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Excitation energy dependence of the moments of inertia of well deformed nuclei
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Background: Experimental data on some nuclei indicate a significant increase of the moment of inertia of
excited states in comparison with its value in the ground state. It is interesting to investigate the reasons for this
effect based on a microscopic nuclear model.
Purpose: To investigate the excitation energy dependence of the excited state moments of inertia of some even-
even well deformed nuclei.
Method: The Hamiltonian of the quasiparticle phonon model with a mean field part, monopole pairing, and
multipole-multipole residual interaction is used to calculate the moments of inertia of excited states.
Results: The moments of inertia of the γ -vibrational states of several rare earth nuclei and of the 1+ states of
156,158Gd and 160,162,164Dy are calculated and compared to experimental data.
Conclusion: It is shown that both the blocking effect and the Coriolis coupling between quasiparticles and the
rotating core contribute significantly to the increase of the excited states’ moments of inertia in comparison to
the ground state value. In the case of the 1+ states a contribution of the Coriolis interaction of quasiparticles and
the rotating core can be considerably larger than the blocking effect. This is one reason for a very large value of
the moment of inertia of some 1+ states which can exceed the rigid body value.
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I. INTRODUCTION

The moments of inertia of the ground and excited states
of well deformed nuclei are important characteristics of their
structure. There is a huge amount of experimental data on
them. The first expression for calculations of the nuclear
ground state moment of inertia derived using the language of
the microscopic nuclear model is known as the Inglis formula
[1]. There are other approaches to deriving an expression for
the moment of inertia [2–4]. The values of the ground state
moments of inertia resulting from these formulas are usually
very close to the rigid body value. However, as is well known
the experimental moments of inertia for nuclear ground state
bands are a factor 2 to 3 smaller than their rigid body values. In
[5] and [6] it was indicated that the residual interactions would
lower these values. The most important effect comes from
pair correlations. The inclusion of this effect into calculations
of the ground state moment of inertia has been realized
within the BCS formalism in [7] and [8]. This procedure
gives the well-known expression for the moment of inertia
arising from the admixture of the two-quasiparticle states
to the quasiparticle vacuum in a perturbation treatment of a
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relatively small Coriolis term. The theory agrees satisfactorily
with experiment in most cases.

The same approach which has been used in [7] and [8]
for calculations of the ground state moments of inertia of
the even-even nuclei can be applied to calculations of the
moments of inertia of odd-mass nuclei and of excited states
of even-even nuclei. In these cases, additional terms appear
in the formula for the moment of inertia. The reason of their
appearance is the following. When the ground state of an
even-even nucleus, which is considered as a quasiparticle
vacuum, is perturbed by the Coriolis interaction, the wave
function of the ground state acquires an admixture of two-
quasiparticle components. In addition to this mechanism in
the case of odd-mass nuclei or of excited states of even-
even nuclei, the interaction between quasiparticles and the
rotational motion of the core can change the quasiparticle
states without changing the total number of quasiparticles.
This happens because the single particle angular momentum
operator written in the quasiparticle representation contains a
term which does not change the number of quasiparticles but
describes their scattering. The corresponding formula can be
found in [9]. For instance, for the moment of inertia of the
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two-quasiparticle state |ρ1, ρ2〉 we have

�(ρ1,ρ2 ) = 2
∑
s1,s2

|〈s1| jx|s2〉|2
[
us1 (ρ1ρ2)vs2 (ρ1ρ2) − us2 (ρ1ρ2)vs1 (ρ1ρ2)

]2

εs1 (ρ1ρ2) + εs2 (ρ1ρ2)

+
∑

s1

|〈ρ1| jx|s1〉|2
[
us1 (ρ1ρ2)uρ1 (ρ1ρ2) + vs1 (ρ1ρ2)vρ1 (ρ1ρ2)

]2

εs1 (ρ1ρ2) − ερ1 (ρ1ρ2)

+
∑

s2

|〈ρ2| jx|s2〉|2
[
us2 (ρ1ρ2)uρ2 (ρ1ρ2) + vs2 (ρ1ρ2)vρ2 (ρ1ρ2)

]2

εs2 (ρ1ρ2) − ερ2 (ρ1ρ2)
. (1)

In Eq. (1) ρ1, ρ2 are the quantum numbers of the two-
quasiparticle states under consideration; 〈s1| jx|s2〉 is the ma-
trix element of the x component of the single particle an-
gular momentum operator; εs1 (ρ1ρ2) is the energy of the
single quasiparticle state with quantum numbers s1; and
us(ρ1ρ2), vs(ρ1ρ2) are the coefficients of the u − v Bogoli-
ubov transformation. The collective angular momentum is di-
rected here along the x axis. The single quasiparticle energies
and the u − v coefficients in Eq. (1) are marked by the quasi-
particle indices ρ1ρ2 which means that they are calculated
taking into account the blocking effect. It is assumed in the
derivation of Eq. (1) that the self-consistent mean field does
not depend on rotation. This assumption is reasonable for the
small values of angular momentum considered below.

To our knowledge much less calculations have been per-
formed for the moment of inertia of excited states of even-
even nuclei compared to those for the ground state. Some
results of these calculations can be found in [9]. Generally,
it is expected that the moments of inertia of excited states
exceed the ground state moments of inertia. The analysis of
experimental data on the excited 1+ states of 156Gd shows
that their moments of inertia increase with excitation en-
ergy [10]. One example is the rotational band based on the
mixed-symmetry 1+ state of 156Gd with an excitation energy
of 3070 keV. Also the 2+ state belonging to this band is
known experimentally with an excitation energy of 3089 keV
[11]. Although, knowledge of a single energy difference is in
general not enough to determine both the moment of inertia
and the decoupling parameter, the calculations indicate that
here the decoupling parameter is very small and may be
neglected. The moment of inertia of the rotational band, de-
termined under this assumption, exceeds not only the ground
state moment of inertia in this nucleus significantly but also
the rigid body value by more than 50%.

It is the aim of the present paper to investigate the excita-
tion energy dependence of the excited states moment of inertia
of even-even well deformed nuclei in the framework of the
quasiparticle-phonon model [9].

II. CALCULATIONS OF EXCITED STATE MOMENTS OF
INERTIA OF EVEN-EVEN WELL DEFORMED NUCLEI

In this paper we present the results of calculations of the
moment of inertia of the γ -vibrational states and of Kπ = 1+
excited states of several rare earth nuclei and their analysis.
The wave functions of the excited states are obtained mainly

as a mixture of several two-quasiparticle components. For this
reason the moment of inertia of these states is calculated using
the equation

� =
∑
ρ1,ρ2

ψ2
ρ1ρ2

�(ρ1,ρ2 ), (2)

where ψ2
ρ1ρ2

is the contribution of the corresponding two-
quasiparticle component to the norm of the wave function of
the state under consideration. The backward amplitudes φ2

ρ1ρ2

are small in the case of well deformed nuclei and for this
reason they are neglected in Eq. (2).

Equation (1) for �(ρ1,ρ2 ) is derived assuming applicability
of perturbation theory to the treatment of the Coriolis term in
the cranking model Hamiltonian. This assumes the inequality

h̄�rot

∣∣∣∣ 〈s| jx|s′〉
εs′ − εs

∣∣∣∣ � 1 (3)

to be correct, where �rot is the rotational frequency. Consider-
ing the values of all terms on the right-hand side of Eq. (1), we
have found that in the second and the third sums there are only
one or at most two terms separately for neutrons and protons,
that dominate the sums. The contribution of the other terms
is less than 3% of the total value of the moment of inertia.
For some states only a single contribution of the proton or
neutron subsystems is essential. At the same time just these
terms cannot be treated in perturbation theory even for low
I because of the large matrix elements of jx and because of
small energy differences in the denominators. This happens
when the single quasiparticle states ρ and s in the matrix
element 〈s| jx|ρ〉 satisfy the following selection rules for the
asymptotic quantum numbers:

|ns − nρ | = 1, |	s − 	ρ | = 1. (4)

Examples are ρ = n[642] and s = n[651], ρ = n[514] and
s = n[523], ρ = p[541] and s = p[532]. Nonapplicability of
the perturbation theory means that an exact diagonalization of
the quasiparticle Hamiltonian with the Coriolis term should
be done. At the same time in every concrete case the number
of terms with large matrix elements of |〈ρ| jx|s〉| and small
energy denominators |ερ − εs| is quite restricted. For instance,
in the case of 156Gd the neutron single quasiparticle states
coupled by strong matrix elements of jx have the follow-
ing excitation energies: ε(n[606]) = 7.12 MeV, ε(n[615]) =
5.56 MeV, ε(n[624]) = 3.93 MeV, ε(n[633]) = 2.36 MeV,
ε(n[642]) = 1.26 MeV, ε(n[651]) = 1.24 MeV, ε(n[660]) =
1.57 MeV. In this sequence there are only two single
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quasiparticle levels, namely, n[642] and n[651] lying near
the Fermi surface and having very close values of the exci-
tation energies. For protons we have ε(p[505]) = 5.12 MeV,
ε(p[514]) = 3.18 MeV, ε(p[523]) = 1.52 MeV, ε(p[532]) =
1.39 MeV, ε(p[541]) = 2.46 MeV, ε(p[550]) = 3.18 MeV.
In this case there are also only two single quasiparticle levels

with close excitation energies. This implies that a diagonal-
ization of the Hamiltonian matrix can be restricted to the
basis including two or three single quasiparticle states, only.
For instance in the case of mixing of only two single quasi-
particle states the expression for �(ρ1,ρ2 ) take the form (see
Appendix)

�(ρ1,ρ2 ) =2
∑
s1,s2

|〈s1| jx|s2〉|2
[
us1 (ρ1ρ2)vs2 (ρ1ρ2) − us2 (ρ1ρ2)vs1 (ρ1ρ2)

]2

εs1 (ρ1ρ2) + εs2 (ρ1ρ2)
+

(
εs1 − ερ1

)
2�2

rot

⎛
⎜⎜⎝1− 1√

1 + 4�2
rot

|〈s1| jx |ρ1〉|2(us1 uρ1 +vs1 vρ1 )2

(εs1 −ερ1 )2

⎞
⎟⎟⎠

+
(
εs2 − ερ2

)
2�2

rot

⎛
⎜⎜⎝1 − 1√

1 + 4�2
rot

|〈s2| jx |ρ2〉|2(us2 uρ2 +vs2 vρ2 )2

(εs2 −ερ2 )2

⎞
⎟⎟⎠. (5)

The Coriolis antipairing effect is discussed in the literature
as a mechanism responsible for an increase of the moment of
inertia of an excited state in comparison to the ground state
[12]. This effect is contained in the first sum in Eq. (5) if the
blocking effect generated by the presence of the quasiparticles
in the states ρ1 and ρ2 is taken into account. If the single
particle states ρ1 and ρ2 are located near the Fermi surface
their blocking can significantly decrease the pairing gap 


increasing in this way the moment of inertia. The blocking
effect is negligible for the ground state moment of inertia
although it is in principle also present in this case due to
the ground state correlations. But the backward amplitudes,
characterizing the ground state correlations, are small in well
deformed nuclei and, therefore, the corresponding blocking
effect can be neglected here. The second and the third terms
in Eq. (5) do not contribute to the ground state moment of
inertia. Their presence reflects the possibility for a nucleus to
increase angular momentum without increasing the number
of quasiparticles: the angular momentum of the nucleus is
increased by changing the state occupied by a quasiparticle
to the one carrying more angular momentum along the axis
of the collective rotation without increasing the number of
quasiparticles.

If we expand Eq. (5) in terms of �rot and keep only the
lowest order term then Eq. (5) is reduced to Eq. (1), however,
with only one term in the second and third sums. Since higher
order terms in the Coriolis interaction are taken into account
in Eq. (5), it explicitly depends on the rotational frequency. In
the calculations below the values

h̄�rot = E (J + 1) − E (J )√
(J + 1)(J + 2) − √

J (J + 1)
(6)

are taken from the experimental data on the corresponding
rotational bands when possible. J is the angular momentum
of a rotational band head and E (J ′) is the excitation energy of
the state with angular momentum J ′ belonging to this band.
A strong impact of the energies of some single quasiparticle
states on the excited state moments of inertia by the small
energy denominators (ερ − εs) can be used as an additional

test of the correctness of the single particle level scheme used
in the calculations.

It is seen from Eqs. (2) and (5) that, in order to calculate
the moments of inertia of the excited states, we need to know
the single quasiparticle energies, the u − v coefficients of the
Bogoliubov transformation, and the amplitudes characterizing
the quasiparticle structure of the excited states. To calculate
these quantities we have used the Hamiltonian of the quasi-
particle phonon model [13] which contains the mean field
part for protons and neutrons, the monopole pairing inter-
action, and the multipole-multipole and the spin-multipole
interactions in a separable form [14]. These interactions act
in the particle-particle and in the particle-hole channels. Since
deformation leads to a more uniform distribution of the single
particle states, the density profile of a deformed nucleus is
relatively flat inside a nucleus. This resembles the use of the
Woods-Saxon single-particle potential. In our calculations we
have used the parameters that were determined in numerous
previous calculations ([15] and references therein).

We now turn to the results of calculations of the excited
states’ moments of inertia. We mention that, in fact, we have
calculated not the absolute values of the excited states’ mo-
ments of inertia but the differences between the excited state
and ground state moments of inertia. Then the experimental
values of the corresponding ground state moment of inertia are
added to the calculated values of the differences. The ground
state moment of inertia is given in the calculations by the first
term in Eq. (5) which has been calculated without inclusion
of the blocking effect, because it is practically absent in this
case.

The results of our calculations of the moment of inertia of
the γ -vibrational states of several well deformed rare earth
nuclei are presented in Table I. The expectation is that these
moments of inertia should be larger than those for the ground
states. It is seen from Table I and Fig. 1 that the calculated
values of the γ -band moments of inertia are in qualitative
agreement with the experimental data in the following aspects:
they exceed systematically the ground state moments of iner-
tia as it happens for the experimental data; their variation from
nucleus to nucleus follows the same tendency as the data and
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TABLE I. Calculated values of the excitation energies and the

moments of inertia of the γ -vibrational state (
�(2+

γ )

h̄2 ) in several rare-
earth nuclei. The experimental values of these quantities and of the
ground state moment of inertia are shown for comparison.

Nucleus E (2+
γ ) in MeV

�(2+
γ )

h̄2 in MeV−1 �(gs)
h̄2 in MeV−1

exp cal exp cal exp

156Gd 1.154 1.046 34.8 40.3 33.7
158Gd 1.187 1.238 40.9 46.2 37.7
160Dy 0.966 1.057 36.8 40.1 34.6
162Dy 0.888 0.915 40.5 48.2 37.2
166Er 0.786 0.860 41.8 50.2 37.2
178Hf 1.175 1.196 33.3 35.1 32.2

their deviations from the experimental values are not larger
than 22%. Although the presented calculations systematically
overestimate the excess of the excited state’s moment of
inertia over those of the respective ground states, it reproduces
satisfactorily the tendency of this excess. The correlation
between the calculated and experimental deviations of the
moment of inertia of the 2+

γ state from the experimental value
of the ground state moment of inertia is shown in Fig. 2. It
is seen that these values correlate approximately linear with
some scatter. The calculated values are as a rule higher than
the experimental ones. This is in contrast with the situation for
the calculated values of the ground state moments of inertia
which are systematically lower than the experimental values
[16,17]. We mention that the γ -vibrational states are more
collective than the Kπ = 1+ states considered below in which
one or two main components exhaust the norm of the wave
function. In the case of the γ -vibrational states the three most
important components give typically less than 50% of the
norm, only.

Important and comparably large contributions to the calcu-
lated values of �(2+

γ ) come from the blocking effect and the
quasiparticle interaction presented by the second and the third
terms in Eq. (5) for the case when the consideration of the
mixing of the two-quasiparticle states can be restricted to two
components. Since the lowest lying two-quasiparticle states
give the main contribution to the structure of the γ -vibrational
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FIG. 1. Calculated and experimental values of the moment of
inertia of the 2+

γ state of some well deformed rare-earth nuclei.
Experimental values of the ground state moment of inertia are shown
for comparison.
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FIG. 2. Correlation between the calculated and the experimental
values of the differences of the 2+

γ and the ground state moments of
inertia.

state, the contributions of the second and the third terms in
Eq. (5) are positive.

The second class of excited states whose moments of
inertia are calculated in this paper is given by the 1+ states
of 156Gd with excitation energies from 1.9 MeV to 3.1 MeV
and by the 1+ states of 158Gd and 160,162,164Dy which are
characterized by strong M1 transitions to the ground state. The
results of our calculations are presented in Tables II and III.

As it is seen from Table II the calculated moments of inertia
of these 1+ states of 156Gd significantly exceed the moment
of inertia of the ground state of the same nucleus which is
equal to 33.7 MeV−1. While our calculations have shown that
in the case of the γ -vibrational states both, blocking effect
and quasiparticle interaction, make comparable contributions,
the effect of the quasiparticle interaction can be significantly
higher in the case of the 1+ states. As it is seen from Table II
this effect is especially large in the case of the 1+ state at
E∗

cal = 2.909 MeV. The rotational band based on this state
is characterized by the largest strengths for M1 transitions
to the ground state. Its excitation energy is close to the
excitation energy of the band head state for which the moment
of inertia measured in [11] has the value 105 MeV−1 which
exceeds the rigid body value. The reason is the following.
An important contribution to the structure of this state comes
from the neutron two-quasiparticle component [651]3/2+ ⊗
[660]1/2+. The neutron single quasiparticle states [651]3/2+
and [642]5/2+ that are strongly mixed by the Coriolis

TABLE II. Calculated values of the excitation energies (E∗
cal) and

the moments of inertia of some 1+ states of 156Gd. The contribution
of the blocking effect (
 �(1+

n )
h̄2 )

block
and the quasiparticle interaction

(
 �(1+
n )

h̄2 )
qp int

are given separately in the last two columns. Energies

are given in MeV. Other quantities are given in MeV−1.

E∗
cal

( �(1+
n )

h̄2

)
cal

(



�(1+
n )

h̄2

)
block

(



�(1+
n )

h̄2

)
qp int

1.900 53.6 13.4 6.5
2.182 79.9 9.6 36.6
2.450 60.3 4.4 22.2
2.795 67.2 6.1 27.4
2.909 85.6 6.0 45.9
3.109 48.9 6.2 9.0
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TABLE III. Calculated values of the excitation energies (E∗
cal)

and the moments of inertia of some 1+ states in 158Gd and
160,162,164Dy. The contribution of the blocking effect (
 �(1+

n )
h̄2 )

block
and

the quasiparticle interaction (
 �(1+
n )

h̄2 )
qp int

are given separately in the

last two columns. Energies are given in MeV. Other quantities are
given in MeV−1.

Nucleus E∗
cal

( �(1+
n )

h̄2

)
cal

(



�(1+
n )

h̄2

)
block

(



�(1+
n )

h̄2

)
qp int

158Gd 2.908 75.9 5.5 32.7
160Dy 2.933 127.8 7.0 86.2
162Dy 2.917 54.4 4.3 12.9
164Dy 2.680 63.9 8.4 14.6

interaction have very close energies: 1.244 MeV and
1.269 MeV, correspondingly. We stress that the results ob-
tained can be sensitive in some cases to small variations of
the single particle level scheme.

Table III presents our results for the moments of inertia
of the selected 1+ states of 158Gd and 160,162,164Dy that are
characterized by the largest calculated B(M1) values for tran-
sitions to the ground states [18]. Hence, these states, together
with the 1+ state of 156Gd calculated at 2.909 MeV shown in
Table II, may be identified with the largest fragments of the
experimental M1 excitation strength distribution often called
scissors mode.

The largest moment of inertia is obtained for the 1+ state
of 160Dy calculated at 2.933 MeV excitation energy. The
main contribution to the structure of this state is provided
by the neutron two-quasiparticle component [642]5/2+ ⊗
[402]3/2+. The neutron single quasiparticle state [642]5/2+
is coupled by the large matrix element of the angular momen-
tum operator jx to the [651]3/2+ single quasiparticle state also
lying near the Fermi surface. Also this case features clearly the
situation that we have analyzed above.

III. SUMMARY

We have studied excited states’ moments of inertia of well
deformed axially symmetric nuclei. The moments of inertia of
the γ -vibrational states and Kπ = 1+ excited states of several
rare earth nuclei are considered. The blocking effect and the
Coriolis interaction between quasiparticles and the rotating
core are taken into account.

The results obtained for the moments of inertia of the
γ -vibrational states are in a qualitative agreement with the
experimental data. They exceed systematically the ground
state moments of inertia and their calculated variation from
nucleus to nucleus reproduces the observed tendency. The
calculated values deviate from the experimental ones no more
than for 22%. Comparable contributions to the increase of the
moment of inertia of the γ band over the one of the ground
band come from the blocking effect and from the Coriolis
interaction of quasiparticles.

The calculated moments of inertia of the 1+ states signifi-
cantly exceed the moments of inertia of the ground states. In
contrast to the results obtained for the γ -vibrational states, the
effect of the Coriolis interaction between quasiparticles and

the rotating core can be significantly larger than the blocking
effect. This results in some cases in very large values for the
moment of inertia of the 1+ states that can even exceed the
rigid body value. This situation is realized if near the Fermi
surface there are two single quasiparticle states coupled by a
strong matrix element of the Coriolis interaction and, at the
same time, one of these states contributes significantly to the
structure of the excited state under consideration.
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APPENDIX

In this Appendix we describe shortly a derivation of
Eq. (5). The Schrödinger equation in the rotating system has
the form

(h − h̄� jx )�ω = eω�ω, (A1)

where h is a Hamiltonian of the noninteracting quasiparticles

h =
∑

ρ

ερα
+
ρ αρ, (A2)

� is a rotational frequency, and jx is the x component of the
single particle angular momentum operator. In the quasiparti-
cle representation jx has the following structure:

jx =
∑
ρ,ρ ′

aρ,ρ ′α+
ρ αρ ′ +

∑
ρ,ρ ′

bρ,ρ ′ (α+
ρ α+

ρ ′ + αρ ′αρ ). (A3)

Here, the matrix elements aρ,ρ ′ and bρ,ρ ′ are determined by
the single particle matrix elements of jx and the coefficients
of the u − v Bogoliubov transformation.

The second term in Eq. (A3) changes the number of
quasiparticles by two units. Because of the large value of
the energy differences between the states connected by this
term the corresponding part of the Coriolis interaction can be
treated by perturbation theory. A contribution of this part of
the Coriolis term in the Hamiltonian to the moment of inertia
is given by the first sum in Eq. (1). Below we consider only a
contribution of the first term in Eq. (A3).

The eigenvalues eω from Eq. (A1) are referred to as the
single quasiparticle energies in the rotating frame [19]. They
are obtained by a diagonalization of the matrix

ερδρρ ′ − h̄�aρ,ρ ′ . (A4)

The energies of the single quasiparticle state measured in the
laboratory frame are calculated as [19]

e = 〈�ω|h|�ω〉 = eω + h̄�〈�ω| jx|�ω〉. (A5)

Consider the case when only two single quasiparticle levels
|ρ〉 and |s〉 are strongly mixed and the other mixing matrix
elements give a small correction which can be neglected in
the simplest approximation. Then the matrix Eq. (A4) can be
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diagonalized analytically and using Eq. (A5) we obtain

eρ = ερ + 1

2
(εs − ερ )

⎛
⎝1 − 1√

1 + 4(h̄�asρ )2

(εs−ερ )2

⎞
⎠. (A6)

Only the second term in Eq. (A6) contains a dependence on � and therefore only this term contributes to the expression for the
moment of inertia.
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