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Elimination of spurious modes within quasiparticle random-phase approximation
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We suggest a generalized method for elimination of spurious admixtures (SA) from intrinsic nuclear excita-
tions described within the quasiparticle random-phase approximation (QRPA). Various kinds of SA corrections
are treated at the same theoretical ground. The known corrections are well reproduced. As relevant cases, we
consider subtraction of SA related with (i) violation of the translational invariance (isovector E1 and isoscalar
toroidal and compression E1 modes), (ii) pairing-induced nonconservation of the particle number (E2(K = 0)
and E0 modes), and (iii) rotational invariance (E2(K = 1) and M1(K = 1) modes). The SA subtraction can
be done at the level of QRPA states, electromagnetic responses, and even transition operators. The additional
deformation-induced corrections for E1 excitations are proposed and shown to be essential for the compression
isoscalar mode. The accuracy of the method is demonstrated by Skyrme QRPA calculations for axially deformed
154Sm.

DOI: 10.1103/PhysRevC.99.044307

I. INTRODUCTION AND MOTIVATION

Theoretical analysis of intrinsic nuclear excitations is
often complicated by presence of spurious modes [1–6].
These modes appear in the intrinsic spectra if some sym-
metries (translational, rotational) and corresponding conser-
vation laws (for the total momentum P and angular mo-
mentum J) are violated by the intrinsic Hamiltonian. The
spurious modes of this kind represent the motion of the
whole nucleus (translation, rotation) in the laboratory frame.
They are obviously beyond the intrinsic nuclear dynamics
and so have to be removed from the intrinsic spectra. An-
other particular case is the pairing-induced nonconservation
of the proton and neutron numbers, when the nuclear wave
function is contaminated by admixtures from neighboring
nuclei.

Usually the intrinsic Hamiltonian breaks the conservation
laws in its mean field and pairing parts. There are many ways
for subtraction of emergent spurious admixtures (SA). For
example, in E1 isovector responses, SA are removed using the
proper effective charges [5]. In the second-order E1 toroidal
and compression isoscalar responses, SA are eliminated by
corrections in the transition operators, requiring the nuclear
center-of-mass to be in rest [7–10]. There is also a diversity of
projection techniques to exclude SA, e.g. [5,11–18].

Random-phase approximation (RPA) and its quasiparticle
version (QRPA) are now widely used for the self-consistent
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description of giant resonances and low-energy states in
spherical and deformed nuclei; see, e.g., Refs. [10,11,14–26].
As was shown by Thouless [1], RPA has a principle ability to
separate exactly spurious and physical states. In this method,
the spurious mode appears as RPA eigenstate with zero en-
ergy, which guaranties orthogonality of the spurious and phys-
ical states. Various aspects of this RPA (QRPA) feature are
described in detail elsewhere; see, e.g., Refs. [2–6,11,27,28].

The RPA advantage to exclude SA was used in early
studies within schematic models where violated symmetries
were restored by the proper choice of the residual interac-
tion compensating the contamination of the mean field [29].
However, this scheme is not relevant for the modern self-
consistent RPA methods (Skyrme, Gogny, relativistic), where
the RPA residual interaction is already fully determined by
the initial density functional. Another technique, also not
self-consistent, offers additional terms in the RPA residual
interaction to shift the spurious modes outside the energy
region of interest [30,31].

In fully self-consistent RPA (QRPA) models with a com-
plete configuration space, the spurious modes have to be
entirely located at zero-energy eigenstates. However, even in
modern self-consistent RPA calculations this is usually not the
case; see, e.g., discussion in Refs. [11,22]. Due to a limited
size of configuration space and numerical inaccuracy, we are
almost never able to put the spurious state exactly to the zero
energy: Its energy is usually a small positive value. Then
the spurious mode is not orthogonal to physical states and
contaminates them, at least neighboring ones. So the problem
of SA persists even in modern self-consistent models.

In the present paper, we propose a simple general method
for elimination of SA from QRPA states and electromagnetic
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responses. The method allows to extract arbitrary (related to
different symmetries) SA in the framework of one and the
same scheme. We partly use the idea [14,15,17,18] to refine
QRPA physical states requiring their orthogonality to the
spurious mode. However, in our study, this idea is realized in a
general way using basic QRPA properties. Our scheme allows
to remove SA not only from QRPA wave functions but also
directly from electromagnetic responses, e.g., by correcting
transition operators. Our amendments to E1 responses repro-
duce well known effective charges and corrections obtained
by various prescriptions [5,8]. Moreover, we derive and test
for these responses the additional deformation-induced SA-
corrections.

In general, the method can be applied to both spherical
and deformed nuclei. We present the formalism and numer-
ical illustrations obtained within the self-consistent Skyrme
QRPA. The main relevant cases are considered: violation of
the translational and rotational invariance and pairing-induced
nonconservation of the particle number.

The paper is organized as follows. In Sec. II, the QRPA
background and detailed description of the method are pre-
sented. In Sec. III, we demonstrate and discuss examples of
SA elimination from E1, E0, E2, and M1 excitations in the
axially deformed nucleus 154Sm. In Sec. IV, the conclusions
are done.

II. THEORETICAL FRAMEWORK

A. QRPA equations

In this subsection, we sketch the basics of QRPA formalism
[5] used below in derivation and analysis. We consider even-
even axially deformed nuclei with the states characterized
by quantum numbers Kπ , where K is the component of the
angular momentum to the symmetry axis z and π is the space
parity. For nuclear interaction of multipolarity λμ, we have
K = μ � 0 with π = (−1)λ for electric and π = (−1)λ+1 for
magnetic modes.

The intrinsic body-fixed Hamiltonian reads

Ĥintr = ĤBCS + V̂res, (1)

where ĤBCS describes mean field and pairing, V̂res is the
residual interaction.

One-phonon QRPA eigenstates Q†
ν |0〉 (with |0〉 being the

QRPA vacuum) are described by the phonon creation operator

Q̂†
ν =

∑
i> j

(
X (ν)

i j α+
i α+

j − Y (ν)
i j α j̄ αī

)
, (2)

defined as a superposition of N two-quasiparticle (2qp) i j
excitations with quantum numbers μπ . The pairs i j with
Ki + Kj = μ and i j̄ with Ki − Kj = μ are used. The condition
i > j means that we involve configurations with Ki � Kj >

0; ν numerates the phonons with given μπ ; X (ν)
i j and Y (ν)

i j

are forward and backward 2qp amplitudes; |ī〉 = T |i〉 are
time-reversed states. The time-reversed counterpart of Eq. (2)

reads

Q̂†
ν̄ =

∑
i> j

(
X (ν)∗

i j α+
ī
α+

j̄
− Y (ν)∗

i j α jαi
)
. (3)

The phonon operators obey the features

Ĵ3Q̂†
ν |0〉 = μQ̂†

ν |0〉, Ĵ3Q†
ν̄ |0〉 = −μQ̂†

ν̄ |0〉, (4)

where Ĵ3 is z component of the total momentum Ĵ.
Amplitudes X (ν)

i j and Y (ν)
i j and phonon energies h̄ων

are obtained from QRPA equations of motion:

[ Ĥintr, Q̂†
ν ] = h̄ων Q̂†

ν, (5a)

[ Ĥintr, Q̂ν ] = −h̄ων Q̂ν, (5b)

[ Q̂ν, Q̂†
ν

′ ] = δνν
′ . (5c)

In the matrix form, these equations read [5](
A B
B A

)(
X (ν)

Y (ν)

)
= h̄ων

(
X (ν)

−Y (ν)

)
. (6)

They include real matrices A and B:

Ai j i′ j′ ≡ (Ei + Ej ) δi j, i′ j′

+ 〈BCS| [αj αi, [V̂res, α+
i′
α+

j′
]] |BCS〉, (7a)

Bi j i′ j′ ≡ −〈BCS| [αj αi, [V̂res, αj̄′ αī′ ]] |BCS〉 (7b)

(where |BCS〉 is BCS vacuum) and one-column matrices

X (ν) ≡

⎛
⎜⎜⎝

...
X (ν)

i j
...

⎞
⎟⎟⎠ Y (ν) ≡

⎛
⎜⎜⎝

...
Y (ν)

i j
...

⎞
⎟⎟⎠ i j = 1, · · · ,N . (8)

According to our time-reversal convention for one-body
operators Â,

T −1ÂT = γ A
T Â† ⇒

〈i|Â| j〉 = γ A
T 〈 j̄|Â|ī〉, 〈i|Â| j̄〉 = −γ A

T 〈 j|Â|ī〉, (9)

we introduce time-even (γ A
T = +1) and time-odd (γ A

T = −1)
operators. Then, instead of the phonon creation and annihi-
lation operators, one may define the generalized time-even
coordinate and time-odd momentum operators

X̂ν =
∑
i> j

X (ν)
i j (α+

i α+
j + α j̄αī ), (10a)

P̂ν =
∑
i> j

P (ν)
i j (α+

i α+
j − α j̄αī ). (10b)

Following Eq. (9), their time-reversed conjugates are

X̂ν̄ ≡ X̂ †
ν , P̂ν̄ ≡ −P̂†

ν , (11a)

X (ν̄)
ī j̄

= X (ν)∗
i j , P (ν̄)

ī j̄
= P (ν)∗

i j . (11b)
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Operators X̂ν and P̂ν are related to the phonon operators
Eqs. (2) and (3) as

X̂ν =
√

h̄

Mνων

1√
2

(Q̂ν̄ + Q̂†
ν ), (12a)

P̂ν = h̄

i

√
Mνων

h̄

1√
2

(Q̂ν̄ − Q̂†
ν ), (12b)

and vice versa,

Q̂†
ν =

√
Mνων

2h̄
X̂ν − i√

2h̄Mνων

P̂ν, (13a)

Q̂ν̄ =
√

Mνων

2h̄
X̂ν + i√

2h̄Mνων

P̂ν . (13b)

The orthonormalization condition is

[X̂ν, P̂†
ν ′ ] = −2

∑
i> j

X (ν)
i j P (ν ′ )∗

i j = ih̄δνν
′ . (14)

If X (ν)
i j is real, then P (ν)

i j is imaginary, and vice versa. Fol-

lowing Eqs. (12)–(14), operators X̂ν and P̂ν are defined up
to an arbitrary factor Mν , which cannot be fixed by the
normalization condition.

The QRPA Eqs. (5) can be expressed in terms of X̂ν and
P̂ν as

[Ĥintr, P̂ν] = ih̄Mνω
2
ν X̂ν, (15a)

[Ĥintr, X̂ν] = − ih̄

Mν

P̂ν, (15b)

[X̂ν, P̂†
ν ′ ] = ih̄ δνν

′ , (15c)

or, in the matrix form, as(
A B
B A

)(
P (ν)

P (ν)

)
= ih̄Mνω

2
ν

(
X (ν)

X (ν)

)
, (16a)

(
A B
B A

)(
X (ν)

−X (ν)

)
= h̄

i

1

Mν

(
P (ν)

−P (ν)

)
, (16b)

where, in analogy with Eq. (8), X (ν) and P (ν) are one-column
matrices for 2qp amplitudes of the generalized coordinate and
momentum. For given Kπ , the intrinsic Hamiltonian Eq. (1)
in terms X̂ν and P̂ν has the form

Ĥintr ≈ ĤQRPA =
∑

ν

( P̂νP̂†
ν

2Mν

+ 1

2
Mνω

2
ν X̂νX̂ †

ν

)
. (17)

This expression shows that the parameter Mν can be treated as
an inertia (mass) value for each QRPA state.

Note that 〈X̂ , P̂〉-presentation can be fruitful for con-
struction of modern self-consistent QRPA versions based
on the functionals with time-even and time-odd densities
and currents [19]; see particular cases of Skyrme QRPA in
Refs. [32,33].

B. Extraction of spurious admixtures

The invariance of the Hamiltonian Ĥintr under translation
or rotation of the whole nucleus leads to the conservation

condition

[Ĥintr, P̂] = 0, (18)

where P̂ is the corresponding time-odd transformation gen-
erator. The motion of the whole nucleus contaminates the
intrinsic nuclear excitations and leads to SA which have to
be extracted from the intrinsic spectra. For the translation,
generator P̂ is the linear momentum operator of the whole
nucleus. In axial deformed nuclei, the center-of-mass trans-
lation contaminates the intrinsic Kπ = 0− and 1− states. For
the rotation, P̂ is the total angular momentum operator. The
rotation pollutes intrinsic Kπ = 1+ states.

Following Refs. [1,2], just 〈X̂ , P̂〉-presentation of QRPA is
suitable for the treatment of spurious modes. Indeed, it is easy
to see that the first equation from QRPA set (15) reproduces
condition (18) if ω0 = 0 and generator P̂ is identified with
QRPA generalized momentum P̂0. Then the Hamiltonian (17)
recasts to

ĤQRPA = P̂0P̂†
0

2M0
+

∑
ν>0

( P̂νP̂†
ν

2Mν

+ 1

2
Mνω

2
ν X̂νX̂ †

ν

)
, (19)

where the spurious ν = 0 state with ω0 = 0 yields the first
term [5]. The generalized coordinate X̂0 is obtained from
Eq. (15b) for given P̂0. Note that X̂0 is absent in Eq. (19). The
spaces {X̂0, P̂0, X̂ν>0, P̂ν>0} and {X̂0, P̂0, Q̂†

ν>0, Q̂ν>0} consti-
tute the complete sets of QRPA states. The condition ω0 = 0
obviously hampers the construction of well-normalized spuri-
ous (s) phonon operator

Q̂†
s ≡ xs X̂0 − i

2h̄ xs
P̂0 (20)

with xs = √
M0 ω0/(2h̄). So the exact spurious eigenstate can

be defined in terms of X̂0 and P̂0 but not in the phonon
representation.

In addition to Eq. (18), one may also consider the conser-
vation law for the particle number,

[ Ĥintr, N̂q ] = 0, (21)

where N̂q is the time-even particle-number operator for pro-
tons (q = p) or neutrons (q = n). Violation of this law results
in spurious admixtures in Kπ = 0+ states. The condition (21)
is held by the QRPA Eq. (15b) if (a) N̂ is identified with
the QRPA generalized coordinate X̂0 and (b) we apply M0 →
+∞ and ω0 → 0 while keeping M0ω

2
0 finite (though this can

be hardly realized in practice).
As mentioned in the Introduction, in self-consistent QRPA

calculations we are almost never able to put the energy of the
first eigenstate precisely to zero. Even very large 2qp basis is
usually not enough to get ω0 = 0. As a result, the conservation
laws Eqs. (18) and (21) are not held precisely and the spurious
mode, though being mainly concentrated in the lowest ν = 0
state, still contaminates the neighboring physical states with
ν > 0. In other words, the exact spurious mode and states with
ν > 0 are not orthogonal.

Let’s suppose that we have almost pure spurious state |ν ′ =
0〉 whose energy δω0 is yet not zero but a tiny positive value.
This state is a reasonable approximation to the exact spurious
mode, i.e., |ν ′ = 0〉 ≈ |s〉. What is important for our aims, the
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state |ν ′ = 0〉 with δω0 > 0 may be normalized,

[ X̂0, P̂†
0 ] = ih̄, (22)

and presented in the phonon form (20).
Let us further suppose that we have QRPA self-consistent

states |ν〉 contaminated by SA. Our goal is to refine these
states from SA. This can be done requiring orthogonality of
the refined states |ν ′ > 0〉 to the spurious mode |s〉 approxi-
mated by Eq. (20):

〈ν ′|s〉 = 〈0| [Q̂ν ′ , Q̂†
s ] |0〉 = 0. (23)

The phonon operator for |ν ′〉 = Q̂†
ν ′ |0〉 is searched in the form

Q̂†
ν ′ = Q̂†

ν − ανP̂0 − βνX̂0, (24)

where αν and βν should be defined from the condition (23).
This prescription reminds the projection methods used in
some previous studies for particular spurious modes; see, e.g.,
Refs. [14–18]. However, as compared with Refs. [14–16],
we use a more general expression, Eq. (20), for the spurious
state where both X̂0 and P̂0 operators are included. As shown
below, our way allows to derive a more general scheme
for SA-elimination. There are also essential differences from
Refs. [17,18]; see discussion in Sec. IV D.

The condition (23) gives

αν =
[ 〈0| [Q̂ν, X̂0] |0〉
〈0| [P̂†

0 , X̂0] |0〉

]∗
, βν =

[ 〈0| [Q̂ν, P̂0] |0〉
〈0| [X̂ †

0 , P̂0] |0〉

]∗
, (25)

or, using Eq. (22),

αν = 1

ih̄
〈0| [Q̂ν, X̂0] |0〉∗, βν = i

h̄
〈0| [Q̂ν, P̂0] |0〉∗. (26)

It is easy to check that

〈0| [Q̂ν ′ , X̂0] |0〉 = 〈0| [Q̂ν ′ , P̂0] |0〉 = 0, (27)

i.e., within the quasiboson approximation, the refined physical
states are indeed orthogonal to the generators P̂0 and X̂0 and
so to the spurious state from Eq. (20). In this derivation, we
use the feature that average commutator of operators with the
definite time parity,

〈0| [Â, B̂] |0〉 ∝ (
1 − γ A

T γ B
T
)
, (28)

vanishes if operators Â and B̂ have the same time parity (γ A
T =

γ B
T ) in the sense of Eq. (9).

Note that result given in Eq. (27) does not depend on the
concrete values of xs, Mν , and ω0. For determination of αν and
βν , we should know the symmetry operator and its conjugate,
i.e., P̂0 and X̂0. These operators are given below in Sec. III for
all the cases of interest.

The above scheme allows to refine QRPA states. However,
in practice we often need a direct refinement of the transition
matrix elements and responses. This can be done within our
approach as well. Let us consider the matrix element of the
transition operator M̂ between the physical refined state |ν ′〉
and RPA vacuum:

〈ν ′|M̂ |0〉 = 〈0| [Q̂ν ′ , M̂] |0〉 = 〈0| [Q̂ν, M̂] |0〉
− α∗

ν 〈0| [P̂†
0 , M̂] |0〉 − β∗

ν 〈0| [X̂ †
0 , M̂] |0〉 .

(29)

Using the feature Eq. (28) it is easy to see that, depending
on the time parity of M̂, the second (third) term in Eq. (29)
vanishes at γM

T = −1(γM
T = 1). Then we get

〈ν ′|M̂|0〉 = 〈ν|M̂|0〉 − i

h̄
〈ν|X̂0|0〉〈0|[P̂†

0 ,M̂]|0〉 (30)

for time-even M̂ and

〈ν ′|M̂|0〉 = 〈ν|M̂|0〉 + i

h̄
〈ν|P̂0|0〉〈0|[X̂ †

0 ,M̂]|0〉 (31)

for time-odd M̂. Equations (30) and (31) can be used for
calculation of the refined transition matrix elements.

Using Eqs. (30) and (31), the refined transition densities
and currents read

δρν ′ (r) = δρν (r) − i

h̄
〈0|[Qν, X̂ †

0 ]|0〉〈0|[P̂†
0 , ρ̂(r)]|0〉, (32)

δjν ′ (r) = δjν (r) + i

h̄
〈0|[Qν, P̂†

0 ]|0〉〈0|[X̂ †
0 , ĵ(r)]|0〉, (33)

where the density and current operators are defined in
Appendix A.

One may go further and reduce SA-elimination to modifi-
cation of transition operators. Indeed Eqs. (30) and (31) can

be rewritten as 〈ν ′|M̂|0〉 = 〈ν| ˆ̃M|0〉 with

ˆ̃M = M̂ − i

h̄
〈0|[P̂†

0 ,M̂]|0〉X̂0 for γM
T = 1, (34)

ˆ̃M = M̂ + i

h̄
〈0|[X̂ †

0 ,M̂]|0〉P̂0 for γM
T = −1. (35)

Equations (34) and (35) suggest the simplest way for elim-
ination of SA from the responses. They lead to the important
conclusion that QRPA in principle allows to refine responses
through modification of transition operators. As compared
with building of the refined QRPA states (24), Eqs. (30)–(35)
suggest more economical elimination prescriptions with usage
of initial QRPA states |ν〉.

Note that there is an alternative way to obtain Eqs. (34)
and (35). Since physical and spurious QRPA solutions form
the complete basis, any operator linear in the boson approxi-
mation can be expressed as [3,4,34]

M̂ =
∑
ν>0

(〈0|[Q̂ν,M̂]|0〉Q̂†
ν − 〈0|[Q̂†

ν,M̂]|0〉Q̂ν )

+ i

h̄
(〈0|[P̂†

0 ,M̂]|0〉X̂0 − 〈0|[X̂ †
0 ,M̂]|0〉P̂0), (36)

where the last two terms are spurious contributions. Removal
of these contributions just gives Eqs. (34) and (35). This
correspondence can be treated as the additional check of the
validity of our projection procedure defined by Eqs. (23) and
(24). Note that our procedure is more comprehensive than
direct usage of Eq. (36) since it allows to refine not only
operators and their matrix elements but also QRPA wave
functions.

Equations (30)–(35) do not include the factor xs. However,
they need the knowledge of the spurious operators P̂0 and X̂0.
As shown in Sec. IV, in some cases, e.g., for E1 excitations,
both the symmetry operator and its conjugate are known, and
SA corrections acquire a simple analytical form. If not, then
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2qp amplitudes of the unknown conjugate and the parameter
M0 can be determined from equations [5]

X (0)
i j = h̄

i

1

M0

∑
kl

(A − B)−1
i j, kl P

(0)
kl , (37)

M0 = 2
∑

i> j, k>l

P (0)∗
i j (A − B)−1

i j, kl P
(0)
kl , (38)

or

P (0)
i j = ih̄ω2

νM0

∑
kl

(A + B)−1
i j, kl X

(0)
kl , (39)

M0 = 1

2ω2
ν

{ ∑
i> j, k>l

X (0)
i j (A + B)−1

i j, kl X
(0)∗
kl

}−1

. (40)

As shown in Appendix B, the averages 〈0|[....]|0〉 in
Eqs. (30)–(35) are directly calculated through P (0)

i j , X (0)
i j and

transition matrix elements.

III. DETAILS OF CALCULATIONS

The calculations for axially deformed 154Sm are performed
within QRPA approach with the Skyrme forces [11,19,35].
The total functional includes the Skyrme, Coulomb, and pair-
ing terms. Our approach is fully self-consistent since both
mean field and residual interaction are derived from the initial
functional, using all the available densities and currents. The
Coulomb contribution includes direct and exchange terms in
Slater approximation. The volume pairing is treated at the
BCS level. Both particle-hole and pairing-induced particle-
particle channels are involved [35]. More detail on the ap-
proach are given in the Appendix C. Implementation of the
approach to the code is described in Refs. [36,37].

We use Skyrme parametrization SLy6 [38], which was
found successful in our previous QRPA calculations for vari-
ous dipole excitations [10,23,32,33,35,39–41]. Hartree-Fock
(HF) mean field is computed using 2D grid in cylindrical
coordinates (with mesh size 0.4 fm and calculation box of
about three nuclear radii). The single-particle space embraces
all the levels from the bottom of the potential well up to
40 MeV (1533 proton and 1722 neutron levels in 154Sm).
The volume pairing is treated at the BCS level. The equi-
librium quadrupole deformation β = 0.339 is obtained by
minimization of the system energy. QRPA calculations use a
large 2qp basis. For example, for Kπ = 1− states, the basis
includes ≈ 9000 proton and ≈ 16000 neutron quasiparticle
pairs. The Thomas-Reiche-Kuhn sum rule [5] and isoscalar
dipole energy-weighted sum rule [8] are exhausted by 95%
and 97%, respectively.

Strength function for Xλμ transitions between the ground
state |0〉 and QRPA states |ν〉 reads

Sk (Xλμ; E ) =
∑

ν

(h̄ων )k
∣∣ 〈ν|M̂Xλμ|0〉 ∣∣2

δ�(E − h̄ων ),

(41)
where X = E , M marks electric and magnetic cases, h̄ων is
the excitation energy of ν state, 〈ν|M̂Xλμ|0〉 is the transition
matrix element. Components μ = 0 embrace both +μ and −μ

FIG. 1. The total QRPA photoabsorption cross section (black
solid curve) and its μ = 0 and μ = 1 branches (green dashed and
brown dashed-dotted curves) as compared with the experimental data
[42].

contributions. Further,

δ�(E − h̄ων ) = 1

2π

�(h̄ων )

(E − h̄ων )2 + [�(h̄ων )/2]2
(42)

is the Lorentz weight simulating smoothing effects beyond
QRPA (escape width and coupling to complex configura-
tions). To simulate a general growth of the smoothing with the
excitation energy, the energy-dependent folding parameter is
used [39]:

�(h̄ων ) =
{
�0 for h̄ων � E0,

�0 + a (h̄ων − E0) for h̄ων > E0,
(43)

where the values �0, a, and E0 are adjusted to describe the
experimental photoabsorption cross section. For 154Sm, these
values are �0 = 0.1 MeV, a = 0.45, and E0 = 8.3 MeV. Then
the calculated photoabsorption cross section

σphot (E ) = 16π3

137 · 9 e2

∑
μ=0,±1

S1(E1μ; E ) (44)

well reproduces the experimental data [42]; see Fig. 1. Here
the ordinary effective charges eeff

p = N/A and eeff
p = −Z/A are

used. In the next section, these charges are derived in the
framework of our SA-elimination method.

Being comfortable for description of the high-energy pho-
toabsorption, the particular energy-dependent folding Eq. (42)
with the small low-energy averaging �0 = 0.1 MeV is gen-
erally not convenient for illustration of SA-elimination in
various low-energy excitations. So, in the next section, we use
the folding with the larger constant averaging �0 = 0.4 MeV.

IV. RESULTS AND DISCUSSION

In this section, we apply our SA-elimination method to the
following particular cases: (1) violation of the translational
invariance (Kπ = 0− and 1− states; ordinary, toroidal (tor)
and compression (com) E1K transitions), (2) pairing-induced
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nonconservation of the particle number (Kπ = 0+ states; E0
and E20 transitions), (3) violation of the rotational invariance
(Kπ = 1+ states; E21 and M11 transitions).

We show in Sec. IV A that elimination of SA from ordinary,
compression, and toroidal E1 responses is reduced to simple
corrections in the transition operators. Just this simplest way
is used in numerical calculations. In the cases of nonconser-
vation of the particle number (Sec. IV B) and violation of
the rotational invariance (Sec. IV C), the building of simple
SA-corrections is hampered. So, in these cases, the numer-
ical results are obtained by formation of the refined QRPA
states (24). Namely, using the known symmetry operator
and relations (37)–(40), the set of P (0)

i j and X (0)
i j is obtained.

Then, following Eq. (B1), the averages 〈0| [Qν, M̂] |0〉 are
calculated and coefficients αν and βν are determined to con-
struct finally the refined state.

A. E1 transitions

1. Ordinary E1 transitions in the long-wave limit

The center-of-mass (CoM) translation of the whole nucleus
can lead to SA in intrinsic dipole nuclear states Kπ = 0− and
1−. For μ = K , the operator of CoM linear momentum is

P̂0[μ] = −ih̄
A∑

k=1

(∇μ)k (45)

where μ = 0,±1, ∇0 = ∂
∂z , ∇±1 = ∓ 1√

2
( ∂
∂x ± i ∂

∂y ), ∇†
μ =

(−1)μ+1∇−μ. Then, subject to the normalization condition
[ X̂0[μ], P̂†

0[μ] ] = ih̄, the CoM coordinate operator has the
form

X̂0[μ] =
√

4π

3

1

A

A∑
k=1

[rY1μ(r̂)]k. (46)

The operators (45) and (46) can be obviously treated as QRPA
operators constituting the spurious state (20). This state has
the inertia parameter M0 = mA and fully exhausts the energy-
weighted sum rule EW SR = 9h̄2

8πm A for isoscalar long-wave
dipole excitations.

Now let us consider the proton transition dipole operator in
the long-wave limit:

M̂E1μ =
Z∑

k=1

(rY1μ)k . (47)

Following Eq. (34), this time-even operator is refined as

ˆ̃ME1μ = M̂E1μ − i

h̄
〈0|[P̂†

0[μ],M̂E1μ]|0〉X̂0[μ]. (48)

Using the relation [P̂†
0[μ],M̂E1μ] = −ih̄Z

√
3

4π
and Eq. (46)

for X̂0[μ], the above expression is reduced to

ˆ̃ME1μ =
Z∑

k=1

(rY1μ)k − Z

A

A∑
k=1

(rY1μ)k

= N

A

Z∑
k=1

(rY1μ)k − Z

A

N∑
k=1

(rY1μ)k . (49)

So, for E1μ-transitions, we get the standard effective charges
eeff

p = N/A and eeff
n = −Z/A, This justifies validity of our

method in this particular case. The dipole strength function
obtained with this effective charges is demonstrated in Fig. 1.

2. Compression E1 transitions

The transition operator for E1 compression mode (CM)
is [8]

M̂(�T )
E1μ,com = 1

10

∑
q=n,p

e(�T )
q

∑
k∈q

(r3Y1μ)k . (50)

The effective charges are

e(�T )
p = e(�T )

n = 1 for isoscalar case �T = 0, (51)

e(�T )
p = −e(�T )

n = 1 for isovector case �T = 1.

Usually CM is observed in the isoscalar reaction (α, α′) [8], so
the channel �T = 0 is most relevant. However, for the com-
pleteness, we also consider the case �T = 1. Operator (50)
originates from the second-order term in the long-wave de-
composition of the total electric E1 transition operator; see
Ref. [10] for more details. E1 compression mode can be
affected by CoM motion. The spurious QRPA momentum and
coordinate operators from Eqs. (45) and (46) are obviously the
same as for ordinary E1 transitions considered above.

Since the transition operator (50) is time-even, its refined
version is determined by Eq. (34):

ˆ̃M(�T )
E1μ,com = M̂(�T )

E1μ,com (52)

− i

h̄
〈0|[P̂†

0[μ],M̂
(�T )
E1μ,com

]|0〉X̂0[μ].

Using relations Eqs. (D1)–(D3) for vector spherical harmon-
ics, given in Appendix D, we get

〈0|[P̂†
0[μ],M̂

(�T )
E1μ,com

]|0〉

= − ih̄

10
√

3

∑
q=n,p

e(�T )
q

{
5

2
√

π
〈r2〉q − 2√

5
cμ〈r2Y20〉q

}
, (53)

where cμ = −2 for μ = 0 and 1 for μ = ±1. Besides,

〈r2〉q =
∫

d3rρq(r)r2, 〈r2Y20〉q =
∫

d3rρq(r)r2Y20, (54)

where ρq(r) is the proton or neutron density.
Substitution of Eqs. (46) and (53) into Eq. (52) yields

ˆ̃M(�T )
E1μ,com = M̂(�T )

E1μ,com − 1

10A
D̂E1μ

×
∑

q=n,p

e(�T )
q

(
5

3
〈r2〉q − dμ

q

)
, (55)

where

D̂E1μ =
A∑

k=1

(rY1μ)k , (56)

dμ
q = 4

3

√
π

5
cμ〈r2Y20〉q . (57)
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FIG. 2. The QRPA compression E1 strength function Eq. (41) in 154Sm calculated with the parametrization SLy6. The isoscalar (left
panels) and isovector (right panels) strengths are considered. The branches μ = 0 (top), μ = 1 (bottom) are plotted for the polluted strength
“no elim” (red dotted curves) and refined strengths “sph elim” and “full elim,” calculated without (blue dash curve) and with (black solid
curves) deformation correction dμ

q , respectively.

The correction dμ
q with 〈r2Y20〉q appears only in nuclei with an

axial quadrupole deformation. To our knowledge, this is the
first derivation of the deformation-induced CoM correction
for the dipole compression operator.

In the important isoscalar �T = 0 case, we have

ˆ̃M(0)
E1μ,com = M̂(0)

E1μ,com − 1

10
D̂E1μ

(
5

3
〈r2〉0 − dμ

0

)

= 1

10

A∑
k=1

[
r3

k − rk

(
5

3
〈r2〉0 − dμ

0

)]
Y1μ(r̂k ), (58)

where

〈r2〉0 = 1

A
(〈r2〉p + 〈r2〉n), dμ

0 = 1

A

(
dμ

p + dμ
n

)
(59)

and

〈r2Y20〉0 = 1

A
(〈r2Y20〉p + 〈r2Y20〉n) ≈ 5/(4π )β〈r2〉0, (60)

with β being the deformation parameter. The term ∼〈r2〉0

in Eq. (58) precisely reproduces the familiar CoM correction
for E1 CM operator in spherical nuclei [7–10,14,20,22]. This
confirms the validity of our approach.

In the isovector case �T = 1, we get

ˆ̃M(1)
E1μ,com = M̂(1)

E1μ,com − 1

10
D̂E1μ

(
5

3
〈r2〉1 − dμ

1

)
, (61)

with 〈r2〉1 = 1/A(〈r2〉p − 〈r2〉n) and dμ
1 = 1/A(dμ

p − dμ
n ). So

the CoM correction persists in the isovector E1 CM as well.

In Fig. 2, we demonstrate elimination of SA from E1
compression strength functions (41) in 154Sm. The strength
function has no any energy multiplier and so actually repre-
sents the reduced transition probability B(E1μ, com,�T ) =
|〈ν|M̂�T

E1μ|0〉 |2. We exhibit μ = 0 and μ = 1 strengths for
�T = 0 and �T = 1 channels, computed with the transition
operators (58) and (61). The following cases are shown: “no
elim”—without SA-elimination corrections inside the paren-
theses in Eqs. (58) and (61); “sph elim”—using only spherical
part of the corrections (dμ

0,1 = 0); “full elim”—using the full
corrections.

Figure 2 shows that, for �T = 0, the SA pollution is
absent at E > 15 MeV, noticeably changes the strength at
4–8 MeV < E < 15 MeV, and gives a huge spurious peak
at 0 < E < 4 MeV. Both SA eliminations, spherical and
full, suppress the lowest spurious peak and drastically change
the low-energy CM strength. What is remarkable, the spher-
ical (dμ

0 = 0) and full (dμ
0 = 0) corrections result in very

different low-energy spectra: concentrated in one peak in
“sph elim” and fragmented in “full elim.” So, for low-energy
CM(�T = 0), the deformation-induced correction dμ

0 is very
important.

Right plots of Fig. 2 demonstrate SA-elimination in isovec-
tor CM. In this case, the spurious mode is concentrated in one
significant peak at a few MeV and is negligible at a higher
energy. In general, the pollution effect for �T = 1 is much
smaller than for �T = 0. This is not surprising since the
spurious mode is isoscalar and so should contaminate mainly
�T = 0 strength. We see that the low-energy spurious peak is
fully removed by our SA-corrections. The options “sph elim”
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and “full elim” give almost indistinguishable strengths; i.e.,
the impact of dμ

1 is negligible.

3. Toroidal E1 transitions

The toroidal E1 transition dipole operator [10] is

M̂(�T )
E1μ, tor = − 1

2
√

3

∫
d3r r2

(
ĵ(�T )(r) ·

[
Y0

1μ(r̂) +
√

2

5
Y2

1μ(r̂)

])
, (62)

where Y0
1μ and Y2

1μ are vector spherical harmonics. Oper-

ator of the nuclear current ĵ(�T ) = ĵ(�T )
c + ĵ(�T )

m is the sum
of the convective and magnetization parts; see Appendix
A. Effective charges e(�T )

q are defined in Eq. (51). The
toroidal operator (62) is just the second-order term in the
long-wave decomposition of the total electric E1 transition
operator [10].

For E1 toroidal mode (TM), the spurious QRPA mo-
mentum and coordinate operators are again the same as for
ordinary and compression E1 modes considered above, i.e.,
are given by Eqs. (45) and (46). However, unlike the previous
E1 cases, the toroidal E1 transtion operator is time-odd in
the sense of Eq. (9). This can be easily recognized taking
into account the time-odd character of the nuclear current

Eq. (A2). Then, following Eq. (35), the refined transition
toroidal operator is

ˆ̃M(�T )
E1μ,tor = M̂(�T )

E1μ,tor

+ i

h̄
〈0|[X̂ †

0[μ],M̂
(�T )
E1μ,tor

]|0〉P̂0[μ]. (63)

Note that M̂(�T )
E1μ,tor includes the total nuclear current. At the

same time, the magnetization current ĵ(�T )
m does not contribute

to the commutator average 〈0|[X̂ †
0[μ],M̂

(�T )
E1μ,tor]|0〉 and so to

the SA correction.
Using Eqs. (D4) and (D5), the commutator average in

Eq. (63) can be written as

〈0|[X̂ †
0[μ],M̂

(�T )
E1μ,tor

]|0〉

= −i
1

4
√

3π

eh̄

m

1

A

∑
q=n,p

e(�T )
q

[
〈r2〉q + 3

10
dμ

q

]
, (64)

where 〈r2〉q and deformation correction dμ
q are defined in

Eqs. (54) and (57). Then, using the relation

P̂0[μ] =
√

4π
m

e

∫
d3r

[
ĵ(0)
c (r) · Y0

1μ(r̂)
]
, (65)

with the isoscalar convective current ĵ(0)
c , the refined transition

toroidal operator (63) acquires the form

ˆ̃M(�T )
E1μ,tor = − 1

2
√

3

∫
d3r

[(
ĵ(�T )(r) ·

[√
2

5
Y2

1μ(r̂) + Y0
1μ(r̂)

]
r2

)
− 1

A

(
ĵ(0)
c (r) · Y0

1μ

) ∑
q=n,p

e(�T )
q

(
〈r2〉q + 3

10
dμ

q

)]
. (66)

For �T = 0 transitions with neglected ĵ(0)
m , we obtain

ˆ̃M(0)
E1μ,tor = − 1

2
√

3

∫
d3r

{
ĵ(0)
c (r) ·

[√
2

5
r2Y2

1μ(r̂) + Y0
1μ(r̂)

(
r2 − 〈r2〉0 − 3

10
dμ

0

)]}
. (67)

The term ∼〈r2〉0 in Eq. (67) precisely reproduces the ordinary CoM correction for E1 toroidal operator, obtained earlier for
spherical nuclei [10,21,22]. This once more confirms the validity of our approach. Note that the previous derivation of this
correction exploits some approximate relations following from sum rules; see, e.g., Ref. [10]. Instead, the present derivation is
free from such approximations.

In the isovector �T = 1 case, the refined operator is

ˆ̃M(1)
E1μ,tor = M̂(1)

E1μ,tor + 1

2
√

3

∫
d3r

[
ĵ(0)
c (r) · Y0

1μ

](〈r2〉1 + 3

10
dμ

1

)
, (68)

where 〈r2〉1 and dμ
1 are defined in the previous subsection

for CM. Note that, despite the transition operator is isovec-
tor, its SA-correction is determined by the isoscalar current
operator ĵ(0)

c .
In Fig. 3, the SA-elimination effect for the toroidal E1

excitations is illustrated. Unlike CM(�T = 0) case in Fig. 2,
SA in TM(�T = 0) strength is almost fully concentrated in
the lowest peak while the strength at a higher energy is not
contaminated. The difference in SA pollution for CM and
TM is explained by different character of these modes. CM
is irrotational and so is strongly affected by CoM which is
also irrotational. Instead TM is basically vortical [10] and so
the CoM impact on TM is much less. For TM(�T = 1), the
pollution is almost absent. Figure 3 shows that our procedure

fully suppresses spurious peaks in TM(�T = 0). In all the
plots, the green dashed and black solid lines practically coin-
cide; i.e., effect of the deformation-induced corrections dμ

0,1 is
negligible. This is explained by a small (as compared to CM)
relative weight of dμ

0,1 in the toroidal SA-corrections given in
Eqs. (67) and (68).

B. Elimination of SA from E0 and E20 excitations

The pairing treated within Bardeen-Cooper-Schrieffer
(BCS) procedure leads to violation of the conservation law
Eq. (21) for the particle number Nq [5]. This results in spurious
admixtures in electric monopole E0 and quadrupole E20
excitations with K = 0. Time-even operators for E0 and E20
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FIG. 3. The same as in Fig. 2 but for toroidal E1 response.

transitions are

M̂(�T )
Eλ0 =

∑
q=n,p

e(�T )
q

∑
k∈q

(r2Yλ0)k (69)

with λ = 0 and 2.
The symmetry operator is the time-even operator of the

particle number N̂q. It can be associated with the spurious
operator X̂0 (for simplicity of notation, we omit below the
index q). Then, within BCS, we get

X̂0 = N̂ =
∑
j>0

X (0)
j j̄

(α+
j α+

j̄
+ α j̄ α j ), (70)

with X (0)
j j̄

= 2 U jV j and U j , V j being BCS pairing ampli-
tudes. Following Eq. (10b) the time-odd conjugate spurious
operator is

P̂0 =
∑

i j

P (0)
i j (α+

i α+
j − α j̄αī ). (71)

Since the values X (0)
j j̄

are known, we can obtain their conju-

gates P (0)
i j from Eq. (39). Then, using Eq. (B1) from Appendix

B, we can calculate the averages 〈0| [Qν, M̂] |0〉, determine
the coefficients αν and βν , and finally build refined states. Just
this prescription was used to get the numerical results shown
in this subsection. It partly reminds the earlier projection
scheme proposed for E0 excitations in Ref. [15]. However,
our prescription is more general. As shown below, we also
suggest the direct refinement of the transition matrix elements
and operators.

As an alternative way, we can also construct the refined
transition operator. Following Eq. (34), it reads

ˆ̃M(�T )
Eλ0 = M̂(�T )

Eλ0 − i

h̄
〈0|[P̂†

0 ,M̂(�T )
Eλ0

]|0〉N̂ (72)

= M̂(�T )
Eλ0 − γ

(�T )
Eλ0 N̂,

with

γ
(�T )

Eλ0 = i

h̄
〈0|[P̂†

0 ,M̂(�T )
Eλ0

]|0〉 (73)

= 2i

h̄

∑
i j

[
P (0)

i j

]∗〈i j|M̂(�T )
Eλ0 |0〉.

FIG. 4. Skyrme QRPA strength function (41) for isoscalar (top
panel) and isovector (bottom panel) E0 transitions. Results for �T =
0 are compared with (α, α′) experimental data of Youngblood et al.
[43] and M. Itoh et al. [44]. The strengths without (red dotted curve)
and with (black solid curves) SA elimination are shown.

In quasiparticle representation,

ˆ̃M(�T )
Eλ0 =

∑
i j

〈i j| ˆ̃M(�T )
Eλ0 |0〉(α+

i α+
j + α j̄ αī ) (74)

with

〈i j| ˆ̃M(�T )
Eλ0 |0〉 = 〈i j|M̂(�T )

Eλ0 |0〉 − 2γ
(�T )

Eλ0 δī jU jV j . (75)

So, to exclude SA, the transition operator can be corrected
only in matrix elements with | j j̄〉. The factor U jV j is large
only for states near the Fermi level and, therefore, just these
states mainly contribute to the correction.

The SA elimination effect for the monopole strength
S0(E0) and quadrupole strength S0(E20) is demonstrated
in Figs. 4 and 5. Both strengths embrace the same set of
QRPA Kπ = 0+ states calculated with the particle-particle
channel [35].

Figure 4 illustrates elimination of SA from the isoscalar
and isovector E0 responses calculated with effective charges
from Eq. (51). In the upper panel, the calculated strength
S0(E0) rather well reproduces experimental data [43]. Both
features, two-hump structure of the giant monopole resonance
(GMR) and vanishing the strength above GMR, are described.
At the same time, S0(E0) deviates in these features from the
data [44]. There is a definite discrepancy between the data of
Refs. [43] and [44], though both of them are obtained from
(α, α′) reaction; see discussion in Ref. [24].

Figure 4 shows that in both �T = 0 and �T = 1 channels
SA are not merely concentrated in the lowest peak but essen-
tially contaminate low-energy excitations at E < 8 MeV. At
the higher energy, the pollution is negligible. Our procedure
successfully removes the spurious strength.

In the top panels of Fig. 5, the quadrupole strength S0(E20)
with and without SA-elimination is demonstrated. In contrast
to E0 case, the SA contamination is almost negligible. Some
elimination effect is visible only for the minor lowest spurious
peak at E ≈ 2 MeV in �T = 1 channel. The difference in
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FIG. 5. Isoscalar (left) and isovector (right) E20 (μ = 0) and E21 (μ = 1) strength functions calculated without (red dotted curves) and
with (black solid curves) SA elimination.

the pollution of E0 and E2 strengths can be explained by
basically monopole character of the pairing. So just E0 but
not E2 strength is contaminated.

C. Elimination of SA from E21 and M11 excitations

The rotational invariance is related with the conservation
of the total angular momentum Ĵ of the nucleus [3–5]. Since
in axial deformed nuclei the rotation around the intrinsic sym-
metry z axis is forbidden, the conservation law is formulated
through μ = ±1 components of Ĵ, combining intrinsic x and
y axes:

[ Ĥintr, Ĵμ=±1 ] = 0. (76)

Below we consider only

Ĵ1 = − 1√
2

(Ĵx + iĴy) = L̂1 + 1

2
σ1, (77)

where L̂1 and σ1 are components of the angular momentum
and Pauli matrix for μ = 1. The violation of the conservation
law (76) leads to SA in Kπ = 1+ states and contaminates
E21 and M11 transitions between these states and the ground
state. The symmetry operator Ĵ1 is time-odd and so can be
associated with the spurious operator P̂0 [3,5,27]:

Ĵ1 = P̂0 =
∑

i j

P (0)
i j (α+

i α+
j − α j̄αī ), (78)

where P (0)
i j = 〈i j| Ĵ1 |0〉 are real two-quasiparticle matrix ele-

ments. The angle operator �̂, being the time-even conjugate

to Ĵ1, matches the spurious operator X̂0 [5]:

�̂1 ≡ X̂0 =
∑

i j

X (0)
i j (α+

i α+
j + α j̄αī ), (79)

where X (0)
i j = 〈i j| X̂0 |0〉 are imaginary. The operators obey

the normalization condition [ X̂0, P̂†
0 ] = [ �̂1, Ĵ†

1 ] = ih̄. Us-
ing known matrix elements P (0)

i j = J (1)
i j = 〈i j| Ĵ1 |0〉, the val-

ues X (0)
i j are obtained from the inversion equation (37). Then,

as in the previous subsection, we can calculate the averages
〈0| [Qν, M̂] |0〉, determine the coefficients αν and βν , and
finally construct the refined QRPA states. This way was
utilized to get the numerical results shown below.

The parameter M0 is calculated combining Eq. (38) with
Eq. (22). It has the physical meaning of the principal μ = 1
component of the moment of inertia F1 [3,5,27]:

M0 = F1 ≈ 2
∑
i j,kl

J (1) ∗
i j (A − B)−1

i j, kl J (1)
kl . (80)

The E21 and M11 transition operators are characterized by
the time-even operator

M̂(�T )
E21 =

∑
q=n,p

e(�T )
q

∑
k∈q

(r2Y21)k (81)

and the time-odd operator

M̂(�T )
M11 = eh̄

2mc

√
3

4π

∑
q=n,p

∑
k∈q

[
e(�T )

q l̂ (k)
1 + gq ŝ(k)

1

]
, (82)

where l̂ (k)
1 and ŝ(k)

1 are (μ = 1) components of operators of the
orbital momentum and spin for kth nucleon. Further, e(�T )

q are
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FIG. 6. The convective isoscalar current transition density in the
x-z plane of the intrinsic frame, calculated following Eq. (33) for
the first (ν = 0) spurious QRPA Kπ = 1+ solution with the energy
h̄ω0 = 0.95 MeV. The panels show: (a) δj(�T =0)

ν=0 (r) without SA
elimination, (b) the SA correction term in the right-hand side of
Eq. (33), (c) δj(�T =0)

ν′=0 (r) with SA elimination.

effective charges. They are taken from Eq. (51) for E21 and
as e(�T )

p = 1 and e(�T )
n = 0 for M21. Gyromagnetic factors

gq = gs
qη are composed from the nucleon bare factors gs

q with
the quenching parameter η = 0.7 [8].

The corresponding refined operators are

ˆ̃M(�T )
E21 = M̂(�T )

E21 − i

h̄
〈0|[Ĵ†

1 ,M̂(�T )
E21

]|0〉�̂1, (83)

ˆ̃M(�T )
M11 = M̂(�T )

M11 + i

h̄
〈0|[�̂†

1,M̂
(�T )
M11

]|0〉Ĵ1. (84)

Following Appendix B, the average commutators in Eqs. (83)
and (84) can be computed as

〈0|[Ĵ†
1 ,M̂(�T )

E21

]|0〉 = 2
∑

i j

[
P (0)

i j

]∗ 〈i j|M̂(�T )
E21 |0〉, (85)

〈0|[�̂†
1,M̂

(�T )
M11

]|0〉 = 2
∑

i j

[
X (0)

i j

]∗ 〈i j|M̂(�T )
M11 |0〉. (86)

SA corrections in Eqs. (83) and (84) include Ĵ1 and, in
this sense, correspond to the corrections suggested earlier in
Refs. [3,5,27].

In the bottom (μ = 1) plots of Fig. 5, we demonstrate
subtraction of SA from E21 responses. The plots show the
strong elimination effect for low-energy states, especially in
�T = 0 channel.

To illustrate the elimination mechanism, we show in
Fig. 6 the convective part of the isoscalar current transition

FIG. 7. The total (top), orbital (middle), and spin (bottom) M11
strength functions calculated without (red dotted line) and with
(black solid line) SA elimination.

density (33) for the spurious Kπ = 1+ state at 0.95 MeV (this
state is depicted by the dotted red line in �T = 0 and �T = 1
bottom plots of Fig. 5). Following Eq. (33), the refined current
transition density δjν ′=0 is the sum of the initially polluted
δjν=0 and the correction current. In the plot (a) with δjν=0, we
see a clear spurious rotation. The SA-correction current shown
in the plot (b) demonstrates the opposite rotation. These two
currents compensate each other and thus give the vanishing
δjν ′=0 in the plot (c).

Further, Fig. 7 shows the SA-elimination effect for
M1(K = 1) strength in 154Sm. The strength functions are
calculated for M11 transition operator from Eq. (82) consist-
ing of the orbital and spin parts. As seen from the figure,
orbital part of M11 operator generates M1(K = 1) orbital
scissor mode located at 2–4 MeV [plot (b)], while the spin
part of the operator produces the spin-flip resonance lying at
6–11 MeV [plot (c)]. We see that the spuriosity caused by the
nuclear rotation concerns only the low-energy orbital part of
M11 strength. Our SA-elimination method fully suppresses
the spurious peak at 0.95 MeV in the orbital M11 strength.

D. Comparison with other approaches

In our method, we get the refined QRPA physical states
from the condition given in Eqs. (23) and (24), i.e., request-
ing orthogonality of physical states to the spurious mode
(which can be also considered as projection of contami-
nated states onto refined physical states). This simple and
evident condition was also used in some previous works,
e.g., Refs. [14–18]. Let us briefly compare our and previous
studies.

The works [14–16] consider subtraction of SA from com-
pression E1(�T = 0) [14], monopole E0(�T = 0) [15], and
dipole E1(�T = 1) [16] QRPA states in spherical nuclei.
The principle difference of our approach with these works is
that we use a more general expression (20) for the spurious
state where both X̂0 and P̂0 operators are included. This
allows us to get, in the same theoretical frame, the general
SA-subtraction recipe covering various symmetry violations.
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In Refs. [17,18], the spurious state embraces both time-
even and time-odd parts. However, these works deal with
specific QRPA versions: finite amplitude method [17] and
Green’s function method [18]. So their recipes have specific
forms determined by particular QRPA realizations. Besides
these recipes address only transition densities [17] or strength
functions [18]. Instead, our method is based on the con-
ventional matrix QRPA and suggests SA elimination for a
wider set of characteristics: wave functions, transition matrix
elements (transition densities), and transition operators.

Altogether, the major differences and advantages of our
method as compared to the previous studies [14–18] can be
summarized as:

(a) Unlike [14–18], we propose SA-corrections at different
stages of the calculations: for QRPA states, matrix elements,
and even transition operators. Various symmetry violations
can be covered, both spherical and deformed nuclei can be
considered. This flexibility is indeed important in practical
calculations.

(b) Our method reproduces well known SA-corrections
for conventional E1(�T = 1) [5], compression E1(�T = 0)
[7,10] and toroidal E1(�T = 0) [10,21] excitations, obtained
earlier in different models. In Refs. [14–18], these corrections
are considered as independent items to be compared with
the projection results. We show that the previous corrections
can be derived on the same theoretical footing within the
projection technique. This deepens our knowledge on the
nature and accuracy of SA elimination in dipole states.

(c) For the first time, deformation-induced analytical cor-
rections for E1 compression and toroidal transitions were de-
rived and numerically tested. They were found to be essential
for compression E1(�T = 0) low-energy excitations.

V. CONCLUSION

A general simple method for elimination of spurious ad-
mixtures (SA) from RPA/QRPA intrinsic nuclear excitations
is proposed. The SA corrections are derived from the require-
ment of orthogonality of physical QRPA states to the phonon
spurious state. Within this projection technique, the most rel-
evant cases are inspected: violation of the translational invari-
ance (ordinary, compression and toroidal E1 modes), pairing-
induced nonconservation of the particle number (E2(K = 0)
and E0 modes), and violation of the rotational invariance
(E2(K = 1) and M1(K = 1) modes). Various familiar SA
corrections are rederived on the same theoretical footing and
new elimination schemes are proposed.

For each relevant case, the SA subtraction is illustrated by
Skyrme QRPA calculations for axially deformed 154Sm. High
efficiency and accuracy of the method are demonstrated.

The method is universal. Both isoscalar (�T = 0) and
isovector (�T = 1) excitations are covered. The refinement
from SA can be carried out at different levels of calculations:
for each RPA/QRPA state and directly for various electric
and magnetic responses. In the later case, the SA corrections
are derived for transition matrix elements and even for transi-
tion operators. For E1 excitations, the analytical expressions
for SA corrections are proposed. For axial deformed nuclei,
the additional deformation-induced SA corrections for the

compression and toroidal E1 strengths are derived. It is shown
that these corrections are important for the low-energy part
of the E1(�T = 0) compression mode. The method can be
applied to various RPA/QRPA approaches, including self-
consistent ones.
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APPENDIX A: OPERATORS OF NUCLEAR DENSITY AND
CURRENT

The density operator is

ρ̂ (�T )(r) = e
∑

q=n,p

e(�T )
q

∑
k∈q

δ(r − rk ), (A1)

with the effective charges e(0)
p = e(0)

n = 1 in the isoscalar
(�T = 0) case and e(1)

p = −e(1)
n = 1 in the isovector (�T =

1) case.
The operator of the nuclear current

ĵ(�T )(r) = ĵ(�T )
c (r) + ĵ(�T )

m (r) (A2)

consists from the convective and magnetization parts

ĵ(�T )
c (r) = −i

eh̄

2m

∑
q=n,p

e(�T )
q

×
∑
k∈q

[δ(r − rk ) ∇k + ∇k δ(r − rk )], (A3)

ĵ(�T )
m (r) = eh̄

2m

∑
q=n,p

gq

∑
k∈q

∇ × ŝk δ(r − rk ). (A4)

Here m is the nucleon mass, ŝ is the spin operator, gq is the
nucleon gyromagnetic factor.

APPENDIX B: COMMUTATOR AVERAGES

If M̂ = ∑
i j〈i j|M̂|BCS〉(α+

i α+
j + γM

T α j̄αī ), then aver-
ages in Eqs. (30)–(35) have the form

〈0| [Qν, M̂] |0〉 (B1)

=
∑

i j

[
X (ν)∗

i j + γM
T Y (ν)∗

i j

] 〈i j|M̂ |BCS〉,

〈0| [X̂ †
0 , M̂] |0〉 (B2)

=
{

0 for time-even M̂
2

∑
i j X

(0) ∗
i j 〈i j|M̂ |BCS〉 for time-odd M̂,

〈0| [P̂†
0 , M̂

] |0〉 (B3)

=
{

2
∑

i j P
(0) ∗
i j 〈i j|M̂ |BCS〉 for time-even M̂

0 for time-odd M̂,

where |BCS〉 is the BCS vacuum.
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APPENDIX C: SKYRME QRPA FRAMEWORK

The total functional Etot includes Skyrme, Coulomb, and
pairing parts [11,19,35]:

Etot = ESk + ECoul + Epair. (C1)

The Skyrme part ESk{Jς
q } depends on the set {Jς

q } of densities
and currents (listed by ς ) for protons and neutrons (q =
p, n). This set includes time-even (nucleon ρq, kinetic-energy
τq, spin-orbit Jq) and time-odd (current jq, spin sq, vector
kinetic-energy Tq) items. The Coulomb functional ECoul{ρp}
consists from the direct term and exchange terms in Slater
approximation [11,35].

The pairing functional Epair{ρ̃q} can be taken in the surface
and volume forms, i.e., with and without the density depen-
dence [35,45]. For simplicity reasons, we consider here the
volume form

Epair = 1

4

∑
q=n,p

Vq

∫
d3r |ρ̃q(r)|2, (C2)

where Vq are neutron and proton pairing constants and

ρ̃q(r) = 2
∑
iεq

f q
i viui|ψi(r)|2 (C3)

are pairing densities with single-particle wave functions ψi(r),
Bogoliubov pairing factors vi and ui, and energy-dependent
cutoff weights f q

i [35].
The nuclear mean field is determined by Hartree-Fock

method using first functional derivatives δ(ESk + ECoul )/δJς
q

over time-even densities Jς
q . The volume pairing is treated

within the BCS scheme [35].
The residual interaction is determined by the second func-

tional derivatives δ2Etot/δJς
q δJς ′

q′ [35]. The contributions of
all time-even and time-odd densities and currents, including
the pairing density in Eq. (C3), is taken into account. Both
particle-hole (ph) and pairing-induced particle-particle (pp)
channels are involved, see detailed expressions in Ref. [35].
In ph-channel, Coulomb contribution is included.

Our QRPA approach is fully self-consistent since (i) both
the mean field and residual interaction are obtained from the
same initial functional, (ii) contributions of all the densities
and currents are taken into account, (iii) both ph- and pp-
channels are considered.

APPENDIX D: USEFUL RELATIONS

In derivation of SA corrections to E1 transition operators,
the following relations were used [46]:

∇0r3Y10(r̂) = 1√
3

[
5r2Y00 + 4√

5
r2Y20(r̂)

]
, (D1)

∇±1r3Y1,∓1(r̂) = 1√
3

[
−5r2Y00 + 2√

5
r2Y20(r̂)

]
, (D2)

Y00 = 1/(2
√

π ), (D3)[
Y0

1μ

]∗ · Y2
1μ = 1√

40π
Y20 cμ, (D4)

[
Y0

1μ

]∗ · Y0
1μ = 1

4π
, (D5)

where cμ = −2 for μ = 0 and 1 for μ = ±1.
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