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Structure of weakly bound/unbound light nuclei is often related to the low-energy decay channels involving
composite particles like deuteron or « particle. These channels are essential to understand the appearance of
light nuclei in the Big Bang nucleosynthesis or the helium fusion. We generalize the Gamow shell model (GSM)
in coupled-channel (GSM-CC) representation to include reaction channels with the composite particles. In the
core + valence particle formulation, this unified microscopic approach for structure and reactions involving
weakly bound/unbound nuclei can be also applied to study low-energy properties of heavy nuclei. As the first
application of this generalized GSM-CC approach, we describe the structure of °Li and deuteron-a-particle
elastic scattering using the same effective Furutani-Horiuchi-Tamagaki (FHT)-type nucleon-nucleon interaction.
Asymptotically, the deuteron structure including its continuum is described using the N*LO chiral force. The bulk
of the data, including low-energy spectrum of °Li, asymptotic normalization coefficients, and angular differential

cross sections are satisfactorily described.

DOLI: 10.1103/PhysRevC.99.044606

I. INTRODUCTION

The comprehensive description of bound states, reso-
nances, and scattering many-body states within a single the-
oretical framework is one of the main goals of the nuclear
theory. This is particularly important close to the edges of
stability with respect to the particle emission where the cou-
pling between resonant states and the nonresonant continuum
is an important ingredient of the structure and the dynam-
ics of the many-body system. Early attempts to reconcile
nuclear structure with nuclear reaction theory [1,2] lead to
the development of the continuum shell model [3,4], which
in the recent applications [5-7] evolved into the unified ap-
proach to nuclear structure and reactions. In this approach,
one couples eigenstates of the phenomenological shell model
Hamiltonian with corresponding reaction channels to study
the mutual influence of discrete and continuum many-body
states on the level spectroscopy and the reaction cross-sections
[8]. More recently, following the progress in the no-core
shell model [14] and the development of new methods based
on the chiral effective field theory to devise the nucleon-
nucleon and three-nucleon interactions [9-13], the strategy
pioneered by the continuum shell model has been extended to
ab initio description of structure and reactions of light nuclei
within the no-core shell model coupled with the resonating-
group method (NCSM/RGM) [15,16] and the no-core shell
model with continuum (NCSMC) [17]. Other exact methods
exist and have been applied successfully for light systems
(A < 5). These include the Faddeev(-Yakubovsky) approach
[18-20], the method of spherical harmonics [21], or the Alt-
Grassberger-Sandhas approach [22,23].

An alternative approach to unify the description of struc-
ture and reaction properties has been proposed with the open
quantum system formulation of the shell model. Such a
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formulation is provided by the Gamow shell model (GSM)
[24-27] which offers the most general treatment of couplings
between discrete and scattering states. The many-body states
in GSM are given by the linear combination of Slater de-
terminants defined in the Berggren ensemble [28] of single-
particle states. In this way, the GSM is the tool for studies
of bound and unbound many-body states and their decays.
Most numerical applications of the GSM have been done by
separating an inert core and using the cluster orbital shell
model (COSM) [29] relative variables in valence space. In
this way, the spurious center-of-mass excitations are removed.
Moreover, an ab initio no-core formulation of the GSM has
been recently developed to study resonant states in light nuclei
[30,31].

For the description of scattering properties and reactions,
it is convenient to formulate GSM in the representation of
reaction channels. GSM in coupled-channel (GSM-CC) rep-
resentation, which is based on the RGM, has been applied
for various observables involving one-nucleon reaction chan-
nels, such as the excitation function and the proton/neutron
elastic/inelastic differential cross-sections [32,33], or low-
energy proton/neutron radiative capture reactions [34,35].
Reaction channels in these processes are given by the
initial /final GSM eigenvectors of (A — 1)-body system cou-
pled to proton/neutron in continuum states. All resulting
A-body wave functions are fully antisymmetrized and the
separation of core and valence particles allows to apply the
GSM-CC approach for small number of valence particles in
medium-heavy and heavy nuclei.

The main purpose of the present paper is to extend the
GSM-CC approach to reactions with cluster reaction chan-
nels, such as 2H or *He reaction channels. Such channels
appear often at low excitation energies in p- and (sd)-shell
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nuclei and therefore, have great importance for decay proper-
ties and low-energy transfer or radiative capture reactions in
these nuclei. In medium mass nuclei, the low-energy reactions
with deuteron or « particle lead to the formation of nuclear
aggregate at higher excitation energies where the density of
states is significant. Here the practical restriction in GSM-CC
to valence space effective interactions may be a convenient
way to describe these low-energy reactions microscopically.

As the first application and a testing ground of GSM-CC
with cluster reaction channels, we shall discuss the structure
of SLi and the elastic scattering of deuteron on « parti-
cle at low center-of-mass energies. This problem was ana-
lyzed before in RGM formalism [36], and more recently in
the NCSM/RGM [37] and NCSMC [38] formalisms using
nucleon-nucleon and three-nucleon chiral effective interac-
tions. The comparison between an ab initio NCSMC and
a more phenomenological GSM-CC for the same system
provides the useful insight into the reliability of the latter
approach which in principle could be applied also in heavier
systems.

®Li in GSM-CC approach is described as a “He core and
two valence particles interacting with the finite-range FHT
type interaction [39,40,42]. The coupled-channel equations
of the GSM-CC are solved using Berggren basis expansion
method. Deuteron which is a weakly bound nucleus, requires
careful treatment of continuum to include its polarization and
virtual breakup, i.e the different eigenvalues of the intrinsic
deuteron Hamiltonian in the collision with « particle. The
deuteron structure is described in Berggren basis using the
N3LO chiral interaction [11].

The GSM-CC formalism for the antisymmetrized cluster
channel states is presented in Sec. II. The model space and
the nucleon-nucleon interaction used in this work are detailed
in Sec. III. Results of the GSM-CC calculation for the elastic
phase-shifts, excitation function and differential cross sections
are discussed in Sec. IV. Finally, main conclusions of this
work are summarized in Sec. V.

II. DESCRIPTION OF NUCLEAR
REACTIONS IN GSM-CC

We will describe in this section the theory of GSM-CC
with cluster projectiles. GSM-CC has already been defined
for the case of one-nucleon projectile in Ref. [32], so that
we will mainly concentrate on the differences between one
and many-body clusters. For this, the numerical method to
generate cluster wave functions with well defined intrinsic and
center of mass parts will be presented in Sec. I A. The basis-
generating potential of the center of mass part of projectiles,
based on the cluster approximation of the used Hamiltonian,
will be explicited in Sec. II B. The coupled-channel equations
of the GSM-CC model will then be formally derived in
Sec. IIC, where antisymmetry requirements between target
and projectile will be emphasized. A numerical method to
solve GSM-CC coupled-channel equations with the Berggren
will be described afterwards in Sec. IID, with which, in
particular, direct integration in coordinate space is replaced
by matrix diagonalization and linear systems to solve.

A. Cluster states definition in relative and laboratory frames
Projectile states read

W) = [IKews Les) ® [Kins Jind Ty, (1)
where Kcvm and Loy are, respectively, the linear momentum
and angular momenta of the center of mass, Kijy is the intrinsic
linear momentum, and Ji, represent the intrinsic angular
momenta so that we have Jp = Jin¢ + Lem.

Composite states are then built from the antisymmetrized
tensor product of target and projectile states. For antisymme-
try to be fulfilled, one expands both target and projectile in
the same complete basis of Slater determinants. As the target
state was generated by a GSM calculation, it is expanded
with Slater determinants by construction. Equation (1) must
be then expanded in the basis of Slater determinants used for
the target:

(W)= "C,ISDy). )

where the Slater determinants are constructed from the single-
particle states of the Berggren ensemble. However, the overlap
(\IIZ”|\II;,” "y = 8(Kem — K'cm) is difficult to treat numerically,
because the treatment of the Dirac § function would require an
extremely fine discretization of the continuum for the center of
mass/intrinsic separation of |\IJ,J,") in Eq. (1) at large distances.

Consequently, one has to proceed indirectly. As reactions
are localized close to the target, the wave function of the pro-
jectile can be approximated by a bound state wave function,
so that we can use the harmonic oscillator (HO) basis instead.
Let us define the HO projectile state as

J, HO Jp
(W) = [INewm, Lem)™© @ |Kin, Jindd ™1y 3)

where |Ncwm, LCM)HO is a center-of-mass harmonic oscillator
state and | Ky, Jim)HO is an intrinsic deuteron state expanded
on a basis of harmonic oscillator states.

To calculate the intrinsic part of |\IJ,J,”) in Eq. (3), the
intrinsic Hamiltonian H, is firstly diagonalized on a Berggren
basis of only bound and scattering states since the deuteron
does not have resonances. This guarantees a good asymptotic
behavior of relative scattering deuteron states.

The absence of resonance states in the single-particle basis
poses no problem therein because the used Berggren basis is
complete for the calculation of bound and scattering intrinsic
deuteron states. Indeed, deuteron possesses no low-lying reso-
nance states, so that the Berggren basis contour can efficiently
be discretized with the Gauss-Legendre quadrature.

This is a one-body problem in our case as we just have
deuteron projectiles, so that ﬁim is a small matrix therein and
can be exactly diagonalized. This provides with the relative
deuteron eigenstates |Kiy, Jin) generated by H,,,¢ in the relative
Berggren basis. They are projected on a basis of harmonic
oscillator states to provide with the |Kiy, Jim)HO states.

HO
The |\Il;") states of Eq. (3) have to be expressed in
laboratory coordinates to be able to use them in a shell model
formalism. For this, one can apply the Brody-Moshinsky

transformation [43] to the relative 4 center-of-mass two-body
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wave functions formed by the deuteron states of Eq. (3) as
they are two-body systems.
Consequently, the coefficients of the Slater determinant

H
expansion of |\IJIJ,”) in Eq. (3) are straightforward to obtain
HO
W) =D Cy1sDm™. 4)
N

We can now express the projectile state in the Berggren
basis:

JP HO

Z C, ISD,) (5)

where the C, coefficients come from a direct expansion of the
HO basis to the Berggren basis:

G, = (sD,|wyr)" Z

0(SD,|SDy)HO.  (6)

Note that the (SD,,|SDy)H° overlap is easily computed even
though |SD,;) and |SDy)HO are built from different one-body
basis states, because the two latter Slater determinants bear
only one proton and one neutron state, so that (SD|SD)HO js a
product of proton and neutron overlaps:

= (P 1p") (p™1p™) 0, (7)

where |¢P™]) and [¢?™NHO denote the proton (neutron)
one-body states of the |SD) and |SD)HO Slater determinants,
respectively. Aside from the HO projection of the intrinsic
state |Kint, Jint), Egs. (2) and (5) differ also by their center of
mass part, as it is a Berggren center-of-mass state in Eq. (1)
and a HO state in Eq. (3). As the center-of-mass asymp-
tote of composite states will be provided by the integration
of coupled-channel equations, defined in coordinate space,
having a localized center-of-mass state in Eq. (5) creates no
problem. Those projectile states will later be used as a basis
in which the reaction potentials, that need to be integrated,
will be calculated. The use of an HO basis expansion for
the center-of-mass part is thus justified since it provides a
localized basis.

This procedure can be easily generalized to cluster bearing
more than two protons or neutrons by considering the explicit
expansion of Slater determinants in terms of nonantisym-
metrized tensor products of proton or neutron one-body states.
As clusters will not have more than two protons or neutrons
in practice, and « clusters being the heaviest projectiles that
we plan to consider, a direct calculation of the overlap of
Slater determinants will not be a caveat for future calcu-
lations involving clusters other than deuterons. One might
argue that the relative + center-of-mass treatment used in
this section cannot be generalized to heavier clusters, as
the Brody-Moshinsky transformation is valid only for two-
nucleon systems. This problem can be solved for projectiles
of 3 and 4 nucleons. On the one hand, if break-up can be
neglected, which is the case at low energy due to the well
bound character of considered projectiles, all calculations of
cluster states can be effected with the HO basis in Niw spaces,
where the separation of relative and center-of-mass degrees of
freedom can be done exactly. On the other hand, the inclusion

(SD|SD)HO

of break-up would demand the use of Jacobi coordinates to
calculate the relative scattering states of considered clusters,
which is feasible with three-nucleon systems in particular.

B. Berggren basis of center-of-mass cluster states

The |lI/1J,”)HO state of Egs. (3) and (4) will be used to build
the coupled-channel Hamiltonian. However, to properly deal
with the asymptotic behavior of the scattering states solutions
of the coupled-channel equations of the Hamiltonian, we have
to compute projectile states of the form given by Eq. (1),
where the center-of-mass part is generated by a finite-range
potential. These states will be used theoretically to formally
derive the Hamiltonian coupled-channel equations, on the one
hand, and will be used numerically to expand the solutions of
the coupled-channel equations, on the other hand.

We will derive a Hamiltonian generating the latter states
from the composite A-body Hamiltonian written in laboratory
coordinates. The composite COSM Hamiltonian cannot be
used for the this two nucleons projectile projectile, as it is
defined for a wave function where core particles are present.
The Hamiltonian in laboratory coordinates reads

2
Pi,1ab A

i<j

where i, j cover all nucleons and v, ; 1s the nucleon-nucleon
interaction in laboratory coordinates. Let U be the mean-
field created by all target nucleons:

> V=0 )
jeT

Thus, neglecting internucleon interactions between target and
projectile, the projectile Hamiltonian H), in the laboratory
frame can be defined as

ﬁp=2<P121ab ) Z Vz/ (10)

iep i<jep

Linear momenta of valence particles are identical in labora-
tory and COSM coordinates. Moreover, one can show that
the core corrections issued from potentials are second-order
when one replaces laboratory radial coordinates by COSM
radial coordinates, so that they can be neglected [44]. Indeed,
the described procedure therein just aims at producing the
optimal basis potential to generate |Kcwm, Lom, Kint, Jint) Pro-
jectile states and does not affect the many-body Hamiltonian.
Therefore, H, in COSM coordinates reads the same as in
Eq. (10). Hence, from now on, we will use COSM coordinates
(pi, ;) only. Then, we can write

iep i<jep
(pl - éPCM)2
Z 2m Z Vij
iep i<jep
Peum’ AT
+ 250 +y 0/, (11)
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where
Pev = ) pi (12)
iep
a is the number of nucleons in the projectile, m the nucleon
mass, and M, the mass of the projectile. Assuming cluster
approximation, i.e., implying r; >~ Rcwm, the central part of the

mean-field U, (M(RCM) created by all target nucleons can be
approximated by

OfiRew) = D U/ O Rem)
iep
~a, 0, Rew) +a, U, Rem),  (13)

where a,, and a, are the number of protons and neutron of
the projectile, respectively. The spin-orbit part of the mean-
field U&‘,})(RCM) is calculated through a similar averaging
procedure, as the cluster approximation also implies that l; >~

LCM/(J and ZSi ~ Jimi

iep

Z 07 Rem) i - si = Uéi(/)[)(RCM) Zli - S

iep iep

_ 1 peo
= - UCM (Rem) Lem - Jine, (14)

T (so)

where Ué;‘,}) is the average of all U potentials:

089 (Rem) = 2 0, Rew)
a'l "T(so)
(Rew). (15)

The Ucm(Rem) potential, generating the |Kew, Lov) center-
of-mass states thus reads from Eqs. (13) and (14)

Ucm(Rem) = U5 (Rem)
1 7y (so
+ - U Ren) Lewt - Bt (16)

Consequently, H » reads

H, = Hi + Hem 7
with
A (pi — -PCM
Hno=) + )V (18)
iep i<jep
and
Aem = Pow® + 0, (19)
oM = oM, cM-

The mean-field approximation described in Eqgs. (13) and
(14) insures that 0CM(RCM) recaptures the features of the
Hamiltonian of Eq. (10) for the |Kcm, Lom) center-of-mass
states at cluster approximation level. It is thus possible to
calculate a Berggren basis of center-of-mass |Kcwm, Lom)
states, as these states are formally identical to one-body
states. Moreover, even though cluster approximation is no
longer valid at cluster break-up, the latter potential can still be

used therein as it provides with a complete set of |Kcwm, Lom)
center-of-mass states.

C. Formulation of Hamiltonian coupled-channel equations

We then develop coupled-channel equations for multinu-
cleon projectiles. We consider an A-body state decomposed in
reaction channels:

Zf e Ryl ) 2R )deR (20)

where the center-of-mass subscript is now dropped for CM
radial coordinates and angular momenta for convenience,
u.(R) is the radial amplitude of the ¢ channel to be determined,
Jy and My are the total angular momentum and total angular
momentum projection of the A-body state, and

A J
(e, ) = A|{ |¥7) @ IRL I Iy} Jy. )

= Ajo,), @10

where the channel index ¢ stands for the {A—

a,Jr;a, L, Jin, J,} quantum numbers, is an antimmetrized
tensor product of the |lI!;T) target state, and projectile channel
state |R L Jiy J,), where angular momentum couplings read
Jp = Jine + L and J5 = J, + J1. Due to the use of COSM,
the relative motion between the two clusters is already defined
within the projectile state, and it is not necessary to introduce
a § function in Eq. (21), as it can be commonly seen in RGM
and NCSM/RGM [15] where laboratory coordinates are
considered.

The coupled-channel equations can then be formally de-

rived from the Schrédinger equation: H |\111{;A) =F |\IJJJV/I‘A), as
Z/ R*[H(R, R) — ENoo (R, R)] “( ) _o, (22)
where
H.o(R,R) = {(c, R H|(c,R)), (23)
Nee(R,R') = {(c, R)I(¢", R)) . (24)

Due to the decoupling of the target and projectile at high
energy, it is more convenient to rewrite the Hamiltonian H by
introducing the target Hamiltonian Hy:

Hy = Tr + Ol + Viee — 00)" ™ (25)
where (\7res — UO)A’“ is the part of Vies — U acting on the
(A — a)-body target state, and where Ty, Ul . are the target
kinetic part of the Hamiltonian H; and the associated one-
body basis potential, respectively. The action of target and
projectile Hamiltonians Hy and ﬁp [see Eq. (17)] on A-body
states is effected by considering nonfully antisymmetrized
A-body states:

Hr(¥7) ® |¥,)) = (Hr V1) @ |¥,)), (26)
H,(1¥7) ® |¥,)) = (1¥7) ® H, |¥,)). 27
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Note that the target and projectile states above are already
antisymmetrized. Thus, we can write the Hamiltonian as

H =Hr + I:ip + ﬁTp’ (28)

where HT,, =H —Hy — ﬁ,, by definition.

The matrix elements Hif,M‘ (R, R") can be formally ex-
panded in a basis of [(C,N)) = |NLJ,J,) states, where
I-?CM IN L) = Ecm |N L). Note that here N refers to a cluster
center-of-mass Berggren basis state, arising from the dis-
cretization of the cluster center-of-mass complex contour,
and not to a cluster center-of-mass HO state. The eigenbasis
of Hey is indeed more convenient to formally derive the
coupled-channel equations associated to clusters. Using now
the following expansion:

Uy(R
=> B wy), (29)

N

I(C, R))

we can write

H.o(R.R) = ZHJAMA NN’ )UN(R) Un (R’)’ (30)

R
N,N’

which can be decomposed in four sums:
UN(R) Un(R')
R/

H.o(R.R)= Y HMM(N,N)———

N/gNmax

Xx/Vmax

UN(R) Uy (R')

+ Z H!M (N, N

R/
N<Nmax
N'> N
U, (R)U (R
+ Y HERW NI

1\i>Nmax
S Vmax

Un(R) Uy (R")
R R

JaM, /

+ Y HAMW N
N>Nmax
N'>Nax

. (BD

where Npax is considered sufficiently large so that the anti-
symmetrization and thus Hy » can be neglected for N > Nyax
or N’ > Npax. The expansion wave functions Uy (R) depend
on the relative angular momentum L and J;,, but since those
numbers are already included in the channel index c, this
notation has been dropped for convenience. This property
arises from the fact that the effective nuclear interaction used
in the GSM target is defined in a finite model space, so that its
high energy matrix elements vanish. The use of the optimal
center-of-mass potential of Eq. (16) to generate |N L) states
implies that N, does not have to be extremely large.

The first term in Eq. (31) is a finite sum and can be
calculated numerically using standard shell model formulas.
The second sum with N < Npax and N’ > Npax Will be shown
to be equal to zero:

HM (N, N")
= (0a| AHA|®))) = (04| Hr + H, + AHr, A |®))
= (®u| Ecm + Er + Eint |®))) + (04| AH7, A | D))
= (Ecm + Er + Ein)) Scodyn + (@4l Al7r, A @) =0
32)

where
|®4) = [[Vr"") @ IN LI, M)y (33)
@) = [1W}7) @ IN'L' i, M )T . (34)

Antisymmetrizers have been suppressed in Eq. (32) except for
Hr, due to Eqgs. (26) and (27). The term involving Kronecker
8 vanishes in Eq. (32) as N # N’ and Hr, coupling can be
neglected therein as N’ > Nyx-

As a consequence, the second sum of Eq. (31) is equal
to zero and its third sum is treated identically for symmetry
reasons. In the last sum, antisymmetrizers of Eq. (32) can be
suppressed as N > Npax and N’ > Npax.

Therefore, we have

HEY (N N') = (4] H | D))
= (®4| Hr + H, |}
= (®u| Hy + Hiy + Hem | 9),)
= (Er + Einc + Ecm)8ce Oy (35)

Consequently, we can express the matrix elements
H"™ (R, R') as

UN(R) Un(R')
HM R R)= Y HEM NN ===

UN(R) Uy (R')

+8(c’ Z (ET+E1nt+ECM) R

N>Nmax
N’">Nmax

(36)

The sums in Eq. (36) involving N > Np.x and N’ > Npax
can be written as
UN(R) Uy (R')
R/

> (Er + Ein + Ecw)

N>Nmax
N'>Nax

UN(R) Uy (R')
R/

= > (Er + Ein+ Ecv)

NN’
UN(R) Uy (R')
R/

— Y (Er + Ew+ Ecw) ., (37

N<Nmax
N'<Niax

where the the first term in Eq. (37) can be expressed with
Dirac é’s due to completeness properties of Uy (R) states:
UN(R) Uv(R')

R/

> (Er + Ein + Ecw)
NN’
S(R—R)

(ET + Emt + TCM)—RSCC’

+ Usn(R, RS ccr, (38)

where Toy and UCLM(R, R’) (for a fixed orbital momentum
L) stand for the center-of-mass kinetic and potential part
of Eq. (19), respectively. Hence, we can finally write the
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expression of Hj;‘/MA (R,R):

H"™ (R, R)

" d> L(L+1)\8(R—R)
" oM, \ dR? R? RR
S(R—R)

+ (Er + Eint)T(Scc’
+ US(R, R) 8,00 + VM (R, R, (39)

where ViﬁM”‘ includes the remaining short-range potential
terms of the Hamiltonial kernels, i.e., the first sum of Egs. (31)
and (36) and the last sum of Eq. (37). N2¥*(N, N’) many-
body matrix elements are calculated using the Slater determi-
nant expansion of the cluster wave functions. The treatment
of the nonorthogonality of channels is the same as in the
one-nucleon projectile case [32].

As mentioned earlier, it is necessary to use a basis
of harmonic oscillator states to calculate coupled channel-
potentials. For this, the [N L) eigenstates of Hcy just have to
be expanded in a HO basis by HO states [N L)HO to calculate
VL{T?MA. Equations (4) and (5) can then be used to apply shell
model formulas to calculate H4™* (N, N’) and N™ (N, N)
many-body matrix elements. Note that the antisymmetry of
channels [see Eq. (21)] is exactly taken into account through
the expansion of many-body targets and projectiles with Slater
determinants.

D. Berggren basis expansion methods to
solve coupled-channel equations

In this section, we present the different numerical tech-
niques used to calculate the A-body scattering states |\111{;‘A).
Hence, we shall present how to solve numerically the radial
wave functions u.(r) based on a Berggren basis expansion
of the Green function (H — E)~!. Indeed, in previous papers
involving GSM-CC [32,34], a direct integration method had
been used. However, direct integration has been noticed to
become unstable when channel coupling is very strong, and
to overcome this problem we have developed a new method
whose implementation takes advantage of the Berggren basis
complex energies. It is based on the representation of H
with the center-of-mass Berggren basis generated by Eq. (19),
which replaces integrodifferential equations by a linear matrix
problem. Note that this method can also be used in the one-
nucleon projectile case, so that we will include this case in the
following discussion.

For this, we start from the A-body scattering state |\I'1{?A)’
of energy E, which is a solution of the Schrodinger equation:

AWy ) = E |¥ig,). (40)

The A-body scattering state is decomposed on a channel
basis as

|3i,) = Z/OOO @rz (e, r)) dr. (41)

Here, u.(r) are radial wave function associated to the
channel c. Note that the radial r distance stands for either the

distance between the nucleon or the compound projectile and
the target.

Due to the antisymmetry of the target-projectile composite,
the channel functions u.(r) are not orthogonal. To consider
a matrix representation of channels, one uses the standard
method described in Ref. [32] with the notation of this
paper, and which consists in using w.(r) orthogonal chan-
nel functions. Those functions are solutions of the coupled-
channel equations when considering the matrix N AN,
where matrix elements of H and N are given by H..(R, R')
and N..(R, R), respectively. The u.(r) channel functions are
recovered from w.(r) channel functions at the end of the
calculation using N> as well [32]. In order not to complicate
notations, we will implicitly consider in the rest of this section
that the ¢ channels are the orthogonalized channels associated
to w.(r) functions, even though they are in principle linear
combinations of the initial channels defining u.(r) channel
functions.

To use the Berggren basis to invert H — E, we introduce an
approximate Hamiltonian A® and its eigenvector |W©®):

A© =7+ U, (nucleon)

= Tem + Ucu (cluster), 42)
HO WO = E 1@y, (43)

where Upasis has the same form as szsis.

More specifically, H® is a diagonal matrix (no coupling
with other channels) and only one nonzero value (only the en-
trance channel ¢ is active). Equation (43) is straightforward to
solve as H® leads to a one-dimensional differential equation.

Let us then separate A and |lIJI{;A) in two parts, involving
A and |¢©) and a rest part:

A =HY 4+ A, (44)
|Wir ) = 19 O) + [Wreg) . (45)
Using Egs. (40), (43), (44), and (45), one obtains
(H —E) [¥res)) = 1S) (46)
|S) = —Hieq W) , (47)

where the source term |S) has been introduced. Since all the
long range contribution is contained within HO, A. is of
finite range, S(r) — 0 when r — +oo from Eq. (47). Hence,
|S) can be expanded in the Berggren basis generated by H©,
so that Eq. (46) becomes a linear system in this representation:

(Wresne = (1, €[ Wre) (48)
(Mg)new.e = (n',c'|H—Eln,c), (49)
(e = (n,clS) (50)

Mg Vet = S, (&2))

where |n,c) is a Berggren basis state of index n of the
channel c.

The fundamental problem of Eq. (51) is the noninvertible
character of Mg on the real axis, as H possesses a scattering
eigenstate of energy E therein. The standard solution to this
problem is to replace E by E + i, with ¢ — 0T, to make
the considered linear system invertible, on the one hand, and
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to impose an outgoing wave function character of u.(r) on
all outgoing channels, on the other hand. As w.(r) and u.(r)
channel functions become equal asymptotically due to the dis-
appearance of antisymmetry between target and projectile at
large distance, this also provides with outgoing wave function
behavior of u.(r) channel functions.

However, this method becomes unstable for small € and
demands to carefully monitor the limiting process. To avoid
this problem, the contour in the complex plane defining the
|n, c) Berggren basis states is chosen so that the energy of
basis states always has a nonzero imaginary part. Conse-
quently, Mg is invertible using this contour, so that Eq. (51) is
numerically solvable without introduction of a regularization
parameter. The outgoing wave function character of Wi is
also guaranteed by the finite norm of W,y in a Berggren basis
representation. Indeed, as ||Wes|| is finite, one can deduce
from the Parseval equality extended to Berggren bases that
|Wrest) 1s a localized state when complex rotation is applied,
ie., Wq(z) > 0 when z — +oo, with z=r+ (R — r)e?,
with R a radius outside the nuclear zone and 0 < 8 < 7 /2 be-
ing properly chosen. This implies that |W,.y) has an outgoing
character in all channels.

Having calculated |W.y) in a Berggren basis, its calcula-
tion in coordinate space is straightforward. In cases when the
equivalent potential method [45] is numerically stable, it has
been checked numerically that both Berggren basis expansion
and direct integration methods provide with the same I‘-IJ,{;‘A)
solution. The Berggren basis is also useful to determine reso-
nant states of the coupled-channel Hamiltonian H, where the
coupled-channel equations become a diagonalization matrix
problem.

Equation (51) also leads to an additional numerical advan-
tage when many energies have to be considered. Indeed, the
spectrum of A — E is the same for all energies. Consequently,
it is sufficient to calculate a convenient representation of
H only once, which can then be reused to solve the linear
system of Eq. (51) where different energies are considered. In
practice, this replaces many dense linear systems to solve, e.g.,
with the standard LU decomposition [46], whose numerical
cost is about N3/3 per energy, where N is the dimension of
Mg, by a diagonal or tridiagonal linear system to solve and
two matrix multiplications, whose numerical cost is about 2N 2
per energy.

III. MODEL SPACE AND HAMILTONIAN

GSM-CC with cluster projectiles will be applied to the
“He(d, d) elastic scattering reactions and asymptotic normal-
ization coefficients of the °Li wave function. In the following
application, only deuteron reaction channels will be used in
the decomposition of low-energy states of °Li.

The internal structure of deuteron is calculated using the
N3LO interaction [11], fitted on phase shifts properties of
proton-neutron elastic scattering reactions. The used realistic
interaction is first diagonalized with a two-body intrinsic
Berggren basis generated by a Woods-Saxon potential to gen-
erate intrinsic deuteron states. Its diffuseness, radius, central,
and spin-orbit strengths are 0.65 fm, 1.5 fm, 40 MeV, and 7.5
MeV, respectively.

TABLE 1. Parameters of the proton and neutron Woods-Saxon
potentials fitted from “He-nucleon phase shifts. From top to bottom:
central potential depth, spin-orbit potential depth, radius, diffuseness,
and charge radius. See Ref. [42] for details concerning its derivation.

Parameter Neutrons Protons
Vo (MeV) 41.9 44.4
Vis (MeV fm?) 7.2 7.2
Ry (fm) 2.15 2.06
a (fm) 0.63 0.64
Re, (fm) — 1.681

Berggren contours consist of two real segments, defined by
the origin of the real k-axis and the k-points equal to 0.2 and
2 fm~!. They are discretized with 2 and 8 points, respectively.
It has been checked that having a finer discretization does
not change numerical results significantly. One then obtains
a deuteron ground-state energy of —2.061 MeV, close to the
experimental value of —2.224 MeV. As stated in Sec. I A,
the Berggren eigenstates obtained after diagonalization are
projected on a basis of laboratory HO states afterwards.

The Berggren basis of center-of-mass cluster states, used
to calculate resonant and scattering states of d + “He (°Li)
aggregate (see Sec. IIB), is generated by proton/neutron
Woods-Saxon potentials using Eqs. (13) and (14). Different
S, P, D, F, and G partial waves bear 3, 2, 1, 1, and 0 bound
pole states, respectively, which are included along with the
respective contours. The contours consist of three segments,
defined by the origin of the K¢y complex plane and the
complex points Kcy: 0.2-10.05 fm~', 1.0-10.05 fm~!, and 2
fm~'. Each segment is discretized with 15 points, so that each
contour possesses 45 points. All unbound pole states lie below
the Berggren basis contours, so that they do not belong to the
considered Berggren bases.

It has been checked that the most important intrinsic
deuteron wave functions are those bearing (J™);,, = 17, 37,
so that we consider only those deuteron intrinsic wave func-
tions. We build relative Berggren bases states with (J™ ), =
17, 3%, so that the relative scattering states present therein
mimic deuteron breakup, similarly to the deuteron pseu-
dostates of Ref. [38] in NCSMC calculation. Center-of-mass
parts of deuteron projectiles bear Ley < 4 for (J™ )y = 17
and Loy = 0 for (J™);,, = 3™. The total angular momentum
of deuteron projectiles has been chosen to verify J; < 3, as in
Ref. [38].

We use “He core with two valence nucleons to describe °Li
wave functions. All partial waves up to £ = 4 are included.
The “He core is mimicked by a Wood-Saxon potential, fitted
on phase shifts of elastic scattering reactions involving a
neutron and proton on a “He target (see Table I, issued from
Ref. [42]).

The nucleon-nucleon interaction is that of FHT type
[39,40], which has been recently fitted [42] for light nuclei
bearing a “*He core. It reads

Veur = Ve + Vis + Vr, (52)
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where V., Vis, Vr represent its central, spin-orbit, and tensor
part, respectively. There is no Coulomb part as we have
only one valence proton in °Li wave functions. The different
components Vrgr in Eq. (52) read [42]

3
Very =D Vi (W) + BiPy — H!Po = MP,Py) e %7,

n=1
(33)
2
Vis(r) =L-S > Vi (W — HyigPr) e Fis”, (54)
n=1
3
Vr(r) =S Y Vi (W — HpP,) rPe P, (55)

n=1

where r is the distance between the nucleons i and j, L is
the relative orbital angular momentum, § = (o; + 8‘,~) /2 is the
total spin of the two nucleons, S;; = 3(g; - #)(0j - 7) — 0; - 7
is the tensor operator, P, and P; are spin and isospin exchange
operators, respectively, V', n e {1,2,3}, and V[, VJ, n e
{1, 2} are parameters fitting the central, spin-orbit, and tensor,
respectively, while other parameters are fixed [39]. Following
Ref. [42], we rewrite Vpgr in terms of its spin and isospin

dependence:

Vory = V1 oy + v 00,

+ VO 0y + VO (g, (56)
Vis(r) = (L-S)VY oMy, (57)
Vr(r) = S;[Vi ()T + V0 o), (58)

where Ilgr are projectors on spin and isospin [47,48] and
£57(r), f21(r), and f37(r) functions are straightforward to
evaluate from Egs. (53), (54), and (55). Matrix elements of
the Hamiltonian are calculated in the model space consisting
of all proton and neutron HO states having £ < 4 and n < 5.
The use of Berggren basis at this level is not necessary as the
Slater determinants used therein only generate the GSM-CC
Hamiltonian interaction VCJCA,MA (R, R), which is finite ranged
[see Sec. IIC and Eq. (39)]. Note that the use of HO states
does not hamper the asymptotes of the loosely bound and
resonance states of °Li. Indeed, HO states are used only to
generate the finite range part of the GSM-CC Hamiltonian,
whereas the eigenstates of °Li are expanded with Berggren ba-
sis states. Consequently, the density of °Li eigenstates slowly
decreases or increases exponentially in modulus, respectively,
independently of the Gaussian fall-off of HO states. Con-
vergence for Hamiltonian representation is typically obtained
with 5-10 HO states per partial wave [41].

The statistical properties of the FHT interaction parameters
for p-shell nuclei have been analyzed in Ref. [42]. It has been
noticed that they bear a sizable statistical error. Consequently,
one can modify the FHT interaction parameters within the
bounds of calculated statistical errors without in principle
changing the interaction.

The T =1 interaction part is negligible both in the
“He(d, d) reaction and in the T = 0 spectrum of °Li. The
dependence of energies on V% is very weak, so that we

TABLE 1II. 3S; and 3D, asymptotic normalization coefficients
and their ratio calculated in GSM-CC is compared with the exper-
imental values. In FHT(ANC), both 3S; and *D, asymptotic normal-
ization coefficients have been fitted to reproduce the values reported
in Ref. [51-53]. In FHT(E), only the *D, asymptotic normalization
coefficient has been fitted.

ANC FHT(E) FHT(ANC) Exp [51-53] Exp [49,50]
3, fm™?)  1.707 2.950 2.91(9) 2.93(15)
3D (fm™"%) —0.0788  —0.077 —0.077(18) —

3D, /38, —0.0462 —0.0261 —0.025(6)(10)  0.0003(9)

only consider V!© and V,!° when fitting the FHT interaction.
Other parameters of the FHT interaction remain the same
as in Ref. [42]. It has been found that in this way only
ground state energy of ®Li can be fitted satisfactorily, whereas
all other T = 0 resonances are displaced significantly with
respect to their experimental energy centroids. Moreover, the
asymptotic normalization coefficients *S; and *D; of the °Li
wave function in d 4+ *He configuration are too small as com-
pared to the reported experimental values [51-53] and equal
1.918 and —0.051, respectively. On the contrary, the ratio of
3D /38, = —0.0265 agrees well with the experimental value
—0.025(6)(10) [51-53].

In the following, two different strategies of fitting the FHT
interaction have been employed. The first strategy [FHT(E)]
comes from a fit of both the 7 = 0 spectrum of °Li and the
value of >D; asymptotic normalization coefficient. The second
strategy [FHT(ANC)] corresponds to fitting the resonant T =
0 spectrum of °Li, along with the 3S; and 3D, asymptotic
normalization coefficients, leaving the ground state energy of
SLi out of the fit (see Table ID). In both strategies, in addition to
the modification of V!° and V;!°, the T = 0 matrix elements
bearing J* = 2+, 3" are multiplied by a small factor c(J™)
depending on J*, to reproduce energies of the 2* and 3%
resonant 7 = O states of °Li (see Table III).

In this way, we obtain two effective interactions FHT(E)
and FHT(ANC) which will be tested in the following (see
Table III).

TABLE III. Parameters of the FHT(E) and FHT(ANC) inter-
actions are compared with the original FHT parameters with their
statistical uncertainties reported in Ref. [42] for p-shell nuclei. The
T = 1 and V. parameters are written as well, even though they are
not fitted.

Parameter FHT [42] FHT(E) FHT(ANC)
yi —3.2 (220) —-32 -3.2
ylo —=5.1(10) —5.41 —6.675
v —21.3 (66) —213 —21.3
v 5.6 (5) 5.6 -5.6
A —540 (1240) —540 —540
vl —12.1 (795) —12.1 —12.1
vl —14.2 (71) -10.5 —4.1
c(2%) — 1.16 1.068
c(3%) — 1.1314 0.9802
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FIG. 1. Energies (given with respect to *He core) and widths
(in MeV) of the T =0 spectrum of Li calculated in GSM-CC
approach using FHT(E) and FHT(ANC) interactions and denoted
as GSM-CC(E) and GSM-CC(ANC), respectively, are compared to
evaluated energy centroids and widths of Ref. [51].

The use of two different interactions to deal with the
structure of °Li and the elastic scattering of deuteron on «
particle is necessary as we have two different pictures in
our model: that of a deuteron far from the “He target before
and after the reaction occurs, where deuteron properties are
prominent, and that of a ®Li composite during the reaction. As
the FHT interaction is defined from ®Li properties, it cannot
grasp the structure of deuteron at large distances.

Conversely, the N3LO interaction cannot be used with
a core. Moreover, as the N°LO interaction enters only the
deuteron projectile basis construction, it is not explicitly
present in the Hamiltonian, but just insures that the deuteron
projectile has correct both the asymptotic behavior and the
binding energy. This also implies that the use of both labo-
ratory and COSM coordinates is consistent therein, as they
coincide asymptotically.

It has been indeed checked that the use of AV8 [54] and
CD-Bonn [55] interactions to generate deuteron projectiles
leads to a very small change in energies, asymptotic normal-
ization coefficients and cross sections. As a consequence, the
use of both realistic interaction for projectiles and effective
Hamiltonian for composites induces no problem in our frame-
work.

IV. RESULTS
A. T = 0 low-energy spectrum

The energies and widths of the T = 0 spectrum of °Li
calculated using FHT(E) and FHT(ANC) sets of parameters
are compared in Fig. 1 with the energy centroids and the
widths determined in Ref. [51]. To obtain the spectra from
GSM-CC calculations, the Hamiltonian is represented in the
coupled-channel representation and then diagonalized.

As seen in Fig. 1, the ground state of °Li in the GSM-
CC(ANC) calculation is overbound to reproduce results of

200 : : : : x x
150 | )
100 |
50 |

0 (deg)

-50
-100 |
-150 T

Ey MeV)

FIG. 2. Phase shifts of the *He(d, d) elastic scattering reaction
calculated using the FHT(E) interaction (dotted lines) and the
FHT(ANC) interaction (solid lines) are compared to results of
the R-matrix analyses of experimental data (symbols) [56,57]. E,
is the kinetic energy of the incoming deuteron and is expressed in
the laboratory frame.

Refs. [51-53] for both 3S; and *D; asymptotic normalization
coefficients (see Table II). However, as the asymptotic nor-
malization coefficients are well reproduced, one can expect
that this interaction also provides a good reproduction of the
cross sections.

Widths of resonance states are described qualitatively in
the GSM-CC calculations. The width of the ST state, not
visible in the figure, is about 4 keV for both FHT(E) and
FHT(ANC) parametrizations, whereas the experimental width
is 24 keV [51]. The width of the ZT state is 500 keV and 840
keV for the FHT(E) and FHT(ANC) interactions, respectively,
while the reported experimental value is 1.3 MeV [51]. The
resonance energy is about 300 keV higher than found in R-
matrix analyses of the experimental data [51]. This deliberate
underbinding is necessary for 3D, phase shifts to be optimally
described (see the discussion around Fig. 2). The 1; state
is underbound, by 2.6 MeV and 1.3 MeV in GSM-CC(E)
and GSM-CC(ANC) calculation, respectively. The calculated
width for this state is 1.293 MeV [GSM-CC(E)] and 1.226
MeV [GSM-CC(ANC)], as compared to 1.5 MeV reported in
Ref. [51].

B. Energy dependence of phase shifts

Phase shifts of the “He(d, d) elastic scattering reaction
are represented in Fig. 2. One can see that the phase shifts
extracted from R-matrix analyses of data [56,57] are well
described qualitatively using both FHT(E) and FHT(ANC)
interactions, except for the 3D, phase shifts, as the 12+ state
lies too high in energy for both interactions.

The FHT(ANC) interaction provides the best reproduction
of phase shifts, especially for the 3S; and *P, channels. The
3D, phase shifts are also comparatively closer to the data in
GSM-CC(ANC) than in GSM-CC(E). The 3D, phase shift
increases too rapidly in the GSM-CC(E), whereas it is closer
to experiment in the GSM-CC(ANC) calculation. In both
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GSM-CC(E) and GSM-CC(ANC) it was necessary to have
the energy of 2| state (the 2] pole of the S matrix) about 300
keV above the value reported in Ref. [51] to obtain the 3D,
phase shift well centered on the experimental resonance. This
is directly related to the large width of the ZT state, implying
that the many-body S-matrix poles provided by GSM-CC
calculation and the resonance structures seen in reaction
observables are not equivalent. Consequently, reproducing
resonant states energies in structure calculation does not nec-
essarily guarantee a good reproduction of the experimental
cross sections. Nevertheless, it is clear that for all channels
the FHT(ANC) parametrization provides the phase shifts that
are closer to those extracted from R-matrix analyses than the
phase shifts obtained for the FHT(E) interaction. Therefore,
one can expect a better reproduction of the experimental cross
sections using the FHT(ANC) interaction than the FHT(E)
interaction.

C. Differential cross sections

The center-of-mass differential cross sections of the
“He(d, d) elastic scattering process have been calculated us-
ing both FHT(E) and FHT(ANC) interactions at four different
deuteron kinetic energies in laboratory frame: 2.935, 5.961,
7.479, and 11.47 MeV. Calculated cross sections are com-
pared with the experimental cross sections in Fig. 3. The
ability of the FHT(ANC) interaction to describe experimental
data better than the FHT(E) interaction is striking. Indeed,
even low-energy differential cross sections in the GSM-CC(E)
are relatively too high. This has to be compared with the phase
shifts calculated with the FHT(E) interaction (see the dashed
line in Fig. 2). In particular, the 3P, phase shifts are too large
in absolute value below 8 MeV, which correlates with the
large differential cross section values obtained therein, while
those calculated at 11.47 MeV are close to experimental data
in the average, even though they do not follow their pattern.
While the 3S; phase shifts are correct close to 3 MeV, they
rapidly become too large in absolute value afterwards. The
3D, phase shifts also increase too quickly around 4 MeV, to
remain too high afterwards due to the rather small width of
500 keV of the 2] state. Both these effects seem to induce
wrong positions of minima and maxima in differential cross
sections after 4 MeV.

Alternatively, differential cross sections calculated with the
FHT(ANC) fit are always close to experimental data. The only
discrepancy therein is that minima and maxima are slightly
shifted to larger angles, and not deep enough for the first
minimum at 11.47 MeV. This cannot originate from the 35,
phase shifts, as they reproduce experimental data in the whole
range of energies (see the solid line in Fig. 2). The *D, phase
shifts are also very close to experimental data, as the width of
the ZT state is larger therein, of 840 keV instead of 1.3 MeV.
Hence, discrepancies with experimental data should arise due
to the *Py and D, phase shifts, which are further away from
the experimental data.

One can compare the differential cross sections obtained in
the GSM-CC(ANC) approach with the results of the NCSMC
[38] using realistic interactions, as they are satisfactorily
reproduced in both approaches. Indeed, even though minima
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FIG. 3. Center-of-mass frame angular distributions of the
“He(d, d) elastic scattering reaction calculated at four different
energies (laboratory frame) using both the FHT(E) (dashed line)
and FHT(ANC) (solid line) interactions are compared with the
experimental data (symbols) [60,61].
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FIG. 4. Center-of-mass frame angular differential distributions
for “*He(d, d) elastic scattering reaction at deuteron backscattered
angles 164.5 and 167 degrees, calculated with the FHT(E) (dotted
line) and the FHT(ANC) (solid line) interactions at different deuteron
kinetic energies E, in the laboratory frame. The experimental data is
depicted by symbols [58,59].

and maxima are at their experimental position therein, the
absolute value of differential cross sections in NCSMC [38]
and in GSM-CC(ANC) are comparable, as they are virtually
exact at low energy and slightly but continually worsen when
one goes to higher energy, when deuteron break-up starts to
become important. In fact, deuteron break-up is included sim-
ilarly in both approaches through the use of pseudo-states in
the NCSMC approach and of the intrinsic deuteron scattering
states in the GSM-CC. Moreover, the excited states of the “He
target are included neither in NCSMC nor in GSM-CC, and
they probably have a nonnegligible effect on cross sections at
moderate and high energies. As a consequence, it is possible
that these features lead to the same effect in both NCSMC and
GSM-CC approaches, and that they become more and more
important as projectile energy increases.

The excitation function for the “He(d, d) elastic scattering
reaction calculated in GSM-CC at 164.5 degrees is shown
in Fig. 4. Both FHT(E) and FHT(ANC) interactions fail to
reproduce the magnitude of experimental cross section at this
large angle. Nevertheless, the effects of the 3] and 2] states
are clearly visible and their widths qualitatively corresponds
to that of the experiment. However, this was to be expected
as the T = 0 resonant spectrum was fitted to the experimental
data. We can also see that the excitation function close to the
2;” state is better described in the GSM-CC(ANC) than in the
GSM-CC(E).

The dependence of the excitation function on the first
excited 15 state of ®Li is not visible in calculations, whereas
it is seen experimentally [59]. This is due to the underbinding
of the calculated 15 state which depending on the chosen
parametrization of the FHT interaction lies about 1.3 to 2.6
MeV above its experimental value. Consequently, besides

having an overall too large factor of two to three in the
excitation function, the absence of a low-lying 15 resonance
also prevents from a better reproduction of experimental
data, as in the case of NCSMC calculation with realistic
interactions [38].

V. CONCLUSION

GSM is a model dedicated to the study of drip-line nuclei,
as it incorporates both continuum and nucleon intercorre-
lations degrees of freedom in a unique framework. It has
been firstly devised for structure [27], and then has been
successfully extended to the study of reaction cross sections
with one-nucleon projectiles within the GSM-CC approach
[32,34]. The inclusion of many-nucleon clusters has been
far more difficult to devise, due to the internal structure of
these clusters, which demands a precise treatment of their
relative and center-of-mass degrees of freedom. This has been
accomplished in this paper, in the particular case of deuteron
cluster, and applied to the “He(d, d) elastic scattering reac-
tion. Even though GSM can be used in a no-core picture
for the description of very light nuclei [30,31], it has been
chosen to use a core + valence nucleon picture to be able
to use GSM-CC in nuclei bearing more than 20 nucleons,
which is the current limit of NCSM/RGM and NCSMC
approaches. Consequently, an effective interaction has been
used therein, which recaptures the low-energy characteristics
of the composite ®Li nucleus.

While not as microscopic as NCSMC, in which the ex-
perimental reproduction of *He(d,d) observables is opti-
mal, GSM-CC managed to quantitatively describe asymptotic
normalization coefficients of °Li and cross sections of the
4He(al ,d) reaction, at the price, however, of an overbound
®Li ground state which points to the shortcoming of our
FHT effective interaction and/or the absence of excited states
and nonresonant continuum in *He. The latter limitation we
share with the NCSMC description of SLi and *“He(d, d)
elastic scattering. In particular, it is impossible in our case
to reproduce both the correct binding energy of °Li and the
3S, asymptotic normalization coefficient. It remains an open
question whether this contradiction is due to the core +
valence nucleon approximation or the absence of three-body
forces in our approach.

When the asymptotic normalization coefficients of °Li are
fitted, NCSMC and GSM-CC show comparable results for
phase shifts and differential cross sections. Hence, GSM-CC
can now be used with many-nucleon clusters and we will
study in a near future reactions involving many-nucleon pro-
jectiles whose composites cannot be reached in the NCSM-
RGM approach.
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