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Background: Calculating microscopic optical potentials for elastic nucleon-nucleus scattering has already led
to large body of work in the past. For folding first-order calculations the nucleon-nucleon (NN) interaction and
the one-body density of the nucleus were taken as input to rigorous calculations in a spectator expansion of the
multiple scattering series.
Purpose: Based on the Watson expansion of the multiple scattering series we employ a nonlocal translationally
invariant nuclear density derived from a chiral next-to-next-to-leading order (NNLO) and the very same interac-
tion for consistent full-folding calculation of the effective (optical) potential for nucleon-nucleus scattering for
light nuclei.
Methods: The first order effective (optical) folding potential is computed by integrating over the nonlocal,
translationally invariant NCSM one-body density and the off-shell Wolfenstein amplitudes A and C. The
resulting nonlocal potential serves as input for a momentum-space Lippmann-Schwinger equation, whose
solutions are summed to obtain the nucleon-nucleus scattering observables.
Results: We calculate scattering observables, such as total, reaction, and differential cross sections as well as the
analyzing power and the spin-rotation parameter, for elastic scattering of protons and neutrons from 4He, 6He,
12C, and 16O, in the energy regime between 100 and 200 MeV projectile kinetic energy, and compare to available
data.
Conclusions: Our calculations show that the effective nucleon-nucleus potential obtained from the first-order
term in the spectator expansion of the multiple scattering expansion describes experiments very well to about 60
degrees in the center-of-mass frame, which coincides roughly with the validity of the NNLO chiral interaction
used to calculate both the NN amplitudes and the one-body nuclear density.
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I. INTRODUCTION AND MOTIVATION

Traditionally differential cross sections and spin observ-
ables played an important role in either determining the
parameters in phenomenological optical models for proton
or neutron scattering from nuclei or in testing accuracy and
validity of microscopic models thereof. Specifically, elastic
scattering of protons and neutrons from stable nuclei has
led in the 1990s to a large body of work on microscopic
optical potentials in which the nucleon-nucleon interaction
and the density of the nucleus were taken as input to rigorous
calculations of first-order potentials, in either a Kerman-
McManus-Thaler (KMT) or a Watson expansion of the
multiple scattering series (see, e.g., [1–6]), for which a pri-
mary goal was a deeper understanding of the reaction mecha-
nism. However, a main disadvantage of that work was the lack
of sophisticated nuclear structure input compared to what is
available today.

Recent developments of the nucleon-nucleon (NN) and
three-nucleon (3N) interactions, derived from chiral effec-
tive field theory, have yielded major progress [7–14]. These,

together with the utilization of massively parallel computing
resources (e.g., see [15–18]), have placed ab initio large-scale
simulations at the frontier of nuclear structure and reaction
explorations. Among other successful many-body theories,
the ab initio no-core shell-model (NCSM) approach, which
has considerably advanced our understanding and capability
of achieving first-principles descriptions of low-lying states
in light nuclear systems (e.g., see [19–23]), has over the last
decade taken center stage in the development of microscopic
tools for studying the structure of atomic nuclei. The NCSM
concept combined with a symmetry-adapted (SA) basis in the
ab initio SA-NCSM [24] has further expanded the reach to the
structure of intermediate-mass nuclei [25].

Following these developments in nuclear structure theory,
it is worthwhile to again consider rigorous calculations of
effective folding nucleon-nucleus (NA) potentials, since now
the one-body densities required for the folding with NN scat-
tering amplitudes can be based on the same NN interaction,
and thus can be considered ab initio. This is complementary
to recent developments, where effective NA potentials are
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FIG. 1. Diagram for the matrix element of the effective (optical)
potential for the single scattering term.

extracted from ab initio structure calculations via Green’s
function methods [26]. Our approach to elastic scattering is
based on the spectator expansion of multiple scattering theory
[27–30]. Here the first-order term involves two-body interac-
tions between the projectile and one of the target nucleons
which requires a convolution of the fully off-shell NN scat-
tering amplitude with the nuclear wave functions of the target
represented by a nonlocal one-body density (OBD). Thus, in
its most general form, the first-order single scattering optical
potential within the framework of the spectator expansion
is given by the triangle graph shown in Fig. 1. A specific
scope of this work is to consistently obtain the NN scattering
amplitudes and the nuclear one-body densities from a chiral
NN interaction up to next-to-next-leading order. We neglect
the three-nucleon forces (3NFs) in this work since they are
known to only give small contributions to densities and do
not contribute to the Watson expansion in the first order of the
optical interaction. Similar work in this direction is carried out
in Ref. [31], however using a different chiral NN interaction
[14] for the NN scattering amplitudes, which is augmented
by a 3N interaction and is renormalized in calculations of the
nuclear density. It is interesting to compare the results of this
work to those in Ref. [31].

The structure of the paper is as follows. In Sec. II we review
the formalism for the single-scattering folding potential and
introduce the full-folding procedure as used in our calcula-
tions. Though, in principle, this can be found in the literature,
for clarity and the convenience of the reader we give the most
important steps here. In Sec. III we present results for elastic
scattering of protons as well as neutrons from the “closed
shell” nuclei 4He and 16O in the energy regime between 100
and 200 MeV. Then we apply the formulation to the “open
shell” nuclei 12C and 6He. Our conclusions are presented in
Sec. IV.

II. THE FIRST-ORDER FOLDING POTENTIAL

The standard approach to elastic scattering of a strongly
interacting projectile from a target of A particles is the sep-
aration of the Lippmann-Schwinger (LS) equation for the
transition amplitude

T = V + V G0(E )T (1)

into two parts, namely, an integral equation for T :

T = U + UG0(E )PT, (2)

where U is the effective (optical) potential operator and
defined by a second integral equation

U = V + V G0(E )QU . (3)

In the above equations the operator V represents the external
interactions between the projectile and the target nucleons,
and the projection operators P and Q are defined below. The
Hamiltonian for the (A + 1)-particle system is given by

H = H0 + V. (4)

The potential operator V = ∑A
i=1 v0i consists of the NN

potential v0i acting between the projectile, denoted by “0”,
and the ith target nucleon. The free propagator for the
projectile+target system is given by G0(E ) = (E − H0 +
iε)−1, where H0 = h0 + HA with h0 being the kinetic energy
operator for the projectile and HA denoting the target Hamilto-
nian. Defining |�A〉 as the ground state of the target, we have
HA|�A〉 = EA|�A〉. The operators P and Q in Eqs. (2) and (3)
are projection operators, P + Q = 1, and P is defined such
that Eq. (2) is solvable. In this case, P is conventionally taken
to project onto the elastic channel, such that [G0, P] = 0, and
is given as P = |�A〉〈�A|

〈�A|�A〉 . With these definitions the transition
operator for elastic scattering can be defined as Tel = PT P, in
which case Eq. (2) becomes

Tel = PUP + PUPG0(E )Tel . (5)

The fundamental idea of the spectator expansion for the
optical potential is an ordering of the scattering process ac-
cording to the number of active target nucleons interacting
directly with the projectile. The first-order term involves two-
body interactions between the projectile and one of the target
nucleons, i.e., U = ∑A

i=1 τi, where the operator τi is derived
to be

τi = v0i + v0iG0(E )Qτi = v0i + v0iG0(E )τi − v0iG0(E )Pτi

= τ̂i − τ̂iG0(E )Pτi. (6)

Here, τ̂i is the NN t matrix and is defined as the solution of

τ̂i = v0i + v0iG0(E )τ̂i. (7)

It should be noted that all of the above equations follow
in a straightforward derivation and correspond to the first-
order Watson scattering expansion [32,33]. In the lowest order
the operator τ̂i ≈ t0i, which corresponds to the conventional
impulse approximation. Here, the operator t0i stands for the
standard solution of a LS equation with the NN interaction
as driving term. It should be pointed out that the implicit
treatment of the operator Q in Eq. (6) is especially important
for scattering from light nuclei as shown in Ref. [34].

For elastic scattering only PτiP [from Eq. (6)] needs to be
considered, or equivalently

〈�A|τi|�A〉 = 〈�A|τ̂i|�A〉 − 〈�A|τ̂i|�A〉
× 1

(E − EA) − h0 + iε
〈�A|τi|�A〉, (8)
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and this matrix element represents the full-folding effective (optical) potential

〈k′|U |k〉 = 〈k′�A|
∑

i

τi|k�A〉. (9)

Since 〈k′|U |k〉 is the solution of the sum of one-body integral equations represented by Eq. (8), it is sufficient to consider the
driving term

〈k′|Û |k〉 = 〈k′�A|
∑

i

τ̂i|k�A〉, (10)

where τ̂i ≈ t0i in the impulse approximation. Inserting a complete set of momenta for the struck target nucleon before and after
the collision and representing the sum over target protons and neutrons by α leads to

Û (k′, k) =
∑

α=p,n

∫
d3p′d3p

〈
k′p′ | τ̂α (ε) | kp

〉
ρα

(
p′ + k′

A
, p + k

A

)
δ3(k′ + p′ − k − p), (11)

where the momenta k′ and k are the final and initial momenta of the projectile in the frame of zero total nucleon-nucleus
momentum. The structure of Eq. (11) is represented graphically by Fig. 1, which also illustrates the momenta p′ and p. The
proton and neutron densities are given by ρα . Evaluating the δ function, introducing the variables q = k′ − k, K = 1

2 (k + k′),
and p̂ = 1

2 (p′ + p), and finally changing the integration variable from p̂ to P = p̂ + K
A , accounting for the recoil of the nucleus

[35], leads to the final expression for the full-folding effective potential

Û (q, K) =
∑

α=p,n

∫
d3P η(P, q, K) τ̂α

(
q,

1

2

(
A + 1

A
K − P

)
; ε

)
ρα

(
P − A − 1

A

q
2
, P + A − 1

A

q
2

)
. (12)

Here, η(P, q, K) is the Møller factor for the frame transfor-
mation [36] relating the NN zero-momentum frame to the
NA zero-momentum frame. Further details can be found in
Refs. [3,35,37]. The free NN amplitude τ̂α is calculated from
the free NN t matrix according to Eq. (7) at an appropriate
energy ε. In principle this energy should be the beam energy
minus the kinetic energy of the center of mass (c.m.) of
the interacting particle less the binding energy of the struck
particle. Following this argument, ε should be coupled to
the integration variable P. The full-folding calculations of
Refs. [38,39] are carried out along this vein and found only
small effects for scattering energies above 100 MeV. For our
calculation we take a different approach, we fix ε at the
two-body c.m. energy corresponding to the free NN scattering
at the beam energy so that the same laboratory energy applies
to the two-body and nuclear scattering. This approach has also
been applied in earlier work [3,4,34,40]. The quantity ρα , with
α = p(n), represents a nonlocal OBD for the proton (neutron)
distribution. Since Û (q, K) is computed in the NA c.m. frame,
it is mandatory that the OBD must be given in a translationally
invariant fashion. The treatment of Pauli antisymmetry effects
follows the philosophy growing out of the early work of
Watson [41,42] and developed via the spectator expansion
in [43]. In the lowest order the two-body antisymmetry is
achieved through the use of two-body t matrices which are
themselves antisymmetric in the two “active” variables (corre-
sponding to the weak binding limit in [42]). For the next order,
requiring two-body densities, three “active” variables need to
be antisymmetrized. The effect of the Pauli principle in the
next order of this expansion has been estimated in Ref. [1]
and found it to be very small in the energy regime under
consideration here.

An important product of this work is that the NN t matrix
and OBD now use the same underlying NN interaction. For
this we choose the optimized chiral NN interaction at the
next-to-next-to-leading order NNLOopt from Ref. [44]. This
interaction is fitted with χ2 ≈ 1 per degree of freedom for
laboratory energies up to about 125 MeV. In the A = 3, 4
nucleon systems the contributions of the 3NFs are smaller
than in most other parametrizations of chiral interactions. As
a consequence, nuclear quantities like root-mean-square radii
and electromagnetic transitions in light and intermediate-mass
nuclei can be calculated reasonably well without invoking
3NFs [45,46]. From this point of view, the NNLOopt NN
interaction is very well suited for our calculations, since the
first-order folding potential does not contain any explicit 3NF
contributions.

The full-folding effective potential of Eq. (12) requires as
input a nonlocal translationally invariant OBD. The procedure
for computing this quantity from ab initio NCSM calculations
has been described in detail in Ref. [47], and the derivation
will not be repeated here. The convolution of the nonlocal
OBD with the fully off-shell NN t matrix and the Møller
frame transformation factor is carried out in momentum space
in three dimensions without partial wave decomposition, and
the integration is performed using Monte Carlo integration
techniques. It is also to be understood that all spin summations
are performed in obtaining Û (q, K). For a strictly spin-zero
nucleus, this reduces the required NNt-matrix elements to a
spin-independent component (corresponding to the Wolfen-
stein amplitude A) and a spin-orbit component (corresponding
to Wolfenstein amplitude C), whereas the components of the
NN t matrix depending on the spin of the struck nucleon
vanish. For the proton nucleus scattering calculations the
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FIG. 2. Wolfenstein amplitudes A and C as function of the
scatting angle and momentum transfer for np scattering at 100 MeV
laboratory kinetic energy. The solid (red) line stands for the CD-
Bonn potential [50] and the dash-dotted (green) line for the NNLOopt

chiral interaction [44]. The solid diamonds represent the extraction
from the GW-INS analysis [49].

Coulomb interaction between the projectile and the target is
included using the exact formulation from Ref. [48].

Since our calculations for NA scattering concentrate on
the energy regime between 100 and 200 MeV, we first want
to consider how well the Wolfenstein amplitudes A and C
are described by the chiral NN interaction NNLOopt. This
comparison is shown in Fig. 2 for 100 MeV and Fig. 3 for
200 MeV for the np Wolfenstein amplitudes. All figures show
A and C obtained from NNLOopt together with the experimen-
tal extraction from the GW-INS analysis [49]. As comparison
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FIG. 3. Same as Fig. 3 for np scattering at 200 MeV laboratory
kinetic energy.

we also show A and C obtained from the charge-dependent
Bonn potential (CD-Bonn) [50], which is fitted to the NN
data up to 300 MeV with χ2 ≈ 1. As expected at 100 MeV
NN laboratory kinetic energy differences between NNLOopt,
CD-Bonn, and the experimental extraction from the GW-INS
analysis are minimal. The imaginary part of Wolfenstein C
determines the real part of the NA spin-orbit interaction. The
NNLOopt interaction will result in a slightly stronger spin-obit
term (related to �m C) above 100 MeV. Likewise the real part
of A (the central depth) in the forward direction is slightly un-
derpredicted by NNLOopt at 100 MeV and becomes strongly
under-predicted by 200 MeV. The differences exhibited by
NNLOopt changes the ratio between the central depth, and the
spin-orbit force, an important factor in the spin observables
in NA scattering. This disparity may be a consequence of the
interaction having a small χ2 below 125 MeV NN laboratory
kinetic energy, while by 200 MeV the χ2 is about 6 in the np
channel, with the largest disagreement being in the P waves.

III. RESULTS AND DISCUSSION

A. Elastic scattering observables for 4He and 16O

The first-order folding potential for NA scattering, as de-
scribed in the previous section, is exact for nuclear states
with total intrinsic spin zero, so we first concentrate on
“closed shell” nuclei, such as 4He and 16O, with a ground
state that is largely dominated by zero intrinsic spin. For
example, converged cross section results for 4He, discussed
below, use NCSM calculations of the 4He ground state that
has a spin-zero contribution of about 95%. The “closed shell”
nuclei within the reach of NCSM calculations are 4He and
16O. After computing the first-order folding potential using
as input a nonlocal translationally invariant OBD based on the
NNLOopt chiral potential [44] obtained as outlined in Ref. [47]
and the Wolfenstein amplitudes A and C based on the same
interaction, we compute total, reaction, and differential cross
sections for elastic scattering as well as the analyzing power
Ay and the spin-rotation parameter Q. Our choice of energies
for which we show observables is dictated by the availability
of experimental data, and we concentrate on the energy regime
between 100 and 200 MeV projectile laboratory kinetic en-
ergy since we expect that the first-order term governs the
scattering process at those energies.

The nonlocal translationally invariant densities are calcu-
lated from one-body density matrix elements computed in
the NCSM framework. The latter uses a harmonic-oscillator
basis characterized by two parameters, Nmax, defined as the
maximum number of oscillator quanta above the valence shell
for that nucleus as well as the oscillator length h̄ω. A converg-
ing trend of nuclear structure observables, including binding
energies and radii, with respect to these model parameters has
been ensured but this does not necessarily ensure convergence
of the scattering observables under consideration, details of
which we present herein. It is well known that different
observables exhibit a different convergence behavior with
respect to the two parameters. While the scattering observ-
ables presented here for 4He are well converged already at
Nmax = 8 and practically independent of h̄ω over the range
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FIG. 4. The angular distribution of the differential cross section
divided by the Rutherford cross section for elastic proton scattering
from 16O at 200 MeV laboratory kinetic energy as function of the
c.m. angle calculated with the NNLOopt chiral interaction [44]. The
different values of Nmax are indicated in the legend. From top to
bottom, the three sets of lines correspond to h̄ω = 24, 20, and
16 MeV, respectively.

of 16-24 MeV (further discussed below for Nmax = 18), in
Fig. 4 we show results for 16O as an illustrative example, and
we investigate the convergence of the ratio of the differential
cross section to the Rutherford cross section at 200 MeV with
respect to Nmax for three values of h̄ω = 16, 20, and 24 MeV.
Here Nmax = 6, 8, and 10 results are shown to indicate that
the calculations in the h̄ω range of 16–20 MeV are almost
converged at Nmax = 10, with the results for h̄ω = 16 MeV
and h̄ω = 20 MeV slowly approaching each other. The results
in Fig. 4 show that the dependence on a selected h̄ω range
dominates variations in the calculated observables, which is
why in the following calculations of scattering observables
we only show results across various h̄ω values, while keeping
Nmax at a fixed, reasonably large value.

The differential cross section divided by the Rutherford
cross section is shown for scattering of protons off 4He in
Fig. 5 for three projectile laboratory kinetic energies, 100,
150, and 200 MeV as function of the momentum transfer as
well as of the c.m. scattering angle. Dividing by the Ruther-
ford cross section allows for a clearer view of the forward
angles, which should be well described by the first-order
folding potential. This is indeed the case, Fig. 5 shows that in
the energy regime between 100 and 200 MeV the differential
cross section is very well described by the calculations up to
about 60◦. At larger angles multiple scattering effects, which
are not included, are likely to become more important. This
is a well known phenomenon in, e.g., three-body scattering,
where higher-order Faddeev terms are needed to build up
the backward angles in neutron-deuteron scattering [51,52].
The vertical dashed line marks the momentum transfer q =
2.45 fm−1 which corresponds to the laboratory kinetic energy
of 125 MeV in the np system, up to which the chiral NNLOopt

interaction was fitted. The cross sections are shown at Nmax =
18 for three different oscillator parameters h̄ω = 16, 20, and

FIG. 5. The angular distribution of the differential cross section
divided by the Rutherford cross section for elastic proton scattering
from 4He at 100, 150, and 200 MeV laboratory kinetic energy as
function of the momentum transfer and the c.m. angle calculated
with the NNLOopt chiral interaction [44]. The dashed line represents
the calculation based on nonlocal densities using h̄ω = 16 MeV, the
solid line with 20 MeV, and the dash-dotted line with 24 MeV. For
all calculations Nmax = 18 is employed. The data for 100 MeV are
taken from Ref. [74], for 156 MeV from Ref. [75], and for 200 MeV
from Ref. [76]. The dashed vertical line in each figure indicates the
momentum transfer q = 2.45 fm−1 corresponding to the laboratory
kinetic energy 125 MeV of the np system.

24 MeV, indicating no dependence on the model parameters
for this h̄ω range. Indeed, for Nmax = 18 the variation in the
calculated cross sections with different h̄ω values for 4He is
smaller than the curve widths.

The corresponding analyzing power Ay of elastic proton
scattering off 4He at 100, 150, and 200 MeV laboratory
kinetic energy are shown in Fig. 6. For 150 and 200 MeV, the
analyzing power has a reasonably good agreement up to 60◦
and at the line marker. Varying oscillator parameters h̄ω at
Nmax = 18 produces a very small difference in the calculated
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FIG. 6. The angular distribution of the analyzing power for elas-
tic proton scattering from 4He at 100, 150, and 200 MeV laboratory
kinetic energy as function of the momentum transfer and the c.m.
angle calculated with the NNLOopt chiral interaction [44]. The lines
follow the same notation as in Fig. 5. The data for 150 MeV are taken
from Ref. [77], and for 200 MeV from Ref. [76].

cross section, that is smaller than the curve widths shown. This
is quite different from the calculations presented in Ref. [31],
where the analyzing power of 4He at 200 MeV misses most
data by a considerable amount. In part, our better agreement
may be due to our treatment of the projection operator Q
as outlined in Eqs. (6)–(8), which is important for scattering
from light nuclei [26]. Another possibility may be the choice
of the underlying NN interaction leading to a very different
spin-orbit force. This will need to be further explored.

The calculations of the differential cross section divided
by the Rutherford cross section for proton elastic scattering
off 16O is shown in Fig. 7. The analyzing power for laboratory
kinetic energies 100, 135, and 200 MeV are shown in Fig. 8.
Similar to the calculations for 4He, the value of Nmax is kept
constant, in this case at Nmax = 10, which is the largest Nmax

achievable in the NCSM with current resources, while h̄ω is

FIG. 7. The angular distribution of the differential cross section
divided by the Rutherford cross section for elastic proton scattering
from 16O at 100, 135, and 200 MeV laboratory kinetic energy as
function of the momentum transfer and the c.m. angle calculated
with the NNLOopt chiral interaction [44]. The dashed line represents
the calculation based on nonlocal densities using h̄ω = 16 MeV, the
solid line with 20 MeV, and the dash-dotted line with 24 MeV. For
all calculations Nmax = 10 is employed. The data for 100 MeV are
taken from Ref. [78], for 135 MeV from Ref. [79], and for 200 MeV
from Ref. [80]. The dashed vertical line in each figure indicates the
momentum transfer q = 2.45 fm−1 corresponding to the laboratory
kinetic energy 125 MeV of the np system.

varied between 16 and 24 MeV. The agreement between the
calculated differential cross section and the data is reasonable
at forward angles (up to 40◦) and low momentum transfer with
deviations beginning at around 1.5 to 2 fm−1 at all energies.
The dependence of the differential cross section on the basis
h̄ω values indicates that the calculations are not yet fully con-
verged at Nmax = 10. However, at small angles corresponding
to low values of the momentum transfer q, where we agree
reasonably well with the data, this dependence is relatively
small.
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FIG. 8. The angular distribution of the analyzing power for elas-
tic proton scattering from 16O at 100, 135, and 200 MeV laboratory
kinetic energy as function of the momentum transfer and the c.m.
angle calculated with the NNLOopt chiral interaction [44]. Also
included is the angular distribution of the spin rotation parameter
for elastic proton scattering from 16O at 200 MeV. The lines follow
the same notation as in Fig. 7. The data for 100 MeV are taken
from Ref. [78], for 135 MeV from Ref. [79], and for 200 MeV from
Ref. [80].

The experimental data for the analyzing power for 16O are
quite well described for proton energies 135 and 200 MeV for

momentum transfers q � 2.45 fm−1 (Fig. 8). Here again, the
analyzing power shows a weak dependence on h̄ω at small
angles (low momentum transfer), but this dependence in-
creases with the scattering angle. In fact, Ay is better described
than the differential cross section, indicating that the ratio
between central and spin-orbit force is still captured by the
calculation while the absolute magnitude starts to deviate with
increasing angles or momentum transfers. The comparison to
experimental data at 100 MeV shows the same general shape
but the agreement is not quite the same as the one observed
at higher energies. This is most likely an indication that
higher-order terms in the spectator expansion may become
more important at lower energies. Included in Fig. 8 is also
the spin rotation parameter at 200 MeV. Like the analyzing
power at the same energy, good agreement between the exper-
imental data and the calculation is obtained. A comparison to
earlier calculations of the full-folding microscopic potential
[30] shows improvement in both the differential cross section
and the analyzing power for a larger range of angles. Note
that the region below q = 2.45 fm−1 is the region where
NNLOopt was fitted, and this is the region where we have
reasonably good convergence and agreement with the data.
Again, comparing with Ref. [31] reveals that our calculations
describe the experimental values much better, indicating that
the spin-orbit force of Ref. [31] is quite different from our
calculations.

B. Elastic scattering observables for 12C and 6He

Strictly speaking the full-folding implementation of the
first-order term in the multiple scattering expansion is exact
only for nuclear states with a zero intrinsic spin, since—by
definition—spin-dependent terms in the first-order folding
potential that involve a spin flip of the struck target nucleon
naturally vanish for a spin-zero state of the target. We note,
however, that besides omitting these spin-dependent terms,
the present formalism is valid for a general nuclear state with
a mixture of any intrinsic spins. To investigate the quality
of describing scattering observables using this formalism, we
want to consider “open shell” even-even nuclei. These nuclei
have a ground state that is dominated by spin zero and often
the spin-zero component is found to be in excess of 80% of
the total wave function (e.g., see Table 3 in Ref. [25] for
calculations using NNLOopt and another realistic interaction).
For example, for 6He, calculations at Nmax = 12 show that
the zero-spin contribution to the ground state is about 80–
85 %. An interesting case is 12C, for which the ground state
has a comparatively large non-zero spin component, namely,
about 40%.

The results for proton elastic scattering off 12C are shown
in Figs. 9 and 10 for laboratory kinetic energies 122, 160,
and 200 MeV. The differential cross section divided by the
Rutherford cross section is shown in Fig. 9 while the analyz-
ing power is shown in Fig. 10. Here, Nmax is kept fixed at
Nmax = 10 (as for 16O) while h̄ω is varied between 16 and
24 MeV. The agreement among the differential cross section
experimental data and the calculations is good in the forward
direction, and reasonable for 160 and 200 MeV even past
the 2.45 fm−1 marker to about 3.5 fm−1 while for 122 MeV,
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FIG. 9. The angular distribution of the differential cross section
divided by the Rutherford cross section for elastic proton scattering
from 12C at 122, 160, and 200 MeV laboratory kinetic energy as
function of the momentum transfer and the c.m. angle calculated
with the NNLOopt chiral interaction [44]. The dashed line represents
the calculation based on nonlocal densities using h̄ω = 16 MeV, the
solid line with 20 MeV, and the dash-dotted line with 24 MeV. For
all calculations Nmax = 10 is employed. The data for 122 MeV are
taken from Ref. [81], for 160 MeV from Ref. [81], and for 200 MeV
from Ref. [82]. The dashed vertical line in each figure indicates the
momentum transfer q = 2.45 fm−1 corresponding to the laboratory
kinetic energy 125 MeV of the np system.

the cross section begins to deviate at the diffraction minima
near 2 fm−1. The analyzing power calculations in Fig. 10
reasonably agree with the data for proton energies 160 and
200 MeV for q values that are below the corresponding energy
to which the NNLOopt was fitted, while the results at lower
energies 122 MeV deviate more from the data, but retain the
same general shape as for 16O. Overall this result for 12C is
unexpectedly good since its ground state, as mentioned above,
has a comparatively large nonzero spin contribution. The
reason might be that this contribution is fully treated in this

FIG. 10. The angular distribution of the analyzing power for
elastic proton scattering from 12C at 122, 160, and 200 MeV labo-
ratory kinetic energy as function of the momentum transfer and the
c.m. angle calculated with the NNLOopt chiral interaction [44]. The
lines follow the same notation as in Fig. 10. The data for 122 MeV are
taken from Ref. [81], for 160 MeV from Ref. [81], and for 200 MeV
from Ref. [82].

formalism, which has captured most of the physics necessary
to describe these scattering observables, whereas the effect of
the neglected spin-dependent terms appear to be of secondary
importance. Indeed, it is obvious from the differential cross
section that there are deficiencies in the description, since
the experimental minima in the cross section differ from the
calculation.

Recently the differential cross section of protons off 6He
has been measured at 200 MeV/nucleon [53]. Since this en-
ergy falls within the range of energies studied here, we show in
Fig. 11 a comparison of the experiment with our calculation of
the differential cross section. Our calculations are performed
at Nmax = 18 (same as for 4He) while h̄ω is varied between
16 and 24 MeV, and our results are in good agreement with
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FIG. 11. The angular distribution of the differential cross section
divided by the Rutherford cross section and the analyzing power for
proton scattering from 6He at 200 MeV laboratory kinetic energy
as function of the momentum transfer q and the c.m. angle. The
dashed line represents the calculation based on nonlocal densities
using h̄ω = 16 MeV, the solid line with 20 MeV, and the dash-dotted
line with 24 MeV. For all calculations Nmax = 18 is employed. The
data are taken from [53]. The dashed vertical line in each figure
indicates the momentum transfer q = 2.45 fm−1 corresponding to the
laboratory kinetic energy 125 MeV of the np system.

the available data. In addition we show a prediction of the
analyzing power. Elastic scattering of 6He off a polarized
proton target has a somewhat longer history. The first mea-
surement of the analyzing power involving elastic scattering
of an exotic nucleus was carried out at 71 MeV/nucleon [54]
and still deviates considerably from microscopic calculations
[55–58]. Therefore, it will be illuminating to compare our
prediction with the measurement at 200 MeV/nucleon, once
fully analyzed [59].

C. Total and reaction cross sections

In addition to differential cross sections and spin ob-
servables, it is often illuminating to consider, e.g., neutron
total cross sections or reaction cross sections since they are
integrated over all scattering angles and may reveal averaged
information about the reaction. In our calculations the total
cross section is computed from the imaginary part of the
forward scattering amplitude, while the reaction cross section
is obtained using the optical theorem.

The total cross section for neutron scattering off 16O is
shown in Fig. 12 as function of the projectile laboratory
kinetic energy. Our calculations between 65 and 200 MeV
using values of h̄ω between 16 and 24 MeV are shown as
error bar (without a midpoint). To have a better comparison

FIG. 12. The total cross section for neutron scattering from 16O
as function of the neutron incident energy. The data are taken from
Ref. [83]. The solid band corresponds to calculations using the
NNLOopt chiral interaction [44] consistently in the nonlocal density
as well as in the NN t matrix with the band width determined
by different h̄ω values. The downward triangles use the NNLOopt

interaction only in the NN t matrix, while employing a HFB density
based on the Gogny-D1S interaction [60]. The squares use this
density together with the CD-Bonn [50] NN t matrix.

with previous work using the same theoretical approach but
different input we show as solid squares calculations based on
a Hartree-Fock-Bogoliubov (HFB) nonlocal density with the
Gogny-D1S interaction [60] and scattering amplitudes from
the CD-Bonn potential [50]. The solid triangles use the same
HFB density but the NNLOopt interaction for the scattering
amplitudes. From a comparison of those three calculations
we can conclude that the choice of interaction has a major
influence on the value of the total cross section. However,
only the consistent use of the NNLOopt interaction for the
scattering amplitudes and the one-body density leads to a very
good agreement with experiment between 100 and 200 MeV.
We observe that the calculation at 65 MeV significantly
underestimates the data, indicating that a first-order folding
potential is no longer sufficient to describe the scattering data
below about 100 MeV most likely due to a lack of absorption
in the single scattering term. We have found that if one
multiplies the effective potential by the scalar e0.244i, which
is consistent with similar factors found in Ref. [61], that it
uniformally improves all observables in which experimental
data exists (i.e., reduces the χ2/datum). We leave an analysis
of this effect to future work.

Furthermore, it is worthwhile to investigate if there is a cor-
relation between observables computed within the structure
calculation, and cross sections obtained from scattering. Here,
we use proton scattering data and calculations, since neutron
total cross section data for 4He were not available to us. In
Table I the total cross section, σtot, and the reaction cross
section, σreac, for proton scattering at 230 MeV laboratory
projectile kinetic energy from 16O, 12C, and 4He are given
together with the point-proton root-mean-square (rrms,p) radii
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TABLE I. The total cross section, reaction cross section, and point-proton rms radii for 16O, 12C, and 4He over a range of oscillator
parameter h̄ω values. All calculations are performed with Nmax = 10 for 16O and 12C while 4He used Nmax = 18. The experimental total
cross section and reaction cross section values are taken from [64]. The total cross section is an extracted value for the nuclear part. The
experimentally deduced point-proton rms radii are extracted from [62].

Target E [MeV] Exp. σtot[mb] σtot[mb] Exp. σreac[mb] σreac.[mb] Exp. rrms,p [fm] rrms,p [fm] h̄ω [MeV]

359.2 262.9 2.346 16
16O 230 380 ± 15 351.5 295 ± 12 253.3 2.569 ± 0.006 2.240 20

346.2 246.8 2.169 24

288.7 221.6 2.304 16
12C 230 290 ± 12 283.3 218 ± 5 214.5 2.327 ± 0.004 2.202 20

279.7 209.8 2.135 24

111.4 86.5 1.440 16
4He 230 109 ± 1 111.1 – 86.3 1.456 ± 0.005a 1.437 20

110.8 86.1 1.436 24

aA discrepancy between this value and that listed in Ref. [73] is mainly caused by a difference of the 4He charge radii used here and in Ref. [73].
However, both numbers agree within error bars.

of those nuclei, and compared to experimental data where
available. The experimentally deduced point-proton rrms,p are
calculated from experimental charge radii [62], using proton
and neutron mean-square charge radii R2

p = 0.769(13) fm2

[63] and R2
n = −0.1149(27) fm2 [62], respectively, and a

first-order relativistic correction of 0.033 fm2. The proton total
cross section refers here to the extracted nuclear part [64].
Three different values for h̄ω are listed in the table, for which
Nmax is kept fixed at values given in the table caption. The
calculated total and reaction cross sections are in a close
agreement with the data within its error bars, whereas the
point-proton rms radii are slightly underpredicted, as is often
the case for radii calculated from chiral potentials [65]. The
table hints at a correlation between the structure and reaction
observables. If one represents the calculated results for each
observable as coordinates of a vector, the scalar product of
the two traceless normalized (shifted so the mean of the

distribution is zero and the standard deviation is one) vectors
is a measure of their correlation [66]. Figure 13(a) plots the
coordinates of the traceless normalized vectors corresponding
to the reaction cross section (y axis) and to the point-proton
rms radius (x axis) for a given nucleus. Indeed, there is an
almost perfect correlation between the calculated reaction
cross sections with the calculated point-proton rms radii (or
equally, the charge radii) for varying NCSM model parame-
ters, Nmax and h̄ω, as shown in Fig. 13(a). This correlation
holds for both “closed shell” and “open shell” nuclei under
consideration, as well as for different laboratory projectile
kinetic energies (only 230 MeV is shown in the figure). This
means that the reaction cross section is sensitive to the average
radius, and not to the details of the spatial distribution, e.g.,
the deformation that is pronounced in 12C. Furthermore, such
a feature is especially important for uncertainty quantification
of the calculated cross section based on uncertainties obtained

FIG. 13. Calculated reaction cross sections vs. calculated point-proton rms radii rrms for proton scattering at 200 and 230 MeV laboratory
projectile kinetic energies off 4He, 12C, and 16O: (a) Correlation plot between the two observables at 230 MeV energy and targets of 4He,
12C, and 16O; to guide the eye, the perfect correlation is indicated by the grey dashed line (see text for details). (b) and (c) Calculated cross
sections as function of point-proton rrms radii for targets of 12C (b) and 16O (c), shown together with point-proton rrms radii extracted from
NCSM calculations (labeled as “Theory”), and compared to experimental cross sections (where data are available) and experimentally deduced
point-proton rms radii extracted from Ref. [62] (labeled as “Expt.”), with the corresponding errors shown by shaded areas (see text for details).
For each nucleus, calculations are performed for Nmax = 6, 8, and 10, and for h̄ω = 16, 20, and 24 MeV.
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for the ground-state rms radius of each nucleus. Calculated
cross sections as function of point-proton rrms,p radii for tar-
gets of 12C and 16O are shown in Figs. 13(b) and (c) together
with point-proton rrms,p radii extracted from NCSM calcula-
tions based on the crossover point as described in Ref. [67].
While not evident from the correlation results, Figs. 13(b) and
13(c) reveal a linear dependence with a comparable slope for
laboratory projectile kinetic energies between 100–230 MeV
(as an example, 200 MeV is also shown in the figure). Ex-
tracted radii and uncertainties are determined from NCSM
calculations up through Nmax = 10 and over the h̄ω range of
16–24 MeV that contains the fastest rate of convergence of
rrms,p with respect to Nmax, with a rather conservative estimate
for the error arising from h̄ω variations. Thus, e.g., for 12C,
the extracted ground-state rrms,p of 2.31(13) fm yields an
estimated reaction cross section of 222(9) mb for 230 MeV
laboratory projectile kinetic energy. It is interesting to note
that the extracted rrms,p radius and the estimated reaction
cross section lie quite close to the experimental values and
agree within the errors. Similarly, for 16O, for which the
extracted ground-state rrms,p is 2.32(11) fm, leading to the
estimate for the 230-MeV reaction cross section of 261(10)
mb. Such an almost perfect correlation with the rms radii
(charge radii) is also observed for the extracted total cross
section.

IV. CONCLUSIONS AND OUTLOOK

We have calculated the full-folding integral for the first-
order effective (optical) potential for NA scattering within the
framework of the spectator expansion of multiple scattering
theory. Those potentials are calculated ab initio, i.e., are
based consistently on one single NN interaction, in our case
the chiral next-to-next-to-leading order NNLOopt interaction
from Ref. [44], which is fitted to NN data up to 125 MeV
laboratory kinetic energy with χ2 ≈ 1 per degree of freedom,
and which describes the A = 3, 4 nucleon systems such that
the contributions of the 3NFs are smaller than in most other
parametrizations of chiral interactions. Based on this interac-
tion, the one-body nonlocal nuclear densities are calculated
for the “closed shell” nuclei 4He and 16O, as well as for the
“open shell” nuclei 6He and 12C using two-body interactions
only. The nonlocal densities are created translationally invari-
ant as laid out in Ref. [47]. Recoil and frame transformation
factors are implemented in the calculation of the scattering
observables in their complete form.

We calculated proton elastic scattering observables for the
above-mentioned nuclei at laboratory projectile energies from
100 to 200 MeV, compared them to experimental informa-
tion, and find them in very good agreement with the data
in the angle and momentum transfer regime where the first
term of the full-folding effective potential should be valid.
Specifically we want to point out the excellent agreement
of the predictions in this regime for the analyzing powers
with the data. That may be due to the specific fit of the
NNLOopt interaction, which seems to slightly change the ratio
of the central depth of the effective potential to its spin-
orbit part in addition to minimizing 3NF contribution. The
first-order term in the multiple scattering expansion does not

explicitly contain any 3NF contributions, thus the choice of
the NNLOopt works well with the theoretical content of the
effective potential. Further studies with different interactions
in the future will have to shed more light on the effect
including 3NFs in the one-body density for the first-order
effective potential. This will be particularly interesting, since
the description of the analyzing powers in the same energy
regime is quite different in Ref. [31] when the same nuclei are
considered.

The theoretical derivation of the first-order potential ne-
glects spin-dependent terms that vanish for nuclear states
with total intrinsic spin zero, thus we first considered the
“closed shell” nuclei 4He and 16O in our study. Since the same
formulation is often also applied to “open shell” even-even
nuclei like 12C [31,34], we tested our approach also for this
case. We find that the description of the differential cross
section and the analyzing power is of similar quality as the
one we found for 16O. We also predict differential cross
section and analyzing power at 200 MeV for 6He, a reaction
measured and still being analyzed at RIKEN. Applying a
formulation of the first-order term in the multiple scattering
theory in which only the NN Wolfenstein amplitudes A and
C enter, implies neglecting contribution that come from the
other spin couplings inherent in the NN interaction. They may
be small, considering that the one-body densities of the nuclei
considered are dominated by spin-zero components and also
hinted by the reasonably good results presented here for 12C,
but nevertheless this approximation will have to be tested in
future work. Exotic nuclei may very well have larger nonzero
spin components.

We also calculated total cross sections for neutron scat-
tering and reaction cross sections for proton scattering. We
found that the neutron total cross section for 16O computed
consistently with the NNLOopt interaction gives a superior
description of the data compared to previous calculations,
which employed different interactions for the one-body den-
sity and the two-body t matrix. When comparing total reaction
cross sections with point-proton rrms radii extracted from the
structure calculation, we find an almost perfect correlation
between those two quantities for both, “closed shell” and
“open shell” nuclei under consideration, indicating that the
reaction cross section obtained from the first-order folding
potential is mainly sensitive to the average radius of these
nuclei.
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APPENDIX: CENTER-OF-MASS (CoM) CONTRIBUTION
IN SCATTERING OBSERVABLES

It is long-standing knowledge that nuclear one-body densi-
ties computed in fixed coordinates, either local or nonlocal,
must have their CoM contribution removed in order to be
translationally invariant [47,68–72]. Working with transla-
tionally invariant one-body densities is particularly important
in reaction calculations, since those are carried out in the
c.m. frame of the particles involved in the reaction. It is well
understood that the size of the CoM contribution decreases
with the nuclear mass as 1/A. In Fig. 14 the differential
cross section divided by the Rutherford cross section along
with the analyzing power is shown for both 4He (a) and
16O (b) at 200 MeV laboratory kinetic energy. The solid
lines represent the full-folding calculation using a transla-
tionally invariant nonlocal density, while the dashed lines
represent a calculation containing the c.m. contribution. The
cross sections follow the expected trend, with 4He being
greatly affected already at relatively low momentum transfers,
while the effect for 16O is only evident at large momentum
transfers.

The analyzing powers are less affected by the c.m. con-
tribution, even for 4He, which is most likely due to the fact
that the analyzing powers are ratios of spin-dependent cross
sections, and deviations in their magnitude are divided out. A
similar, even more detailed study is presented in Ref. [31].
We want to confirm those results and suggest that the an-
alyzing power should be generally unaffected by the CoM

FIG. 14. The angular distribution of the differential cross section
divided by the Rutherford cross section and the angular distribution
of the analyzing power for elastic proton scattering from 4He (a) and
16O (b) at 200 MeV laboratory kinetic energy as function of the
momentum transfer and the c.m. angle calculated with the NNLOopt

chiral interaction [44]. The solid line represents the calculation based
on nonlocal densities without the center-of-mass (CoM) contribution
while the dashed line includes it. For all 4He calculations, Nmax = 18
and h̄ω = 20 MeV are employed, while all 16O calculations employ
Nmax = 10 and h̄ω = 20 MeV. The data for 4He at 200 MeV are
taken from Ref. [76] while the data for 16O at 200 MeV are taken
from Ref. [80]. The dashed vertical line in each figure indicates the
momentum transfer q = 2.45 fm−1 corresponding to the laboratory
kinetic energy 125 MeV of the np system.

contribution for nuclei A � 16, while cross sections should be
unaffected for A � 20. Thus, ab initio structure calculations
for heavier nuclei for which it is not possible to remove the
c.m. contribution exactly, can also provide one-body densities
for NA scattering calculations.
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