + 1)

A
ε1

)
〈〈�(0, x = 0)|a†

1a2|−k1, ψ0〉〉

+ 〈〈�(0, x = 0)|a†
1

[(
ω − (ε1 + ε2)

A
+ H

)
− (A + 1)

A
ε1 + (ε1 + ε2)

A
− H

]
1

ω − (ε1+ε2 )
A + H

J2|−k1, ψ0〉〉

=
(

ω − (A + 1)

A
ε1

)
〈〈�(0, x = 0)|a†

1a2|−k1, ψ0〉〉 + 〈〈�(0, x = 0)|a†
1J2|−k1, ψ0〉〉

+ 〈〈�(0, x = 0)|
(

− (A + 1)

A
ε1a†

1 + (ε1 + ε2)

A
a†

1 − Ha†
1 + ε1a†

1 + J†
1

)
1

ω − (ε1+ε2 )
A + H

J2|−k1, ψ0〉〉

=
(

ω − (A + 1)

A
ε1

)
〈〈�(0, x = 0)|a†

1a2|−k1, ψ0〉〉 + 〈〈�(0, x = 0)|a†
1J2|−k1, ψ0〉〉

+ 〈〈�(0, x = 0)|J†
1

1

ω − (ε1+ε2 )
A + H

J2|−k1, ψ0〉〉, (93)

where use has been made of

H |�(0, x = 0)〉〉 = h̄2(P)2

2Am
|�(0, x = 0)〉〉, (94)
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together with the fact that inside the matrix element in Eq. (93) the Fock-space momentum operator P has the eigenvalue −k2.
Hence, (

ω − (A + 1)

A
ε1

)(
ω − (A + 1

A
ε2

)
G(2)

0,0(2, 1; ω)

=
(

ω − (A + 1)

A
ε1

)
〈〈�(0, x = 0)|a†

1a2|−k1, ψ0〉〉

+ 〈〈�(0, x = 0)|a†
1J2|−k1, ψ0〉〉 + 〈〈�(0, x = 0)|J†

1

1

ω − (ε1+ε2 )
A + H

J2|−k1, ψ0〉〉. (95)

Using a very similar analysis, the first term in G0,0(2, 1; ω) gives(
ω − (A + 1)

A
ε1

)(
ω − (A + 1)

A
ε2

)
G(1)

0,0(2, 1; ω1)

=
(

ω − (A + 1)

A
ε1

)
〈〈�(0, x = 0)|a2a†

1|−k1, ψ0〉〉

+ 〈〈�(0, x = 0)|J2a†
1|−k1, ψ0〉〉 + �(0, x = 0)|J2

1

ω − H
J†

1 |−k1, ψ0〉〉, (96)

Putting together the results (96) and (95) gives(
ω − (A + 1)

A
ε1

)(
ω − (A + 1

A
ε2

)
G0,0(2, 1; ω) =

(
ω − (A + 1)

A
ε1

)
δ(k2 − k1) + T̂ ′

0,0(ω; 2, 1), (97)

where T̂ ′
0,0 is defined by

T̂ ′
0,0(ω; 2, 1) = 〈〈�(0, x = 0)|{J2, a†

1}|−k′, ψ0〉〉 + �(0, x = 0)

∣∣∣∣J2
1

ω − H
J†

1 |−k1, ψ0〉
〉

+〈〈�(0, x = 0)

∣∣∣∣∣J†
1

1

ω − (ε1+ε2 )
A + H

J2|−k1, ψ0〉
〉
. (98)

This differs from the off-shell transition matrix defined by Eq. (87), which in the present notation reads

T̂0,0(ω; k, k′) = 〈〈�(0, x = 0)|{J2, a†
1}|−k1, ψ0〉〉 + 〈〈�(0, x = 0)|J2

1

(ω − H )
J†

1 |−k1, ψ0〉〉

+ 〈〈�(0, x = 0)|J†
1

1(
ε1 − ε2

A + H
)J2|−k1, ψ0〉〉. (99)

Note the different denominators in the third terms on the right in Eqs. (98) and (99). However, fully on shell, when ε1 = ε2 and
ω = (A+1)

A ε1 + ıε,

T̂ ′
0,0

(
(A + 1)

A
ε1 + ıε; k, k′

)
= T̂0,0

(
(A + 1)

A
ε1 + ıε; k, k′

)
, (100)

in the limit ε → 0+. In addition, in the same limit, Eq. (97) gives(
ω − (A + 1)

A
ε1

)2

G0,0(2, 1; ω) → T̂0,0

(
(A + 1)

A
ε1 + ıε; 2, 1

)
, (101)

in agreement with the standard relation between G0,0 and the on-shell elastic transition matrix given in Ref. [3], Eq. (3.66),
p. 321 and Ref. [1], Eq. (66), p. 8.

Equation (97) can be written as a relation between operators in the subspace of the B space with the target in its ground state
as

Ĝ0,0(ω) = ĝ0(ω) + ĝ0(ω)T̂ ′
0,0(ω)ĝ0(ω), (102)

where g0 is the Green’s function for a free particle of mass A
(A+1) m defined in Eq. (27).
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C. The Dyson self-energy and an alternative definition
of the optical potential

In Ref. [9], Sec. II Eqs. (5) and (6), the optical potential
operator is defined (in the plane-wave basis used here) as the
Dyson self-energy �′ through the relation,

�′ = ĝ−1
0 − Ĝ−1

0,0. (103)

In Sec. II C, the optical model operator is defined in Eq. (32)
in terms of the transition operator T̂0,0. The connection be-
tween the optical potential defined through Eq. (103) and the
transition operator T̂ ′

0,0 follows from

ĝ−1
0 − Ĝ−1

0,0 = T̂ ′
0,0ĝ0Ĝ−1

0,0

ĝ0Ĝ−1
0,0 = (1 + ĝ0T̂ ′

0,0)−1. (104)

These can be deduced from Eq. (102) and together with the
definition (103) give

�′ = T̂ ′
0,0(1 + ĝ0T̂ ′

0,0)−1. (105)

This result means �′ is related to T̂ ′
0,0 by the same formula as

the optical model operator defined in Eq. (32) of Sec. II C is
related to T̂0,0.

The Dyson self-energy �′ is defined here using a one-
particle Green’s function Eq. (88) and a free Green’s function
g0, both modified to take into account the requirements of
translational invariance. The resulting optical potential differs
from the quantity defined in Eq. (32) of Sec. II C because
T̂ ′

0,0 	= T̂0,0 off shell. Note however that when ω = (A+1)
A ε1, ε2

arbitrary, i.e., half on shell, the two transition matrices are
equal and therefore the distorted waves generated by the two
optical potentials will be identical according to Eq. (26).
Of course, both these optical potentials will differ from the
calculations of Ref. [9] because the Green’s function that
appears in Eq. (103) differs in two ways to those used in
Ref. [9]:

(i) The 1/A factors that appear in the denominator in the
second term in Eq. (88).

(ii) The matrix elements defining Ĝ0,0 in Eq. (88) and used
to define an optical potential through Eq. (103) involve
a mixed basis with a localized ground state in the bra
and a state of definite total momentum in the ket.

Expressions for the time-dependent one-particle Green’s
function equivalent to the definition (88) can be found in
Appendix E.

VI. DISCUSSION AND CONCLUSIONS

It has been shown how a nucleon optical model operator
for an A-nucleon target can be consistently defined within
a translation invariant, a completely antisymmetrized many-
body theory without reference to a mean-field concept. The
distorted wave generated by the optical model potential de-
fined in this way satisfies a quasi-one-body scattering equation
for a particle with a mass equal to the nucleon-target reduced
mass. The distorted wave incorporates other recoil effects
exactly within a vector space referred as B space where
the configuration space operator r̂ can be interpreted as the
separation of the incident nucleon and the target center of

mass. The basis of the method is the definition of a specific
off-shell extension of the many-body transition matrix. This
is used to define the optical model operator as the solution of
an integral equation in barycentric space.

The particular off-shell extension chosen is shown to sat-
isfy rotational invariance and to have properties under time
reversal that agree with standard conventions. It is also shown
that, when heavy-particle stripping is ignored, the transition
matrix can be expressed entirely in terms of matrix elements
in the A-nucleon subspace of a one-body interaction con-
structed from the nucleon-nucleon interaction with exchange.
Similarly, the heavy-particle stripping term can be expressed
in terms of matrix elements of the nucleon-nucleon interaction
in the (A − 1)-nucleon subspace.

Because the method is based on the transition matrix, it
is straightforward to relate it to standard methods based on
the one-nucleon G matrix and the Dyson self-energy. The
modifications of the definition of the G matrix necessitated
by translational invariance result in an optical potential that
differs from the one defined in Sec. II, although the cor-
responding distorted waves are identical if a translationally
invariant transition matrix is used in both cases.

In the method described here, any theory that generates
a calculation of the off-shell extension of the many-body
elastic transition matrix defined in Eqs. (20) or (23) leads
to a corresponding optical model operator through Eq. (31).
Knowledge of the off-shell elastic transition matrix alone
is sufficient to calculate the optical model distorted wave
through Eqs. (24) or (26), and there is then no need to make
the final step to calculate the optical potential. However, an
important application of the nucleon optical model concept
is to few-body theories of composite particle reactions, e.g.,
the A(d, p)B reaction, as a tool for nuclear structure studies.
For recent reviews for theoretical and experimental work, see
Refs. [10,11] and references therein. For these developments,
knowledge of the nonlocal nucleon optical model operator
itself is essential.

ACKNOWLEDGMENT

Support from the UK Science and Technology Facilities
Council through Grant No. STFC ST/000051/1 is acknowl-
edged.

APPENDIX A: SYMMETRY PROPERTIES OF THE
OPTICAL POTENTIAL OPERATOR

In understanding the symmetry properties of V opt, it is
important to distinguish between symmetry transformations in
B space and the corresponding transformations in Fock space.
To this end, it is convenient to define the B-space operator
T̂0,0(E + ıε) with matrix elements T̂0,0(E + ıε; k, k′) through
the relation,

T̂0,0(E + ıε) =
∫

dk
∫

dk′|k〉〈k′| × T̂0,0(E + ıε; k, k′).

(A1)

As already noted, operators in B space are indicated with a
hat, unless other notation make this unnecessary.
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1. Rotation invariance

Consider the transform under rotation of Eq. (A1) by the unitary operator for an arbitrary rotation R̂,

R̂T̂0,0(E + ıε)R̂−1 =
∫

dk
∫

dk′R̂|k〉〈k′|R̂−1T̂0,0(E + ıε; k, k′)

=
∫

dk
∫

dk′|Rk〉〈Rk′|T̂0,0(E + ıε; k, k′). (A2)

Changing the variables of integration to k′′ = Rk and k′′′ = Rk′ gives

R̂T̂0,0(E + ıε)R̂−1 =
∫

dk′′
∫

dk′′′|k′′〉〈k′′′| × T̂0,0(E + ıε;R−1k′′,R−1k′′′). (A3)

The contribution from the second term on the right of Eq. (23) to T̂0,0(E + ıε;R−1k′′,R−1k′′′) is

T̂0,0(E + ıε;R−1k′′,R−1k′′′)(2) = 〈〈�(0, x = 0)|[aR−1k′′ ,V ]
1

(E + ıε − H )
[V, a†

R−1k′′′ ]|−R−1k′′′, ψ0〉〉

= 〈〈�(0, x = 0)|R−1[ak′′ ,V ]
1

(E + ıε − H )
[V, a†

k′′′ ]R|−R−1k′′′, ψ0〉〉

= 〈〈�(0, x = 0)|[ak′′ ,V ]
1

(E + ıε − H )
[V, a†

k′′′ ]|−k′′′ψ0〉〉, (A4)

where now R means the rotation operator in Folk space corresponding to R̂ and it is assumed H and V are invariant under
rotations. For simplicity, the ground-state ψ0 has been taken to have zero spin so that

R|�(0, x = 0)〉〉 = |�(0, x) = 0〉〉. (A5)

The other term in Eq. (23) transforms in the same way, and Eq. (A2) can be written

R̂T̂0,0(E + ıε)R̂−1 = T̂0,0(E + ıε). (A6)

It follows from Eqs. (A6) and (32) that V opt has the analogous property,

R̂V̂ optR̂−1 = V̂ opt. (A7)

The rotational invariance of the elastic-scattering T -matrix 〈k′
0, 0|T (E )|k0, 0〉 appearing in Eq. (30) also follows from Eq. (A6):

〈(Rk′
0), ψ0|T (E )|(Rk0), ψ0〉 = 〈k′

0, ψ0|T (E )|k0, ψ0〉. (A8)

2. Time-reversal properties of T̂0,0

In applications, it is convenient to work with operators that behave in a specific way under transformation by the antiunitary
time-reversal operator K. The conventional transformation property for transition operators in B space is

K̂T̂0,0(E + ıε)K̂−1 = [T̂0,0(E + ıε)]†. (A9)

The proof of the result (A9) starts from the representation given in Eq. (A1). Consider the second term on the right of Eq. (23)
as an example,

[T̂0,0(E + ıε)]†
(2) =

∫
dk

∫
dk′|k′〉〈k|

(
〈〈�(0, x = 0)|[ak,V ]

1

(E + ıε − H )
[V, a†

k′]|−k′, ψ0〉〉
)∗

=
∫

dk
∫

dk′|k′〉〈k|〈〈−k′, ψ0|
(

[ak,V ]
1

(E + ıε − H )
[V, a†

k′]

)†

|�(0, x = 0)〉〉

=
∫

dk
∫

dk′|k〉〈k′|〈〈−k, ψ0|
(

[ak,V ]
1

(E − ıε − H )
[V, a†

k′ ]

)
|�(0, x = 0)〉〉, (A10)

where in the last line the integration or summation variables k, k′ have been interchanged.
On the other hand, the effect of an antilinear time-reversal transform operator on this term is

K̂T̂ ε
0,0(E + ıε)(2)K̂−1 =

∫
dk

∫
dk′|−k〉〈−k′|

(
〈〈�(0, x = 0)|[ak,V ]

1

(E + ıε − H )
[V, a†

k′ ]|−k′, ψ0〉〉
)∗

, (A11)

where the defining property of the time-reversal operator K̂|k〉 = |−k〉 has been used.
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Changing the variables of integration or summation from −k to k, −k′ to k′, and using K−1akK = a−k gives

K̂T̂ ε
0,0(E + ıε)(2)K̂−1 =

∫
dk

∫
dk′|k〉〈k′|

(
〈〈�(0, x = 0)|[a−k,V ]

1

(E + ıε − H )
[V, a†

−k′]|k′, ψ0〉〉
)∗

=
∫

dk
∫

dk′|k〉〈k′|
[
〈〈�(0, x = 0)|

(
K̂−1[ak,V ]

1

(E − ıε − H )
[V, a†

k′]K̂
)

|k′, ψ0〉〉
]∗

. (A12)

where K−1ψ (r)K = ψ (K−1r) has been used.
A general property of the matrix elements of an arbitrary linear operator O and its time reverse transform K−1OK are

〈〈a|O|b〉〉∗ = 〈〈a′|(K−1OK)|b′〉〉, (A13)

where

|a′〉〉 = K−1|a〉〉, |b′〉〉 = K−1|b〉〉. (A14)

Applying this to the Fock-space matrix element in Eq. (A12) gives

〈〈�(0, x = 0)|
(
K̂−1[ak,V ]

1

(E − ıε − H )
[V, a†

k′]K̂
)

|k′, ψ0〉〉)∗

= 〈〈�(0, x = 0)|[ak,V ]
1

(E − ıε − H )
[V, a†

k′]|−k′, ψ0〉〉. (A15)

The target ground state has been taken to have zero spin for simplicity. Arbitrary phases can then be chosen so that the ground-
state wave-function ψ0 is unchanged under the action of K.

Applying the result (A15), Eq. (A12) becomes

K̂T̂ ε
0,0(E + ıε)(2)K̂−1 =

∫
dk

∫
dk′|k〉〈k′|〈〈�(0, x = 0)|[ak,V ]

1

(E − ıε − H )
[V, a†

k′]|−k′, ψ0〉〉. (A16)

Using the techniques set out in Appendix A 4 it follows that:

〈〈�(0, x = 0)|[ak,V ]
1

(E − ıε − H )
[V, a†

k′ ]|−k′, ψ0〉〉 = 〈〈−k, ψ0|[ak,V ]
1

(E − ıε − H )
[V, a†

k′]|�(0, x = 0)〉〉, (A17)

and hence by comparison with Eq. (A10),

K̂T̂ ε
0,0(E + ıε)(2)K̂−1 = [T̂0,0(E + ıε)]†

(2). (A18)

The proof of the analogous result for the first term of Eq. (23) uses similar techniques. The final result is

K̂T̂ ε
0,0(E + ıε)K̂−1 = [T̂0,0(E + ıε)]†. (A19)

It follows from the definition of V̂ opt (E + ıε) in terms of T̂ ε
0,0(E + ıε) given in Eq. (31) that

K̂V̂ opt (E + ıε)K̂−1 = [V̂ opt (E + ıε)]†. (A20)

The implications of these results for the properties of distorted waves associated with V̂ opt (E + ıε) are described in the next
subsection.

It should be noted that, in the interest of conciseness important phases associated with the effect of the time-reversal operator
on spin, eigenstates have been ignored in the derivation presented in this Appendix.

The implications of these results for the properties of distorted waves associated with V̂ opt (E + ıε) are described in the next
subsection.

3. The scattering states |ξ(±)
E,k0

〉 and time-reversal requirements

In applications of the optical model to reaction models, two different scattering states, |ξ (±)
E ,k0

〉, associated with V̂ opt are used.
These are defined as the limit ε → 0+ of |ξ±ε

E ,k0
〉 where

[E + ıε − T̂ − V̂ opt (E + ıε)]
∣∣ξ+ε

E ,k0

〉 = ıε(2π )3/2|k0〉,
{E − ıε − T̂ − [V̂ opt (E + ıε)]†}∣∣ξ−ε

E ,k0

〉 = −ıε(2π )3/2|k0〉. (A21)

The behavior of the operators T̂0,0 and V̂ opt,
LSZ under the time-reversal transformation operator K̂ is discussed in Appendix A 2.

Because (A20) is satisfied, the two solutions |ξ±ε
E ,k0

are related by

K̂
∣∣ξ (−)

E ,k0

〉 = ∣∣ξ (+)
E ,−k0

〉
. (A22)
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Note also that

[V̂ opt (E + ıε)]† = V̂ opt (E − ıε), [T̂0,0(E + ıε)]† = T̂0,0(E − ıε). K̂
∣∣ξ−ε

E ,k0

〉 = ∣∣ξ+ε
E ,−k0

〉
. (A23)

Another pair of solutions |ξ̃ (±)
E ,k0

〉 are also needed when orthogonal sets of distorted waves corresponding to non-Hermitian
optical potentials are required. These are defined as the limit ε → 0+ of |ξ̃±ε

E ,k0
〉 where

{E + ıε − T̂ − [V̂ opt (E + ıε)]†}∣∣ξ̃+ε
E ,k0

〉 = ıε(2π )3/2|k0〉,
(E − ıε − T̂ − V̂ opt (E + ıε)

∣∣ξ̃−ε
E ,k0

〉 = −ıε(2π )3/2|k0〉. (A24)

The states |ξ̃ (±)
E ,k0

〉 satisfy 〈
ξ̃

(+)
E ,k0

∣∣ξ (+)
E ,k0

〉 = (2π )3δ(k′
0 − k0),

〈
ξ̃

(−)
E ,k0

∣∣ξ (−)
E ,k0

〉 = (2π )3δ(k′
0 − k0). (A25)

4. Matrix elements of a class of momentum-conserving operators

This Appendix is concerned with operators of the form

O1a†
k1

O2ak2 O3, (A26)

where the Oi are arbitrary momentum-conserving operators in Fock space. The operators (A26) have a simple form in the basis
|−k, ψn〉〉 in which the A-nucleon intrinsic state n has a total momentum −k. These states are normalized so that

〈〈−k′, ψn′ |−k, ψn〉〉 = (2π )3δn′,nδ(k′ − k), (A27)

and they are related to states |�(n, x)〉〉 in which the c.m. is located at x and defined in Ref. [2] by

|−k, ψn〉〉 =
∫

dx exp(−ık · x)|�(n, x)〉〉. (A28)

In this basis,

〈〈−k, ψn|O1a†
k1

O2ak2 O3|−k′, ψn′ 〉〉 =
∫

dx exp(ık · x)〈〈�(n, x)|O1a†
kO2ak′O3|−k′, ψn′ 〉〉

=
∫

dx exp(ık · x)〈〈�(n, x = 0)| exp(ıP · x)O1a†
k1

O2ak2 O3|−k′, ψn′ 〉〉, (A29)

where P is the momentum operator in Fock space and

|�(n, x)〉〉 = exp(−ıP · x)|�(n, x = 0)〉〉 (A30)

has been used.
If the Oi’s are translationally invariant, the state appearing to the right of P in Eq. (A29) will have momentum k1 − k2 − k′.

Integrating over x, Eq. (A29) reduces to

〈〈−k, ψn|O1a†
k1

O2ak2 O3|−k′, ψn′ 〉〉 = (2π )3δ(k + k1 − k′ − k2)〈〈�(n, x = 0)|O1a†
k1

O2ak2 O3|−k′, ψn′ 〉〉. (A31)

This result gives the matrix element of the special operators (A26) between nonlocalized states in terms of a momentum-
conserving δ function and a matrix element involving a localized state in the bra.

APPENDIX B: DERIVATION OF THE GREEN’S FUNCTION PROPERTY, EQ. (62)

This Appendix concerns a property of the set of states G(E+)a†
k|−k, ψn〉〉 with E fixed, k, n, arbitrary, and E+ = E + ıε.

Using the identity Eq. (13),

G(E+)a†
k|−k, ψn〉〉 = a†

kG(E+ − εk )|−k, ψn〉〉 + G(E+)[V, a†
k]−G(E+ − εk )|−k, ψn〉〉

= 1(
E+ − (A+1)

A εk − En
) (a†

k|−k, ψn〉〉 + G(E+)[V, a†
k]−|−k, ψn〉)

= 1(
E+ − (A+1)

A εk − En
) (a†

k|−k, ψn〉〉 + 1

2

∫
dk3G(E+)a†

k3
V (k3, k)|−k, ψn〉〉), (B1)

where Eq. (49) has been used to express the commutator [V, a†
k]− in terms of the nucleon-number-conserving interaction V

defined in Eq. (46). Introducing the complete set of A-nucleon states |−k′, ψn′ 〉〉 and using the result (A31) of Appendix A 4
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gives

G(E+)a†
k|−k, ψn〉〉 = 1(

E+ − (A+1)
A εk − En

) (a†
k|−k, ψn〉〉

+
∫

dk′ ∑
n′

G(E+)a†
k′ |−k′, ψn′ 〉〉1

2
〈〈�(n′, x = 0)|V (k′, k)|−k, ψn〉〉). (B2)

Defining the matrix,

Vk′,n′;k,n = 1
2 〈〈�(n′, x = 0)|V (k′, k)|−k, ψn〉〉, (B3)

Eq. (B2) can be written(
E+ − (A + 1)

A
εk − En

)
G(E+)a†

k|−k, ψn〉〉 = a†
k|−k, ψn〉〉 +

∑
n′

∫
dk′ G(E+)a†

k′ |−k′, ψn′ 〉〉Vk′,n′;k,n. (B4)

This equation can be regarded as an in-homogenous set of couple equations for the ket vectors G(E+)a†
k|−k, ψn〉〉 and can be

rewritten as ∫
dk′ ∑

n′
G(E+)a†

k′ |−k′, ψn′ 〉〉
[(

E+ − (A + 1)

A
εk − En

)
δ(k′ − k)δn,n′ − Vk′,n′;k,n

]
= a†

k|−k, ψn〉〉. (B5)

A convenient way of expressing the solution of these equations in terms of the inverse of the matrix,(
E+ − (A + 1)

A
εk − En

)
δ(k′ − k)δn,n′ − Vk′,n′;k,n (B6)

is discussed in Sec. II F following Eq. (58).

APPENDIX C: THE IDENTITY EQ. (70)

〈〈�(0, x = 0)|a†
k′H = 〈〈�(0, x = 0)|(Ha†

k′ − [H, a†
k′])

= 〈〈�(0, x = 0)|(Ha†
k′ − εk′a†

k′ − [V, a†
k′])

= 〈〈�(0, x = 0)|
[(

P2

2Am
+ E0

)
a†

k′ − εk′a†
k′ − [V, a†

k′]

]
, (C1)

where the fact that |�(0, x = 0)〉〉 is an eigenfunction with eigenvalue E0 of the A-nucleon intrinsic Hamiltonian H − P2

2Am has
been used in the second line. Within the matrix element in Eq. (70) P has the eigenvalue −k and Eq. (C1) gives

〈〈�(0, x = 0)|a†
k′ = 〈〈�(0, x = 0)|[V, a†

k′ ]
1(

εk
A − εk′ + E0 − H

) . (C2)

For A = 1, the bra 〈〈�(0, x = 0)|a†
k′Ĥ vanishes, and the identity (C1) is not useful.

APPENDIX D: FESHBACH THEORY OF THE OPTICAL POTENTIAL APPLIED
TO B-SPACE TRANSITION OPERATOR T̂

T̂ is the operator in B space defined for a general V̂ by

T̂ (E + ıε) = V̂ + V̂
1

(E + ıε − T̂ − ĥA − V̂ )
V̂

= V̂ + V̂
1

(E + ıε − T̂ − ĥA)
T̂ (E + ıε). (D1)

The objective of the following algebra is to give uncoupled equations for the matrix elements P0T̂ P0 and Q0T̂ P0 where P0

projects onto states |k, 0〉 in B space in which the target is in its ground-state n = 0 and Q0 projects on the orthogonal subspace
of states with n 	= 0. For this purpose, it is convenient to introduce the operator,

�̂(E + ıε) = 1 + 1

(E + ıε − T̂ − ĥA − V̂ )
V̂ , (D2)
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so that Eq. (D1) can be written

T̂ (E + ıε) = V̂ �̂(E + ıε). (D3)

Using the properties of P0 and Q0 gives (with E+ = E + ıε)

(E+ − E0 − T̂ − P0V̂ P0)P0�̂P0 = (E+ − E0 − T̂ )P0 + P0V̂ Q0�̂P0, (D4)

and

(E+ − T̂ − ĥA − Q0V̂ Q0)Q0�̂P0 = Q0V̂ P0�̂P0. (D5)

Using Eq. (D5) to give a formula for Q0�̂P0 and inserting this into Eqs. (D4) and (D3) gives

(E+ − E0 − T̂ − P0ÛoptP0)P0�̂P0 = (E+ − E0 − T̂ )P0, (D6)

and

P0T̂ P0 = P0ÛoptP0 + P0ÛoptP0
1

(E+ − E0 − T̂ − P0ÛoptP0)
P0ÛoptP0, (D7)

where

Ûopt = V̂ + ÛQ0
1

(E + ıε − T̂ − ĥA − Q0V̂ Q0)
Q0V̂ . (D8)

Note also that according to Eq. (D6),

P0�̂P0 = P0 + 1

(E+ − E0 − T̂ − P0ÛoptP0)
P0ÛoptP0. (D9)

APPENDIX E: TIME-DEPENDENT SINGLE-PARTICLE GREEN’S FUNCTION

When expressed in the time domain, the Green’s function relation that is consistent with Eq. (88) is

G0,0(k, k′; ω) = 1

ı

∫ +∞

−∞
dt exp(−ıωt ) exp(−ε|t |)) exp

(
ı
εk′

A
t

)
〈〈�(0, x = 0)|T {a†

k′ (t ), ak(t = 0)}|−k′, ψ0〉〉, (E1)

where the time-ordering operator T for fermions is defined by

T {A(t2), B(t1)} = A(t2)B(t1) for t2 > t1,

= −B(t1)A(t2) for t1 > t2. (E2)

The Heisenberg operators appearing in Eq. (E1) are defined by

a†
k(t ) = exp(ıHt )a†

k exp(−ıHt ). (E3)
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