
PHYSICAL REVIEW C 99, 044314 (2019)

Temperature-dependent symmetry energy of neutron-rich thermally fissile nuclei

Abdul Quddus,1 M. Bhuyan,2,3,4 Shakeb Ahmad,1 B. V. Carlson,4 and S. K. Patra5,6

1Department of Physics, Aligarh Muslim University, Aligarh 202002, India
2Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia

3Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
4Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo, Brazil

5Institute of Physics, Bhubaneswar 751005, India
6Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India

(Received 26 October 2018; published 23 April 2019)

Background: The density-dependent symmetry energy coefficient plays a crucial role in understanding a variety
of issues in nuclear physics as well as nuclear astrophysics. It is quite interesting and crucial to determine
the symmetry energy coefficient and its related observables for neutron-rich thermally fissile nuclei at finite
temperature.
Purpose: We evaluate the symmetry energy coefficient, neutron pressure, and symmetry energy curvature of a
finite nucleus from the corresponding quantities of infinite nuclear matter. Moreover, we correlate an effective
symmetry energy coefficient and its related observables with the neutron skin thickness of neutron-rich thermally
fissile nuclei at a finite temperature.
Methods: The temperature-dependent relativistic mean field model (TRMF) is used to obtain the ground and
excited state bulk properties of finite nuclei and the energy density, pressure, and the symmetry energy for
infinite nuclear matter. The TRMF model with FSUGarnet, IOPB-I, and NL3 parameter sets is used for the
present analysis. The effective nuclear matter properties are used to estimate the corresponding quantities of
finite nuclei by using the local density approximation.
Results: Nuclear bulk properties such as binding energy, quadrupole deformation, root-mean-square charge
radius of the nuclei, and the equation of state and symmetry energy for infinite symmetric nuclear matter are
estimated within the TRMF model. The nuclear matter observables at the local density of the nuclei serve as an
input to obtain the effective symmetry energy coefficient, neutron pressure, and the symmetry energy curvature
of 234,236,250U and 240Pu nuclei. The influence of temperature and density on these properties for neutron-rich
thermally fissile nuclei is observed. A correlation is established between the neutron skin thickness and the
neutron pressure of the nuclei.
Conclusions: The studied properties of nuclei such as effective symmetry energy coefficient, neutron pressure
and symmetry energy curvature can be used in the synthesis of neutron-rich thermally fissile nuclei. The method
presented here (fully microscopic) can be used further to study the properties of exotic and superheavy nuclei
from the corresponding quantities of nuclear matter and vice versa.
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I. INTRODUCTION

Thermally fissile nuclei have the tendency to undergo
fission even when a zero energy neutron (at room temperature)
strikes them. In nature, 233,235U and 239Pu are thermally fissile.
Of these, 235U is naturally available with an isotopic fractional
abundance of ≈0.7% [1]. 233U and 239Pu are formed by
232Th and 238U, respectively, through neutron absorption and
subsequent β decays. It is well known that these nuclei have a
great impact on society. One of the applications of thermally
fissile nuclei is their use in controlled energy production. It is
important to mention that Satpathy et al., have found several
neutron-rich uranium and thorium isotopes showing thermally
fissile behavior [2]. These predicted neutron-rich thermally
fissile nuclei can produce more energy than the naturally
available thermally fissile nuclei. 250U is one these. Due to
the great importance of thermally fissile nuclei, it is worth
studying their properties.

Several studies have been carried out to investigate struc-
tural properties and reaction dynamics of the thermally fissile
nuclei and the isotopic series of actinide nuclei [3–7]. In our
previous work [8], we studied the ground and excited state
bulk properties of 234,236U and 240Pu nuclei. We have also
investigated the properties (specifically, fission parameters) of
the neutron-rich thermally fissile 244–262Th and 246–264U nuclei
within the relativistic mean field model at finite temperature
(T ) [9]. Apart from the other bulk properties of a nucleus, it
is also fruitful to know the properties, such as the symmetry
energy coefficient, neutron pressure, and symmetry energy
curvature, which can be helpful in synthesizing neutron-rich
superheavy and exotic nuclei. In a fission process, the ther-
mally fissile nuclei 233,235U and 239Pu absorb a slow neutron
and make the compound nuclei 234,236U and 240Pu, respec-
tively. These compound nuclei then fission into fragments and
emit neutrons. Neutron-rich thermally fissile nuclei undergo
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multifragment fission, an exotic decay mode in which, along
with fragments, several prompt scission neutrons are emitted
from the neck [2]. This fission process is directly connected
with the neutron multiplicity of the surface region. It is
thus of interest to know the temperature-dependent effective
symmetry energy and its related observables for thermally
fissile nuclei.

The nuclear symmetry energy plays a crucial role in dif-
ferent areas of nuclear physics, for example, in the structure
of ground state nuclei [10–12], the dynamics of heavy-ion
reactions [13,14], the physics of giant collective excitation
[15], and the structure, dynamics, and composition of neutron
stars [16,17]. It also determines various neutron star proper-
ties such as their cooling rates, crust thickness, mass-radius
relationship, and moment of inertia [18]. Isospin asymmetry
in nuclear matter arises due to differences in proton and
neutron densities and masses. It is remarked in Ref. [19] that
the density type isospin asymmetry is described by ρ meson
(isovector-vector) exchange and the mass type asymmetry by
δ meson (isovector-scalar) exchange. The symmetry energy is
nearly equal to the energy cost used to convert symmetric nu-
clear matter to asymmetric matter. Astrophysical observations
and the availability of exotic beams have increased interest in
the symmetry energy. Furthermore, the internal configuration
of a nuclear system (especially, of a neutron-rich nucleus)
such as its distribution of nucleons, interaction strengths, and
the nucleon dynamics influence the neutron pressure and the
observables related to it.

Due to the importance of the symmetry energy, its char-
acterization through experiment is a crucial step towards our
capability of interpreting neutron-rich nuclei and neutron star
matter. However, the symmetry energy is not a directly mea-
surable quantity. It is extracted from the observables related
to it. It has been found that the radius of a neutron star is
correlated to the density dependence of the symmetry energy
at the saturation point [20]. Theoretically, one observes that
the slope parameter (L coefficient), and hence the pressure,
is strongly correlated to the neutron skin thickness of 208Pb
[21–24] and the radius of a neutron star. Even the precise
measurement of neutron skin thickness is difficult, yet it is a
sensitive probe of the nuclear symmetry energy. Danielewicz
has demonstrated that the ratio of the bulk symmetry energy to
the surface symmetry energy is correlated to the neutron skin
thickness [25]. The findings of Lee et al., show that the surface
symmetry energy term is more sensitive to temperature than
the volume energy term [26]. Furthermore, the dependence
of the symmetry energy on density and temperature have a
crucial role in explaining various phenomena in heavy ion col-
lisions, supernovae explosions, the liquid-gas phase transition
of asymmetric nuclear matter, and mapping the location of the
neutron drip line in the nuclear landscape [20,27,28].

The importance of the symmetry energy and its sensitivity
to temperature and density have motivated us to study it in
neutron-rich thermally fissile nuclei. In this paper, we study
the symmetry energy, neutron pressure, and symmetry energy
curvature of 234,236,250U and 240Pu at finite temperature. The
motivation behind choosing these nuclei has already been
stated, i.e., the thermally fissile nature of the nuclei and their
importance for energy production. The symmetry energy of

finite nuclei at saturation density has been studied by using
various formulas of liquid drop models [29–32], the random
phase approximation based on the Hartree-Fock (HF) ap-
proach [33], the energy density functional of the Skyrme force
[34–37], the relativistic Lagrangian with density-dependent
meson-nucleon vertex function [38], the relativistic nucleon-
nucleon interaction [39,40], and a local density approximation
[41–43]. In Refs. [44–47], the surface properties of nuclei
have been studied by using the corresponding quantities of
nuclear matter within the Brueckner energy density functional
[48,49] into the coherent density fluctuation model (CDFM)
[45,50]. Recently, Bhuyan et al. studied the effective surface
properties, such as the symmetry energy, neutron pressure,
and symmetry energy curvature of nuclei, by using the bulk
properties from a relativistic mean field model as the inputs
to the CDFM [51]. In our previous work, we found that the
symmetry energy coefficient is sensitive to temperature as
well as to the force parameters [8]. Within a Thomas-Fermi
model, the density of a nucleus is calculated by subtracting
the density profile of a gas phase from that of the liquid-gas
phase [52–55]. This density (obtained through a subtraction
procedure) is then used to calculate the rest of the properties
of a nucleus. In the present analysis, we calculate the densities
of the nuclei along with some of the ground and excited
state properties within the temperature-dependent relativistic
mean field (TRMF) model by considering particle number
conservation. The properties of symmetric nuclear matter are
also obtained within the TRMF formalism, which are further
used to calculate the corresponding quantities of finite nuclei.

The paper is organized as follows: In Sec. II, we present
the formalism followed to carry out the present analysis. We
outline the TRMF and local density approximation models
in this section. The numerical results and discussions are
given in Sec. III. Finally, the work is summarized with a brief
conclusion in Sec. IV.

II. FORMALISM

In this section, we outline the formalism followed to calcu-
late the temperature-dependent symmetry energy and related
quantities for nuclei. The calculations involve the following
steps: (i) we estimate the nuclear matter observables and the
ground and excited state bulk properties of the nuclei at finite
temperature within the TRMF model; (ii) the temperature-
dependent properties of symmetric nuclear matter at the local
density of the nuclei are further used in a local density
approximation to calculate the corresponding quantities of
finite nuclei.

A. Temperature-dependent relativistic mean
field (TRMF) model

Relativistic mean field (RMF) theory is the relativistic
generalization of nonrelativistic Hartree or Hartree-Fock-
Bogoliubov theory. In the RMF model, nucleons are assumed
to interact with each other through the exchange of mesons.
The advantage of using RMF over a nonrelativistic model
is that it automatically takes the spin-orbit interaction into
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consideration. Further, this model is capable of predicting
the ground and excited state bulk properties of nuclei over
the whole nuclear landscape. In principle, the mean field
Lagrangian has an infinite number of terms with all possi-
ble types of self- and cross-couplings. To handle the RMF
numerically, ratios of fields and nucleon masses are used in
a truncation scheme as a constraint on naturalness. We have

used the RMF Lagrangian having contributions of σ , ω, and
ρ meson fields up to fourth order and for the rest of the
mesons up to second order, which has been shown to be a good
approximation for predicting finite nuclei and nuclear matter
observables with good precision [56]. The energy density,
obtained by solving the RMF Lagrangian and applying a mean
field approximation, is given as
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where �, W , R, D, and A are the fields of the σ , ω, ρ, δ mesons
and photon, respectively, which are redefined as � = gσ σ ,
W = gωω0, R = gρρ

0, and A = eA0. The constants gσ , gω, gρ ,
gδ , e2

4π
are the coupling strengths and mσ , mω, mρ , and mδ are

the masses for the σ , ω, ρ, δ mesons and photon, respectively.
Temperature is introduced in the RMF formalism through

the occupation factor ni by using a Fermi-Dirac distribution
function, where i stands for a nucleon state. The energy
density of the Dirac fields and the nucleon densities are mul-
tiplied by the occupation factor. The temperature-dependent
occupation factor is given as

ni(T ) = 1
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with
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,
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√

(εi − λ)2 + �2. (3)

The function f (ε̃i, T ) represents the Fermi-Dirac distribution
for quasiparticle energy ε̃i. λ and δ are the nucleon chemical
potential and the pairing gap parameter. The detailed formal-
ism of the temperature dependence of the RMF can be found
in Refs. [8,57–60] and the description of the RMF Lagrangian,
used in this work, can be found in Ref. [19].

B. Temperature-dependent equation of state and
nuclear matter properties

Energy and pressure density. The temporal (〈T00〉) and
spatial (〈Tii〉) components of the energy-momentum tensor

〈Tμν〉 give the energy density and pressure of the system
[61]. For static uniform infinite nuclear matter, the derivatives
of the meson field and electromagnetic interaction vanish.
The expressions for energy density and pressure at finite
temperature without pairing are given by [19,62,63]:
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with the equilibrium distribution functions defined as

fi± = 1

1 + exp[(ε∗
i ∓ νi )/T

, (6)

where ε∗
i = (k2 + M∗2

i )1/2 (i = p, n), M∗
p,n = Mp,n − � ∓ D,

k is the momentum of nucleon, and the nucleon effective
chemical potential is given by

νi = μi − W − 1
2τ3R, (7)

where τ3 is the third component of the isospin operator.
Symmetry energy and incompressibility coefficient. The

binding energy per nucleon E/A = e(ρ, α) (where ρ is the
baryon density) can be expanded in a Taylor series in terms
of the isospin asymmetry parameter α (= ρn−ρp

ρn+ρp
):

eNM (ρ, α) = E
ρB

− M = eNM (ρ, α = 0)

+ SNM (ρ)α2 + ONM (α4), (8)

where e(ρ, α = 0) is the energy density of symmetric nuclear
matter (SNM) and S(ρ) is the symmetry energy of the system,
as defined below. Odd powers of α are forbidden by the
isospin symmetry. The terms proportional to α4 and higher
order are found to be negligible, and

SNM (ρ) = 1

2
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]
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. (9)

Near the saturation density ρ0, the symmetry energy can be
expanded in a Taylor series as
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+ 1
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where JNM = SNM (ρ0) is the symmetry energy at saturation
and Y = ρ−ρ0

3ρ0
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Here, LNM , PNM , and KNM
sym represent the slope parameter of

the symmetry energy, the neutron pressure, and the symmetry
energy curvature at the saturation density, respectively. In
this work, the properties of symmetric nuclear matter are
temperature dependent. Those will be used to calculate the
corresponding quantities of the nuclei in the local density
approximation.

C. Local density approximation (LDA)

The effective bulk properties of a nucleus can be found
by using the LDA once its density profile is known. In the
LDA, the symmetry energy coefficient S(T ) can be defined as

[41–43]

S(T )

(
N − Z

A

)2

= 1

A

∫
ρ(r)SNM[ρ(r), T ]α2(r)dr, (14)

where SNM[ρ(r), T ] is the symmetry energy coefficient of
infinite symmetric nuclear matter at finite temperature (T )
and at the local density ρ(r) of a nucleus, and α(r) is
the isospin asymmetry parameter defined earlier. Expressions
similar to those in Eq. (14) can be used to find the neu-
tron pressure and symmetry energy curvature by replacing
SNM[ρ(r), T ] with the corresponding nuclear matter quanti-
ties at the local density of a nucleus. SNM[ρ(r), T ] is found
from Eq. (10), where ρ is the density of a nucleus ρ(r).
Similarly, PNM[ρ(r), T ] and KNM[ρ(r), T ] at the density of a
nucleus are found by using Eqs. (11) and (12), respectively.
As stated earlier, the density distribution for a nucleus is
calculated within the TRMF model (Hartree approximation)
for a given parameter set, with the equations of motion being
solved self-consistently [8,56]. As a result, the density from
the Hartree approximation is purely quantal one with a well-
defined surface. There are thus no corrections to be included
externally for the surface, as would be the case for a semiclas-
sical model [64–69]. Generally, semiclassical methods such
as the extended Thomas-Fermi (ETF) method [67] and the
relativistic extended Thomas-Fermi (RETF) formalism [64]
are based on the Wigner-Kirkwood (WK) h̄ expansion of
the density matrix [65,66] of a nucleus. In this case, the
calculated density of a nucleus does not have a well-defined
surface, which is the expected error (qualitative) in assuming
the LDA for the symmetry energy of a finite nucleus. To sort
out the deficiencies of the Thomas-Fermi approximations, and
thus to provide a more accurate description of the nuclear
surface, at least h̄2-order gradient corrections coming from
inhomogeneity and nonlocal effects have to be included in
the energy density functional [64]. It is worth mentioning that
the density obtained here from Hartree approximation can be
directly used in Eq. (14) for further calculations [8,41,56,69]
without adding surface corrections externally.

In general, the symmetry energy coefficient of a finite
nucleus is a bulk property that mainly depends on the isospin
asymmetry of the nucleus. The symmetry energy of a nucleus
can be written in terms of volume and surface symmetry
energy coefficients in order to study its approximate mass
dependence (see Eq. (2) of Ref. [41]). The surface term is
important in determining the symmetry energy of light mass
nuclei and it becomes small for heavy and superheavy nuclei,
since the surface symmetry energy coefficient is proportional
to A−1/3, where A is the mass number [32,41]. The vol-
ume symmetry energy is almost independent of the shape
degrees of freedom of a nucleus [32]. In [37], one can find
that the relative change in the symmetry energy with very
large deformation (β2 ≈ 0.6) is around 0.4 MeV. It is also
mentioned in Ref. [37] that the effect of deformation on the
symmetry energy decreases with respect to the mass number.
Here we study the uranium and plutonium isotopes, which
are superheavy in nature, with ground state deformations of
magnitude β2 ≈ 0.2. Hence the effects of deformation on
the symmetry energy are very small and, for the sake of
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TABLE I. The parameter sets NL3 [72], FSUGarnet [71], and
IOPB-I [19] are listed. The nucleon mass M is 939.0 MeV. All the
coupling constants are dimensionless, except k3 which is in fm−1.

NL3 FSUGarnet IOPB-I

ms/M 0.541 0.529 0.533
mω/M 0.833 0.833 0.833
mρ/M 0.812 0.812 0.812
mδ/M 0.0 0.0 0.0
gs/4π 0.813 0.837 0.827
gω/4π 1.024 1.091 1.062
gρ/4π 0.712 1.105 0.885
gδ/4π 0.0 0.0 0.0
k3 1.465 1.368 1.496
k4 −5.688 −1.397 −2.932
ζ0 0.0 4.410 3.103
η1 0.0 0.0 0.0
η2 0.0 0.0 0.0
ηρ 0.0 0.0 0.0
�ω 0.0 0.043 0.024
α1 0.0 0.0 0.0
α2 0.0 0.0 0.0
fω/4 0.0 0.0 0.0
fρ/4 0.0 0.0 0.0
βσ 0.0 0.0 0.0
βω 0.0 0.0 0.0

computational simplicity, we have taken the monopole term
(spherical equivalent) of the density distribution without
changing the volume of a nucleus in the present analysis. The
multipole decomposition of the density in terms of even values
of the multipole index λ [70] is given as

ρ(r⊥, z) =
∑

λ

ρλ(r)Pλ(cos θ ), (15)

where Pλ is a Legendre polynomial and r is the radial
variable.

III. RESULTS AND DISCUSSIONS

The main aim of this work is to study the symmetry
energy coefficient S, neutron pressure P, and symmetry en-
ergy curvature Ksym of neutron-rich thermally fissile nuclei
at finite temperature. In this work, we have taken 250U as
a representative case of the neutron-rich thermally fissile
nuclei [2]. 234,236U and 240Pu are also studied because of
the importance of the fission of the known thermally fissile
233,235U and 239Pu nuclei. Before proceeding to the observ-
ables described above, we have calculated ground and ex-
cited state properties of these nuclei. For the calculations,
we have used the FSUGarnet [71], IOPB-I [19], and NL3
[72] parameter sets within the TRMF model. Among these,
the NL3 [72] set is one of the best-known and most used
RMF parameter sets and describes the properties of nuclei
remarkably well over the nuclear chart. The FSUGarnet [71]
and IOPB-I [19] are more recent parameter sets with the
advantage that their equations of state are softer than that
of the NL3 parameter set. In Table I, we have given the

values of the parameters in these sets. In the relativistic mean
field model, the field equations are solved self-consistently by
taking an initial estimate of the deformation β0 [19,51,71,72].
The mesonic and fermionic fields are expanded in terms of
the deformed harmonic oscillator basis. The number of major
shells for the fermionic and bosonic fields (NOF and NOB,
respectively) have been taken as 14 and 20. At these values of
NOF and NOB, we obtain a converged solution in this mass
region.

A. Ground and excited state properties of the nuclei

The binding energy per particle (B/A), charge radius
(Rc), and deformation parameter (β2) of the nuclei 208Pb,
234,236,250U, and 240Pu at finite temperature (T ) with the
FSUGarnet [71], IOPB-I [19], and NL3 [72] parameter sets
are shown in Table III with the available experimental data
[73,74]. The calculated values corresponding to all parameter
sets are in good agreement with each other. These results
are comparable to the corresponding experimental data at
T = 0 MeV. All of the calculations show good agreement with
the binding energy but slightly underestimate the deformation
at T = 0. The IOPB-I parameter set furnishes changes in the
radii that are slightly longer than those of the other sets at
all values of the temperature. The binding energies obtained
with the NL3 parameter set are slightly smaller than those of
the other sets for T > 0. The binding energy and quadrupole
deformation of the nuclei decrease with T . The temperature at
which the deformation of a nucleus becomes zero is known as
the critical temperature (Tc). For the IOPB-I set, the Tc value
is obtained at a lower temperature than for the other sets.

B. Temperature-dependent symmetry energy of nuclear matter

In order to study the surface properties of the nuclei at
finite T , we will use the corresponding temperature-dependent
quantities of nuclear matter at the local density of the nuclei
in the LDA. First, we reproduce the equations of state of sym-
metric nuclear matter (SNM) and pure neutron matter (PNM)
at zero temperature, as have been presented in Ref. [19].
The energy density and pressure of SNM and PNM for the
FSUGarnet (maroon dashed curve), IOPB-I (red dot-dashed
curve), and NL3 (green solid curve) parameters sets are shown
in Fig. 1. The upper-left panel of the figure represents the
energy density of symmetric nuclear matter (SNM). It is clear
from this panel of the figure that the FSUGarnet and IOPB-I
EOSs are softer than that of NL3 set. FSUGarnet is the softest
among the chosen parameter sets. The similar nature of the
EOS of PNM is shown in the lower left panel. The shaded re-
gion is the range for the EOS obtained by Hebeler et al., [75].
It can be seen in the figure (Fig. 1) that the energy densities
corresponding to NL3 and FSUGarnet (it is even softer) do
not pass through the low density region of pure neutron matter.
Here, the EOS of IOPB-I passes comparatively close to the
low as well as the high density region of the experimental
band and through it in the intermediate region of the density,
while that of FSUGarnet passes only through the high density
region. The black curve (in the left panels) represents the
DBHF data [76].
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FIG. 1. The energy density and pressure for SNM and PNM at
zero temperature with FSUGarnet, IOPB-I, and NL3 parameter sets.
The calculated results are compared with the results by Hebeler [75],
the DBHF equation of state [76,77], and the available experimental
data [78].

The right panel of the figure shows the pressure of SNM
(upper right) and PNM (lower right) for the same parameter
sets. The black curve represents the BHF results of Baldo
et al., [77] and the shaded region is the experimentally con-
sistent range of values [78]. In the case of SNM, both the
FSUGarnet and IOPB-I sets satisfy the experimental limits,
while for PNM they only pass through the upper boundary
of the experimental soft EOS. In the cases of both SNM and
PNM, NL3 is far from the experimental bounds. The softer
nature of the EOSs of FSUGarnet and IOPB-I is attributed to
the cross coupling of ω and ρ mesons [19]. This is one of
the reasons for choosing these parameter sets in this work.
The values of SNM properties such as the energy density (E),
symmetry energy JNM , symmetry energy curvature (KNM

sym ),
slope parameter of the symmetry energy (LNM), and QNM

sym at
the saturation density ρ0 are given in Table II.

The symmetry energy of SNM is shown in Fig. 2. The left
panel of the figure represents the symmetry energy for the
FSUGarnet (maroon dashed curve), IOPB-I (red dot-dashed
curve), and NL3 (green solid curve) parameter sets at T =
0. The parameter sets produce different symmetry energy
curves, clearly visible in the figure. We show the symmetry

TABLE II. The nuclear matter properties at saturation density
ρ0(fm−3) for the three parameter sets.

NL3 FSUGarnet IOPB-I

ρ0 (fm−3) 0.148 0.153 0.149
E0 (MeV) −16.29 −16.23 −16.10
M∗/M 0.595 0.578 0.593
JNM (MeV) 37.43 30.95 33.30
LNM (MeV) 118.65 51.04 63.58
KNM

sym (MeV) 101.34 59.36 −37.09
QNM

sym (MeV) 177.90 130.93 862.70
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FIG. 2. (a) The symmetry energy (SNM ) of infinite SNM at zero
temperature for the FSUGarnet, IOPB-I, and NL3 parameter sets.
(b) The same quantity at finite temperature corresponding to IOPB-I.
The zoomed part shows SNM at low density.

energy of SNM at finite T for the IOPB-I parameter set as
a representative case in the right panel of Fig. 2. The effects
of temperature on nuclear matter can be observed at higher
values of T . Here, we have calculated the symmetry energy
for T = 0, 1, 2, and 3 MeV. The symmetry energy SNM at
these temperatures is almost the same. The minute difference
at low density can be seen in the zoomed part of the figure.
This minute difference causes a significant change in the value
of S(T ) of a nucleus at finite T . The quantities involved in the
expansion of the symmetry energy at the local density of a
nucleus [Eq. (10)] are JNM , LNM , and KNM

sym at the saturation
point of nuclear matter. These quantities are not considered as
constant values throughout the calculation of the temperature-
dependent symmetry energy. Rather, they slightly change due
to the temperature. Thus, in the calculation of the symmetry
energy of nuclear matter at the local density of a nucleus, we
have taken the temperature-dependent saturation point to get
numerically consistent results. Similarly, all the quantities at
the saturation point in Eq. (10) are evaluated at finite T .

C. Nuclear density and symmetry energy
at the local nuclear density

The spherical equivalent densities of the deformed nuclei
234,250U at finite T obtained within the TRMF model with
the IOPB-I parameter set as a representative case are shown
in Fig. 3. A color key is in the left panel. The effect of T
on the densities can be observed from the figure. At finite
temperature, the random motion of the nucleons is increased.
As a result, their density distribution is changed. The central
density of the nuclei is found to decrease with the increase of
T . Consequently, the nucleons are pushed towards the surface
and hence the surface density of nuclei has a slight enhance-
ment with T . The effect of temperature on the size of a nucleus
can also be observed from Table III, where it is found to be
growing. The zoomed part of the figure shows the surface part
of the density. The calculated densities are used to obtain the
effective surface properties of the nuclei through Eq. (14).

The symmetry energy of nuclear matter at the local density
of 250U as a representative case is shown in Fig. 4. The
left panel of the figure exhibits the symmetry energy at zero
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FIG. 3. The densities of the nuclei 234U (left panel) and 250U
(right panel) corresponding to the IOPB-I set at finite T . The zoomed
part shows the effect of T on the density at the surface of the nuclei.

temperature with the three parameter sets, while the right
panel shows the same at finite T corresponding to the IOPB-I
set. It is clear from the figure that the symmetry energy
is very sensitive to the choice of the parameter set. The
symmetry energy corresponding to FSUGarnet is larger while
that corresponding to NL3 is smaller. This trend is reversed at
higher values of the density, i.e., ≈0.10 fm−3. The symmetry
energy has a weak temperature dependence in the range of
T considered. The zoomed part of the right panel shows this
small effect of T at low nuclear density. This dependence is
similar to that shown in Fig. 2.

D. The symmetry energy, neutron pressure, and symmetry
energy curvature of finite nuclei

Figure 5 shows the temperature-dependent effective sym-
metry energy coefficient S of the nuclei 234,236,250U and
240Pu for the FSUGarnet (maroon dashed curve), IOPB-I (red
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FIG. 4. The symmetry energy of nuclear matter SNM [ρ(r), T ] at
the local density of 250U (a) at T = 0 MeV corresponding to the
FSUGarnet, IOPB-I, and NL3 parameter sets, and (b) at finite T
corresponding to the IOPB-I set. The zoomed part of panel (b) shows
the effect of T at low density.

dot-dashed curve), and NL3 (green solid curve) parameter
sets. The values of S in all the cases decreases monotonically
with T . The results corresponding to the IOPB-I set are
intermediate to those corresponding to FSUGarnet and NL3.
As mentioned above, the FSUGarnet set is the softest among
the chosen sets while NL3 is the stiffest (see Fig. 1). Thus,
the properties of the nuclei and nuclear matter predicted by
IOPB-I lie in between those predicted by FSUGarnet and NL3
[8,19]. In the case of 236,250U, the symmetry energy curve
corresponding to IOPB-I is almost equal to that of FSUGarnet.
Among the four nuclei, the S(T ) coefficient for 250U is the
smallest due to its large isospin asymmetry. A lower value
of the symmetry energy enhances the rate of conversion of
protons to neutrons through electron capture [16,79]. The
low value of S(T ) for 250U means that the conversion of

TABLE III. The calculated binding energy per particle (B/A) (MeV), charge radius (Rc) (fm) and deformation parameter β2 of the nuclei
234,236,250U and 240Pu at finite temperature T (MeV) are tabulated and compared with the available experimental data [73,74].

Temperature 234U 236U 240Pu 250U Parameter

B/A Rc β2 B/A Rc β2 B/A Rc β2 B/A Rc β2

T = 0 7.60 5.84 0.20 7.57 5.86 0.22 7.56 5.91 0.24 7.41 5.95 0.22 FSUGar.
7.61 5.88 0.20 7.59 5.90 0.22 7.57 5.95 0.25 7.43 5.99 0.23 IOPB-I
7.60 5.84 0.24 7.58 5.86 0.25 7.55 5.90 0.27 7.42 5.94 0.22 NL3
7.60 5.83 0.27 7.59 5.84 0.27 7.56 5.87 0.29 Exp.

T = 1 7.55 5.83 0.16 7.54 5.85 0.19 7.51 5.90 0.23 7.37 5.94 0.20 FSUGar.
7.56 5.85 0.02 7.55 5.89 0.20 7.52 5.94 0.23 7.39 5.99 0.22 IOPB-I
7.51 5.84 0.22 7.50 5.85 0.24 7.47 5.90 0.25 7.33 5.94 0.21 NL3

T = 2 7.35 5.82 0.02 7.32 5.83 0.02 7.29 5.87 0.04 7.15 5.92 0.05 FSUGar.
7.35 5.86 0.01 7.33 5.88 0.02 7.29 5.91 0.03 7.16 5.96 0.03 IOPB-I
7.28 5.81 0.00 7.26 5.82 0.00 7.22 5.86 0.00 7.09 5.91 0.00 NL3

T = 3 6.95 5.86 0.02 6.94 5.87 0.02 6.90 5.90 0.02 6.75 5.95 0.02 FSUGar.
6.94 5.90 0.01 6.93 5.91 0.02 6.89 5.95 0.02 6.75 6.00 0.01 IOPB-I
6.87 5.84 0.00 6.85 5.86 0.00 6.82 5.91 0.00 6.68 5.94 0.00 NL3
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FIG. 5. The effective symmetry energy coefficient (S) of
234,236,250U and 240Pu at finite T .

asymmetric to symmetric matter requires a smaller amount
of energy. Similarly, the lowering of the values of symmetry
energy coefficient at higher T imply that less energy is needed
to convert a neutron to proton or vice versa. It can be remarked
here that the rate of β decay will increase with T (i.e., in the
excited state of a nucleus).

The effects of T on the effective neutron pressure and
symmetry energy curvature are shown in Figs. 6 and 7,
respectively. The trend of the curves of P and Ksym is similar
to that observed in the case of S. But, the order of the
curves corresponding to the parameter sets is different. Here,
FSUGarnet predicts smaller values of the pressure compared
to the IOPB-I and NL3 sets. It implies that the softer the EOS,
the smaller the pressure of the system is. The 250U nucleus has
smaller P and Ksym values than the other nuclei. This behavior
can also be attributed to the large isospin asymmetry of the
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FIG. 6. The effective neutron pressure (P) of the nuclei
234,236,250U and 240Pu at finite T for the chosen parameter sets.
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FIG. 7. The symmetry energy curvature (Ksym) of the nuclei
234,236,250U and 240Pu at finite T .

nucleus. The neutron pressure decreases with T because the
volume of a nucleus expands (i.e., the radius increases as seen
in Table III) as T increases. The rate of emission of neutrons
from a nucleus also increases with T [80], which leads to
decrease in the pressure. The values of Ksym corresponding
to the IOPB-I set are negative, which is consistent with
the negative value of the symmetry energy curvature at the
saturation density of nuclear matter (see Table II).

The skin thickness has been shown to be correlated with the
effective surface properties in Refs. [44–47,51] over particular
isotopic chains. It depends linearly on the surface properties
of a nucleus with a kink at a magic/semimagic nucleus of an
isotopic chain [44–47,51]. Although we have not considered
a whole isotopic chain of nuclei, we have found a corre-
lation among the skin thickness, symmetry energy, and the
neutron pressure due to the variation in these quantities at
finite T . Figure 8 shows the correlation between the effective
symmetry energy coefficient and the skin thickness of the
nuclei at finite T . The skin thickness of the nuclei grows
with the temperature [8]. We have seen in Fig. 5 that the
symmetry energy coefficient decreases with T . This implies
that the symmetry energy coefficient should decrease with the
increase of skin thickness at finite T . The same tendency is
observed in Fig. 8. It is clear from the figure that NL3 predicts
a larger neutron skin thickness, with lower values of symmetry
energy coefficient compared to the other parameter sets. This
decrease is monotonic in nature. In going to heavier nuclei,
the curves become flatter, which means that slight changes in
the symmetry energy coefficient lead to large changes in the
skin thickness and vice verse.

The slope parameter (L coefficient), and thus the pressure
[see Eq. (11)] have been shown to be strongly correlated with
the neutron skin thickness of 208Pb [21–24] and the radius of
a neutron star. This motivates us to examine the correlation
between the pressure of the finite nuclei and their neutron
skin thickness. In Fig. 9, we show a linear correlation between
the neutron pressure and the skin thickness of finite nuclei
at T = 0 MeV for all four nuclei. The panels (a), (b), (c),
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and (d) of the figure contain the data of P versus �r for the
nuclei 234,236U, 240Pu and 250U, respectively, with FSUGarnet,
IOPB-I, and NL3 parameter sets. The skin thickness of the
nuclei is increased with the parameter sets (going from softer
to stiffer). One observes in Fig. 1 that the stiffer the EOS,
the larger the pressure is for nuclear matter. A similar trend
is obtained for finite nuclei. The neutron pressure is greater
for the NL3 set, while it is a minimum for the parameter set
FSUGarnet. Here, by fixing the temperature, the effects on
pressure may be studied going from one force parameter to
the others. The lines in the graph are the linear fitted curves
(as y = ax + b) with the values of a and b (31.715,−2.523),
(23.429,−1.644), (31.421,−2.399), and (19.177,−2.484)
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for 234,236U, 240Pu, and 250U, respectively. This correlation is
also seen when the temperature of the nuclei is increased (see
Fig. 10).

IV. SUMMARY AND CONCLUSIONS

We have studied the effective bulk symmetry energy prop-
erties of 234,236,250U and 240Pu nuclei within the TRMF model.
We have calculated the densities of the nuclei along with
ground and excited state bulk properties at finite T within
the axially deformed TRMF model. The nuclear matter EOS
for SNM and PNM along with the symmetry energy and
its related observables are also estimated within the TRMF
formalism. We have used recently determined force parameter
sets, i.e., FSUGarnet and IOPB-I, and compared the results
with the widely accepted NL3 interaction. The nuclear matter
properties are calculated at the local densities of the nuclei,
which are further used in the LDA to calculate the correspond-
ing properties of the nuclei. We have observed a minute effect
of the temperature on the nuclear matter symmetry energy,
which causes a significant change in the symmetry energy
and related quantities of a nucleus according to its density
profile. However, the effect of temperature on the calculated
properties is almost the same irrespective of the parameter
sets. The symmetry energy, neutron pressure, and symmetry
energy curvature decrease with the increase of T , while the
skin thickness increases. These properties are found to be
smaller for 250U due to its large isospin asymmetry, which
enhances the rate of electron capture. The correlation among
the calculated properties of the nuclei is found at finite T
for each parameter set. The symmetry energy coefficient is
found to vary inversely with the pressure. It is found that the
softer the EOS is, the larger the symmetry energy coefficient
and the smaller the neutron pressure of the nuclei are. The
neutron pressure is linearly correlated with �r at finite T , as
calculated with all three parameter sets.
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