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Empirical evidence of a superrigid structure of “flat” superdeformed bands
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For the first time, we present the empirical evidence of superrigid character of the “flat” superdeformed bands
in the Tl and Pb isotopes. For this purpose, we have used various rotational energy formulas. The free parameters
of superdeformed (SD) bands in the Tl and Pb isotopes have been extracted and systematically studied to obtain
the proposed empirical evidence. In particular, the intraband transition energies of the SD bands have been split
into rotational and shape fluctuation energies. The role of the vibrational factor in the evolution of dynamic
moment of inertia, softness parameter, alignment, and effective pairing gap parameter of the flat SD bands has
been studied. Using these models, two distinct natures have been identified for the SD bands in the Tl and
Pb isotopes. Our study establishes the role of shape fluctuations, vibrational effect, deformation, and pairing
correlations for the unusual behavior of the dynamic moment of inertia in the flat SD bands of the A ≈ 190 mass
region.

DOI: 10.1103/PhysRevC.99.044305

I. INTRODUCTION

The phenomenon of superdeformation was used many
years ago to explain the fission isomers observed in the ac-
tinide nuclei [1]. The curiosity for the superdeformation phe-
nomena increased exponentially when a superdeformed (SD)
band in the 152Dy nucleus was observed [2]. Many surprising
properties of SD nuclei were observed experimentally, such
as constant energy spacing between the transitions, lack of the
transition linking the yrast SD band to the normal deformed
(ND) states resulting in the 1 − 2h̄ uncertainty in the spin
assignments of the SD bands, etc. The nucleon-configuration
assignment of the SD bands is based on the systematic be-
havior of properties such as dynamic (�(2)) moment of inertia
(MoI) and transition quadrupole moments. In the A ≈ 190
mass region, SD bands were first observed in 191Hg and to
date, many other SD bands have been reported [3,4].

The superdeformation spectroscopy has provided us with
a great deal of information concerning the behavior of MoI
in the SD nuclei. The kinematic (�(1)) and dynamic MoI
(�(2)) are two types of MoI explored in the SD nuclei. Since
calculation of �(1) requires the knowledge of spins, �(2) is
frequently studied in the SD states. A smooth rise of �(2)

with increasing rotational frequency (h̄ω) is observed in the
A ≈ 190 mass region, which is a characteristics feature of the
SD bands in this mass region. This smooth rise in �(2) with h̄ω

in A ≈ 190 mass region is interpreted as the alignment of both
high-N quasiprotons and quasineutrons and reduction in pair-
ing [5,6]. The resemblance of the yrast SD band of the 192Hg
and 194Pb suggested that additional protons do not change
the core properties of the SD bands and it was anticipated
that odd-A Pb isotopes might have the same properties to
their Hg isotones. However, an appealing feature of the odd-A
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isotopes in Pb is the observation of �(2), which remains nearly
constant with the increasing rotational frequency (known as
“flat” SD bands). Apart from these nuclei, flat SD bands
were also observed in the 192Tl where �(2) does not increase
with h̄ω. The Pauli blocking [7] of the intruder quasiproton
and quasineutron is accountable for the decreased slope of
�(2). This mass region is also known for the vast majority of
observations of the identical SD bands [8–10].

Very recently, the ground-state energy E+
2 has been split

into the shape fluctuation and rotational energy using the
shape fluctuation model (SF model). Its variation with the
asymmetry parameter γ0 has been explored to study the
structural anomalies in nuclear structure [11]. In this paper,
we have systematically studied the flat SD bands available
in the Tl and Pb isotopes using the shape fluctuation model
(SF model), vibrational distortion model, nuclear softness
(NS) formula, semiclassical particle rotor model (PRM), and
exponential model with pairing attenuation.

II. ROTATIONAL ENERGY FORMULAE

A. Shape fluctuation model

The shape fluctuation model (SF model) [12] provided a
good measure to calculate the variation of the intrinsic shape
in the ground-state band. The energy expression of the SF
model is given as

E (I ) = E0 + E
′
φ

′
I + (B0 + φ

′
B

′
)I (I + 1),

= B0I (I + 1) + E
′
φ

′
I + φ

′
B

′
I2(I + 1), (1)

where E and B are the Hartree-Fock energy and inverse
of twice of the moment of inertia (MoI), respectively. In
Eq. (1), the first term is the energy due to the rotation of the
unfluctuated core, called rotational energy (EROT

γ ). The second
and third terms give the excess in the intrinsic energy and
the rotational energy due to the fluctuation of the core. The
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second term corresponds to the phonon spectrum while the
third term gives the rotational spectrum characterized by a
spin-dependent inverse of MoI-like factor. The contribution
from these two terms is referred to the shape fluctuation
energy (ESF

γ ).

B. Semiclassical vibration distortion model

Using the effect analogous to the vibration and rotation
of the nuclei and molecules, the vibrational distortion model
was proposed [13]. The energy of excitation in the case of
molecules with a rotational and vibrational degree of freedom
can be expressed as

Fν = (Bν − DνI (I + 1))I (I + 1), (2)

where ν is the vibrational frequency. Using this expression,
the moment of inertia can be expressed as the function of
rotational and vibrational distortion as

�(2) = �(2)
c ± �(2)

vib[ωmax − ω/ωmax]2, (3)

where �(2)
c and �(2)

vib are the constant and vibration part of the
dynamic MoI, respectively

C. NS formula

The energy levels of ground-state bands in even-even nu-
clei [14], well-deformed, and transitional nuclei [15] have
been described efficiently with the nuclear softness (NS)
formula

EI = h̄2I (I + 1)

2�0

1

(1 + σ1I )

×
(

1 − σ2I
2

(1 + σ1I + σ2I2)
− σ3I

3

(1 + σ1I + σ3I3)
+ · · ·

)
,

(4)

where,

σ1 = 1

�0

��0

�I
, σ2 = 1

2!�0

∂2�0

∂I2
, σ3 = 1

3!�0

∂3�0

∂I3
. . . ,

(5)

are the constants of first, second, third, etc. order of the nuclear
softness. Keeping the nuclear softness to only first order, i.e.,
putting σ2, σ3 . . . = 0, we get a two-parameter formula (NS2)

E (I ) = h̄2

2�0
× I (I + 1)

(1 + σ1I )
. (6)

D. Semiclassical particle rotor model

In the semiclassical PRM, the axially symmetric Hamiltonian
for the rotor plus one valence particle is [16]

H = Q j2
3 + A(I − j)2.

Here total angular momentum I is the sum of the core rota-
tional angular momentum R and the angular momentum of the
valence particle j. The rotor energy formula obtained is [17]

E (I ) = h̄2

2�(PRM)
[I (I + 1) − 2iI + i(i + 1)], (7)

where �(PRM) (the average value of moment of inertia over the
whole band) and i (the average alignment over a limited range
of angular momentum) are the fitting parameters.

E. Exponential model with pairing attenuation

The phenomenological studies of Draper [18] and statis-
tical study of Moretto [19] revealed the dependence of the
pairing gap (�) on the spin

�(I ) = �0

(
1 − I

Ic

) 1
ν

. (8)

Taking ν = 2 Ic = 18h̄, Sood and Jain [20] gave a rotational
energy expression

E (I ) = h̄2

2�(EXPO)
I (I + 1)e

�0

√
1− I

Ic , (9)

where �(EXPO) and �0 are free parameters. The exponential
model was also tested in the SD A ≈ 190 mass region where
dynamic MoI increases gradually with rotational spin [21].

III. RESULTS AND DISCUSSION

In the present paper, the flat SD bands of the A ≈ 190
mass region in Tl and Pb isotopes are systematically explored.
This is the first time the flat SD bands of the A ≈ 190 mass
region have been investigated using different rotational energy
formulas. The observed γ -transition energies [22] of the SD
rotational bands of Tl and Pb isotopes have been least-squares
fitted. This approach profits from the comparison of calculated
and experimental transition energies and is known as the best-
fit method (BFM). The root-mean-square (RMS) deviation

χ =
⎡
⎣1

n

n∑
n=1

(
E cal

γ (Ii) − E exp
γ (Ii )

E exp
γ (Ii)

)2
⎤
⎦

1/2

, (10)

(where n is the number of transitions involved in the fitting)
between the calculated and experimental transitions energies
is minimum at correct band-head spin assigned to the SD
band. First, the band-head spins assignment is crucial for
the systematic study of the SD bands. For this purpose, we
have used the exponential model with pairing attenuation
and further supported our assignment with the help of the
NS formula. The band-head spins deduced are discussed in
Sec. III A. In Sec. III B, the intraband-γ transition energy of
the flat SD bands have been spilt into the rotational energy
and shape fluctuation energy part. The role of the vibrational
distortion factor and nuclear softness parameter has been dis-
cussed in Secs. III C and III D, respectively. The alignments of
the flat SD bands and the role of pairing have been discussed
in Secs. III E and III F.

A. Band-head spins of the flat SD bands

The intraband γ -transition energies of the flat SD bands
193Pb(1, 2, 9), 195Pb(1, 2), 197Pb(1, 2, 3, 4) of Pb isotopes in
the A ≈ 190 mass region, indexed in the table of SD bands [3]
and continuously updated ENSDF database [22], have been
fitted to the exponential model [Eq. (9)]. Using a least-squares
fitting procedure, the parameters �(EXPO), �0 are obtained.
It is worthwhile to mention that the parameter �(EXPO), �0
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FIG. 1. The RMS deviation plot at various spin assignments for the flat bands 193Pb(1, 2, 9), 195Pb(1, 2), and 197Pb(1, 2, 3, 4) using the
exponential model and NS formula. I0 correspond to the spin value of the lowest level observed. The circles/squares correspond to the values
obtained from the NS formula/exponential model.

depends explicitly on the proposed band-head spin. To firmly
establish the band-head spins of these nine flat SD bands
we have employed the exponential model and further con-
firmed the spins obtained using the nuclear softness (NS)
formula [23]. It is encouraging to mention that, for the flat
bands considered here, the band-head spin deduced using the
exponential model and NS formula agrees with the previously
assigned spin [22], except for 193Pb(2) and 195Pb(1, 2) where
band-head spin assigned is 1h̄ and 2h̄, respectively, lower than
the previously assigned spin (see Table II and Fig. 1). For
SD band 193Pb(2), the spin fit method is probably inappro-
priate [24], hence to check the band-head spin assigned for
193Pb(2) we have also employed the ratio-R method [25,26],
which provides additional support to the spin assignment.
In the ratio-R method, the relation between the kinematic
�(1) and dynamic �(2) MoI is analyzed in the framework
of two parameter ab formula, E (I ) = a[

√
1 + bI (I + 1) − 1]

[25,26]. According to the ab formula for rotational spectrum,
the ratio-R ≡

√
[�(1)]3/�(2) should be spin independent. Us-

ing ratio-R method, the obtained I0 = 7.5 for 193Pb(2) SD

band is in accordance with the exponential model and NS
formula. Using a less precise analysis of the quasicontinuum
component of decay [27], the band-head spins of 195Pb(1)
and 195Pb(2) were estimated to be 7.5 and 8.5, respectively.
Using the exponential model and NS formula, we find that
the band-head spins of 195Pb(1) and 195Pb(2) are 5.5 and
6.5, respectively (see Table II). This is not only in agreement
with the previous spin assignment by Farris et al. [28] but
also coincides with the other theoretical model [29]. As an
illustrative example, we have shown the χ vs. I0 plot for the
flat SD bands in Fig. 1 and Table II comprises the band-head
spins and parameters of all the SD bands available in odd-A
Pb isotopes deduced from the exponential model/NS formula.
The band-head spins and parameters of the Tl isotopes have
been taken from the Ref. [23].

B. Shape fluctuation energy of the flat SD bands

Using the accurate band-head spins and the intraband γ -
transition energies [3,22] of SD bands in Tl and Pb isotopes
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TABLE I. Parameters obtained from the least-squares fitting for the SD bands in Tl and Pb isotopes using the SF model. I0 corresponds to
the band-head spin taken from Refs. [22,23] and � is the MoI. The RMS deviation is χ × 10−3.

Band I0 Eγ B0 � = 1/2B0 B
′
φ

′
E

′
φ

′
χ

(h̄) (keV) (keV) (h̄2keV−1) (keV) (keV)

189Tl(1) 14.5 367.9 6.0444 0.0827 − 0.01798 3.9221 5.1
189Tl(2) 13.5 344.8 6.1686 0.0811 − 0.02061 0.7758 1.2
191Tl(1) 9.5 276.5 5.8859 0.0849 − 0.01816 14.9234 0.7
191Tl(2) 10.5 296.3 5.9697 0.0838 − 0.02052 13.3183 0.7
192Tl(1) 13 283.0 4.8681 0.1027 − 0.00023 − 0.0198 1.4
192Tl(2) 16 337.5 4.9129 0.1018 − 0.00225 − 1.4393 0.7
192Tl(3) 10 233.4 5.3483 0.0935 − 0.01041 − 1.9756 1.3
192Tl(4) 9 213.4 5.4011 0.0926 − 0.01119 − 3.0771 0.5
193Tl(1) 8.5 206.6 5.5719 0.0897 − 0.01388 − 4.0866 0.9
193Tl(2) 9.5 227.3 5.4524 0.0917 − 0.01090 − 2.2444 1.1
193Tl(3) 6.5 187.9 6.1140 0.0818 − 0.02149 − 1.1393 5.4
193Tl(4) 10.5 250.8 5.3105 0.0942 − 0.00816 2.3727 4.4
193Tl(5) 10.5 271.5 5.6301 0.0888 − 0.01389 7.0016 1.5
194Tl(1) 12 271.5 5.6927 0.0878 − 0.01389 − 10.0034 1.5
194Tl(2) 9 209.3 5.2834 0.0946 − 0.00996 − 3.2649 0.6
194Tl(3) 10 240.5 5.5236 0.0905 − 0.01255 − 2.5228 1.8
194Tl(4) 9 220.3 5.4144 0.0923 − 0.01093 − 0.3673 1.3
194Tl(5) 8 187.9 4.9896 0.1002 − 0.00628 0.7436 0.6
194Tl(6) 9 207.0 4.9994 0.1000 − 0.00584 0.3777 1.2
195Tl(1) 5.5 146.2 5.6361 0.0887 − 0.01379 − 4.4227 2.5
195Tl(2) 6.5 167.5 5.7265 0.0873 − 0.01665 − 5.4983 2.6
192Pb(1) 8 214.8 6.0527 0.0826 − 0.02071 − 0.9820 4.1
193Pb(1) 11.5 277.0 5.3642 0.0932 − 0.00627 1.8472 0.9
193Pb(2) 7.5 190.2 5.6143 0.0891 − 0.00624 − 4.9477 1.9
193Pb(3) 10.5 251.5 5.4836 0.0912 − 0.01012 − 1.6748 0.9
193Pb(4) 11.5 273.0 5.7032 0.0877 − 0.01568 − 4.0720 0.8
193Pb(5) 8.5 213.2 5.5898 0.0894 − 0.01335 − 1.0632 1.4
193Pb(6) 9.5 234.6 5.5367 0.0903 − 0.01257 0.1380 0.8
193Pb(7) 10.5 260.6 5.5438 0.0902 − 0.01399 3.0812 1.1
193Pb(8) 11.5 281.8 5.4705 0.0914 − 0.01351 5.6123 1.0
193Pb(9) 8.5 212.9 5.2230 0.0957 − 0.00385 3.8141 0.3
194Pb(1) 6 169.5 5.8613 0.0853 − 0.01683 − 0.1349 1.5
195Pb(1) 5.5 141.8 5.1048 0.0979 − 0.00358 − 0.0358 0.7
195Pb(2) 6. 5 162.2 5.1936 0.0963 − 0.00159 − 2.0499 1.5
195Pb(3) 7.5 198.2 5.5019 0.0909 − 0.01236 2.1021 2.9
195Pb(4) 8.5 213.6 5.8190 0.0859 − 0.01700 − 4.2887 2.1
196Pb(1) 6 171.4 6.2294 0.0803 − 0.02038 − 5.3370 3.2
196Pb(2) 8 204.5 5.7180 0.0874 − 0.01464 − 2.1231 1.6
196Pb(3) 9 226.7 5.7086 0.0876 − 0.01469 − 2.1186 1.1
197Pb(1) 7.5 183.7 5.2383 0.0955 − 0.00526 − 1.4532 0.8
197Pb(2) 6.5 163.7 5.3441 0.0936 − 0.00408 − 3.6850 2.9
197Pb(3) 8.5 200.1 5.3789 0.0930 − 0.00757 − 5.5584 0.9
197Pb(4) 9.5 221.8 5.2906 0.0945 − 0.00681 − 3.3542 1.1
197Pb(5) 8.5 237.5 6.2061 0.0806 − 0.02050 − 0.4261 3.1
197Pb(6) 7.5 215.8 6.1463 0.0813 − 0.01954 1.2196 3.0

and employing the BFM; we have calculated the fitting pa-
rameters of SF model. The band-head spins assigned and the
parameters obtained using the least-squares fitting procedure
are shown in Table I. It is important to mention that the RMS
deviation between the calculated and experimental transition
energies is of the order of 10−3.

Using the parameters obtained from the BFM, we have
split the intraband-γ transition energies of the SD bands in

the Tl and Pb isotopes into the rotational energy (EROT
γ )

and shape fluctuation energy (ESF
γ ) and its variation with the

increasing rotational frequency is explored. The analysis of
the EROT

γ and ESF
γ of the Tl isotopes reveals some interesting

results. We have noticed that the EROT
γ of all the SD bands

in the Tl isotopes increases monotonically with the rotational
frequency h̄ω (see Fig. 2). In Fig. 2, we have compared the
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FIG. 2. The variation of the shape fluctuation energy (EROT
γ ) for SD bands in the Tl isotopes.

EROT
γ of the SD bands in the Tl isotopes with the yrast SD

bands in the 192Hg, which have double shell closure at the
Z = 80 and N = 112. It is evident from Fig. 3 that EROT

γ of
all the SD bands in Tl isotopes closely follow EROT

γ of the
yrast SD band 192Hg(1), except for 192Tl(1, 2) and 194Tl(5, 6).
The EROT

γ of 192Tl(1, 2) and 194Tl(5, 6) only follow the
192Hg(1) SD bands curve up to h̄ω ≈ 0.20 MeV. Above h̄ω ≈
0.20 MeV, the EROT

γ of 192Tl(1, 2) and 194Tl(5, 6) started to
split and follow a different curve. This splitting behavior of
the EROT

γ is somewhat more distinct in the 192Tl(1, 2) SD
bands.

The analysis of ESF
γ for all the SD bands of Tl isotopes re-

veals that ESF
γ monotonically decreases with the increasing h̄ω

(Fig. 3). Also, ESF
γ of all the SD bands have a negative value

throughout the rotational frequency, except for the 191Tl(1, 2)
and 193Tl(5) SD bands, which have positive values at the low-
est rotational frequency. The negative sign in ESF

γ represents
the deexcitation of the core while undergoing fluctuation and
its absolute value represents the measure of shape variation
in the nuclei [12]. For SD bands 191Tl(1, 2) and 193Tl(5), the
small positive values at lowest rotational frequency reflects
change in the intrinsic structure as the rotational frequency
increases. We have also compared ESF

γ of the SD bands in the
Tl isotopes with yrast SD band 192Hg(1). Here it is pointed
out that all SD bands of the Tl isotopes follow strongly
decreasing ESF

γ curve of the 192Hg(1) SD band, except for

the 192Tl(1, 2) and 194Tl(5, 6). It is quite evident from Fig. 3
that ESF

γ of 192Tl(1, 2) SD bands do not vary at all with the
increasing frequency and remain constant throughout. Further,
it is interesting to note that ESF

γ of 192Tl(1, 2) SD bands remain
close to ≈0 keV. For all other SD bands of the Tl isotopes,
ESF

γ varies drastically with the increasing h̄ω. A similar trend
is also evident for the SD bands 194Tl(5, 6), where ESF

γ has
minimal contribution to the intraband transition energies.

Just as we have split the intraband γ -transition energies
of the SD bands in the Tl isotopes, similarly, we have split
the intraband γ -transition energies of the SD bands in the Pb
isotopes into EROT

γ and ESF
γ . The results are compared with the

yrast SD band in 196Pb (see Figs. 4 and 5). The EROT
γ variation

of the odd-A isotopes of Pb have been shown in Fig. 4. It is
evident from the figure that EROT

γ of all the SD bands in Pb
isotopes follow EROT

γ curve of 196Pb(1) SD band, except for
193Pb(1, 2, 9), 195Pb(1, 2), and 197Pb(1–4). For these specific
bands, the EROT

γ follows the curve of 196Pb(1) SD band only
up to ≈0.2 MeV and started splitting after h̄ω ≈ 0.3 MeV
(however the splitting is not very large).

The variation of ESF
γ with increasing h̄ω reveals intriguing

results. Just as in the case of 192Tl(1, 2) SD bands, the ESF
γ

of 193Pb(1, 2, 9), 195Pb(1, 2), and 197Pb(1–4) SD bands do
not vary drastically with the increasing h̄ω. However, other
SD bands of the Pb isotopes vary drastically with increasing
h̄ω and have a large negative contribution of ESF

γ to the total
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FIG. 3. The variation of the shape fluctuation energy (ESF
γ ) for SD bands in the Tl isotopes.

intraband γ -transitions. It is also evident from Fig. 5 that ESF
γ

of 195Pb(1, 2) SD bands do not show any variation with the
increasing frequency and remain close to ≈0 keV throughout
the frequency range.

The fascinating feature of the SD bands 192Tl(1, 2),
193Pb(1, 2, 9), 195Pb(1, 2), and 197Pb(1–4) is that all these SD
bands have nearly constant variation of dynamic MoI �(2)

with increasing rotational frequency and are known as the

FIG. 4. The variation of the shape fluctuation energy (EROT
γ ) for SD bands in the Pb isotopes.
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FIG. 5. The variation of the shape fluctuation energy (ESF
γ ) for SD bands in the Pb isotopes.

flat SD bands of the A ≈ 190 mass region [7,24,28,30–32].
However, the yrast SD bands 192Hg(1) and 196Pb(1) have
pronounced increase in the �(2) with increasing h̄ω, which is
the characteristic property of the SD bands in the A ≈ 190
mass region. For SD bands 192Tl(1, 2), the Pauli blocking for
quasineutron and proton was proposed to be responsible [7].
However, this cannot be invoked as a valid explanation for
the flat bands of the odd-A Pb isotopes. The very small
contribution of ESF

γ to the total intraband γ transitions reveals
that these particular SD bands are insensitive to the shape
variation with the increasing h̄ω.

C. Vibrational distortion factor of the flat SD bands

At this juncture, to support our results we have employed a
semiclassical model, which explores the effect of vibrational
distortion factor on the MoI as a function of rotational fre-
quency [13]. Here the author has quantified the dynamic MoI
as function of rotational frequency and vibration distortion
as �(2) = �(2)

c ± �(2)
vib[ωmax − ω/ωmax]2, where �(2)

c and �(2)
vib

are the constant and vibration part of the dynamic MoI,
respectively. Using the inputs from this model, we have found
that for the SD bands 192Tl(1, 2) and 195Pb(1, 2), the average
�(2)

c and �(2)
vib obtained are 103.7 h̄2MeV−1 and 4.3 h̄2MeV−1.

It is interesting to mention here that �(2)
c ≈ 110 h̄2MeV−1 is

obtained for all the SD bands in the odd-A Pb isotopes and
192Tl nucleus, however, the coupling of �(2)

vib is very different,
especially for the flat SD bands. For flat SD bands 192Tl(1, 2)
and 195Pb(1, 2), �(2)

vib is negligible (≈4.3 h̄2MeV−1) when
compared with the other SD bands within the same iso-
tope having �(2)

vib ≈ 59.7 h̄2MeV−1. This observation is quite
strange for the SD bands in the A ≈ 190 mass region as it
was expected that they might have a higher contribution of

the vibrational distortion part [33] than the A ≈ 150 mass
region because of the higher mass. Also, the parameter �(2)

vib
describes the magnitude of deviation from the perfect rigid
rotor behavior [13] implying that the smaller the magnitude
of �(2)

vib of the SD band, the closer it is to the perfect rigid
rotor. The observation of minimal �(2)

vib for 192Tl(1, 2) and
195Pb(1, 2) SD bands implies that these SD bands exhibit
a perfect rigid rotor behavior. Hence, different magnitude
of coupling of the vibrational component is a major reason
for the different behavior of dynamic MoI in the flat SD
bands. Also, it was proposed that only at the highest rotational
frequency, the vibrational distortion should go to zero [33],
hence, the negligible �(2)

vib for the flat SD bands implies that
these SD bands are of purely rotational character and any vi-
brational distortion already becomes zero at lowest rotational
frequency. This gives strength to our previous proposition
using the SF model where it is calculated that the flat SD
bands have minimum shape fluctuations or distortions and
maximum rigid core component values.

D. Nuclear softness parameter of the flat SD bands

At this point, we have also calculated the softness param-
eter of the SD bands in the odd-A Pb isotopes using the
nuclear softness (NS) formula [23] to further solidify our
proposition of higher deformation in the flat SD bands. The
softness parameter (σ ) is found to be a good parameter to
determine the rigid rotor behavior of the SD bands, i.e., the
larger the deformation, the smaller the softness parameter and
the higher is the rigidity [34]. We observed that the softness
parameter σ obtained is very small for the flat bands when
compared with the normal SD bands (SD bands except flat
bands, which show a pronounced increase in dynamic MoI)
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TABLE II. Parameters obtained using the NS formula and exponential model for 19 SD bands of odd-A Pb isotopes in the A ≈ 190 mass
region. Here 1, 2, 3 . . . in the parenthesis represent band 1, band 2, band 3,. . . , respectively. The SD bands marked by asterisks (∗) represent
the flat SD bands. The RMS deviation χ (×10−3) is given by Eq. (10).

SD E exp
γ I0 NS formula Exponential model

bands (I0 + 2 → I0) �0 σ × 10−4 χNS �0 �EXPO �′
0 χEXPO

(keV) (h̄) (h̄2MeV−1) (h̄2MeV−1) (h̄2MeV−1)

193Pb(1)∗ 277.0 11.5 91.6 14.9 1.4 0.186 111.3 92.4 1.9
193Pb(2)∗ 190.2 7.5 93.4 4.0 3.9 0.056 98.9 93.4 3.9
193Pb(3) 251.5 10.5 92.1 19.1 1.7 0.236 117.7 93.0 1.1
193Pb(4) 273.0 11.5 89.5 29.4 2.7 0.347 129.0 91.2 1.1
193Pb(5) 213.2 8.5 89.6 27.0 2.5 0.328 126.2 90.9 1.6
193Pb(6) 234.6 9.5 89.5 27.1 1.3 0.324 125.8 91.0 1.3
193Pb(7) 260.6 10.5 87.0 34.4 1.1 0.412 134.0 88.7 2.5
193Pb(8) 281.8 11.5 86.3 37.0 1.2 0.443 137.1 88.0 2.8
193Pb(9)∗ 212.9 8.5 91.9 14.8 2.9 0.198 112.6 92.4 3.2
195Pb(1)∗ 141.8 5.5 97.9 7.3 0.8 0.097 108.2 98.2 0.8
195Pb(2)∗ 162.2 6.5 98.3 -0.2 2.2 0.000 98.2 98.2 2.4
195Pb(3) 198.2 7.5 88.6 29.3 3.6 0.358 128.6 89.7 4.9
195Pb(4) 213.6 8.5 88.6 28.6 4.5 0.362 128.9 89.8 3.4
197Pb(1)∗ 142.6 5.5 96.5 9.3 1.7 0.114 108.7 96.9 0.8
197Pb(2)∗ 123.0 4.5 96.5 3.9 4.2 0.051 101.7 96.6 3.9
197Pb(3)∗ 200.1 8.5 97.5 8.3 4.6 0.109 109.1 97.8 4.1
197Pb(4)∗ 221.8 9.5 97.1 10.1 2.3 0.128 111.0 97.6 1.7
197Pb(5) 237.5 8.5 79.6 41.7 3.2 0.486 132.6 81.5 3.4
197Pb(6) 215.8 7.5 79.4 41.6 3.1 0.490 132.8 81.4 4.4

within the same isotope (see Table II). Moreover, we found
that the softness parameter is even smaller for the SD bands
192Tl(1) and 195Pb(2), when compared to the other flat SD
bands within the same isotope (softness parameter for SD
bands in the Tl isotopes have been calculated in Ref. [23]).
This observation of negligible softness parameter may imply
that the anomalous behavior of the flat SD bands could be
because of the higher deformation or superrigid character in
these SD bands.

E. Alignment of the flat SD bands

The aligned angular momentum or alignment (i) is one
of the most significant quantities, which indicates the nature
of the SD bands. The semiclassical particle rotor model
(PRM) [16,17] has been effective in deducing the align-
ments of identical SD bands of the A ≈ 150, 190 mass re-
gion [9,10], where natural/unnatural alignments have been
postulated [35]. Motivated by the small contribution of ESF

γ

and negligible value of the �(2)
vib, σ obtained for the flat SD

bands, we have calculated the alignments of SD bands in
the Tl and Pb isotopes (see Fig. 6). We have noticed that
for flat SD bands available in the Tl [192Tl(1, 2)] and Pb
[193Pb(1, 2, 9), 195Pb(1, 2), and 197Pb(1 − 4)] isotopes the
alignment obtained is very small when compared with the
alignments obtained for other SD bands within same isotope.
We have further noticed that the alignment i is particularly
zero (≈0.0 h̄) for the SD bands 192Tl(1) and 195Pb(2), how-
ever, alignments i ≈ −2.2 h̄ and i ≈ −4.0 h̄ is obtained for
the yrast SD bands in 196Pb and 192Hg, respectively. This
seems surprising since our calculations using the SF model,

FIG. 6. (a) The fitted values of alignment i obtained from the
semiclassical PRM for the SD bands in the Pb isotopes. (b) The fitted
values of alignment i obtained from the semiclassical PRM for the
SD bands in the Tl isotopes.
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vibrational distortion model, and NS formula specifically
show that these SD bands have a different behavior of ESF

γ ,

�(2)
vib, and σ than the rest of the SD bands in the A ≈ 190 mass

region. For rest of the SD bands (i.e., SD bands except flat
bands), we have obtained negative values of alignments in Tl
and Pb isotopes. It was proposed that for negative alignments,
the involvement of high-j configurations are responsible [17].
In addition, the PRM for single- j configuration based on
semiclassical quantization (SCQ) procedure predict a nega-
tive value of aligned angular momentum for a considerable
range of angular momentum [17]. The negligible alignment
obtained for the flat SD bands and almost zero alignment for
192Tl(1) and 195Pb(2) in particular, implies that the high- j
configuration in these bands does not show any alignment
with the increasing rotational frequency. This result is in
accordance with the proposed delayed proton alignment of
the flat SD bands [32], which could be due to the enhanced
deformation (superrigid character) as calculated from the
variation of ESF

γ with h̄ω and negligible �(2)
vib, σ parameters.

F. Pairing gap parameter of the flat SD bands

The intraband γ -transition energies of the flat SD bands
193Pb(1, 2, 9), 195Pb(1, 2), 197Pb(1, 2, 3, 4) of the Pb isotopes
and 192Tl(1, 2) of the Tl isotopes in the A ≈ 190 mass region
have been fitted to the exponential model. The systematic
study of these bands on 193Pb using exponential model
reveals very surprising results. For flat bands 193Pb(1, 2, 9),
the effective pairing parameter �0 is negligible ≈0.1–0.2
when compared with other SD bands of 193Pb, which show
a continuous increase in the �(2) with increasing h̄ω (normal
SD bands) (see Table II). Initially, in the cranked-shell model
(CSM), the pairing interaction was taken to be of monopole
type with an initial value of 0.7 MeV at h̄ω = 0 MeV [24].
Using the exponential model, the effective pairing parameter
obtained for flat bands is very small when compared with
the CSM value. Also, the frequency dependence of the �(2)

for favored N = 7 band 193Pb(1) was found to be in variance
with the similar bands in odd-Hg nuclei (191Hg) [24],
which show a substantial rise in �(2) with h̄ω. Since the
�0 parameter depends explicitly upon the band-head spin
assigned, a definite band-head spin should be assigned to the
SD band 191Hg(1). Using the NS formula [23], we assigned
I0 = 12.5 h̄ to 191Hg(1) SD band. Interestingly, �0 parameter
obtained for favored N = 7 neutron orbital in the N = 111
isotone, 191Hg(1) at I0 = 12.5 h̄ (�0 = 0.375), is twice the
�0 parameter obtained for similar band in odd-A nucleus,
193Pb(1) (�0 = 0.186). The two times larger �0 parameter
obtained for 191Hg(1) than 193Pb(1) could be the reason for
different behavior of �(2) for the favored N = 7 bands. Also,
it is found that for the SD bands of the A ≈ 190 mass region,
the configuration-mixing interactions such as pairing are
strong enough to reduce the influence of high-N states [36].

Just as 193Pb isotope, the SD bands 195Pb(1, 2) also do not
show the rise in �(2) with h̄ω. For flat bands 195Pb(1, 2), the
value of �0 is in coincidence with the �0 obtained for the
flat bands of 193Pb, where �0 is almost negligible. It is worth
noting that for SD band 195Pb(2), �0 is zero. The �0

parameter obtained for the normal SD bands of 195Pb is

�0 ≈ 0.4, which is four times larger than the �0 parameter
obtained for the flat bands (see Table II). Similar four flat
bands 197Pb(1, 2, 3, 4) were also observed in 197Pb, however,
197Pb(5, 6) SD bands are the normal SD bands [32,37]. It is
evident from Table II that the �0 parameter obtained for flat
bands in 197Pb are in accordance with the �0 parameter ob-
tained for the other odd-A isotopes of the Pb (�0 ≈ 0.1–0.2).
The �0 parameter obtained for the flat bands of 197Pb is
≈5–10 times smaller than the �0 parameter of the normal SD
bands (see Table II).

Apart from these nuclei of the A ≈ 190 mass region, the
flat bands are also available in 192Tl [7]. Motivated by almost
negligible effective pairing parameter obtained for flat bands
of the Pb nucleus, we have also calculated the pairing parame-
ter of 192Tl(1, 2). It is very encouraging to mention that using
the exponential model for SD bands 192Tl(1) and 192Tl(2), the
pairing parameter obtained is 0.006 and 0.043, respectively.
These almost negligible values of �0 obtained for the flat
bands 192Tl(1, 2) are in coincidence with the values obtained
for flat bands of the Pb nucleus.

Since the MoI roughly depends inversely on the pair-
ing correlations, unrealistically large gap parameters were
used to include pairing in quasiparticle formulation [5,38].
This reproduces the experimental trend of MoI in Hg nuclei
very well where small MoI at low spin is observed [5].
It seems worth mentioning that for the flat bands in 195Pb
and 197Pb, the band-head MoI obtained using exponential
model is 10–15 h̄2MeV−1 higher when compared with the
other SD bands within the same isotope (see Table II). The
same systematics of band-head MoI is also true for the flat
bands of 193Pb. This observation is in accordance with the
inverse dependence of MoI on pairing correlations since pair-
ing correlations obtained using exponential model are almost
negligible for flat bands. The flat SD bands of odd-A Pb
isotopes, when compared among themselves, reveal that the
�0 parameter is even smaller (�0 ≈ 0.00–0.06) for flat bands
193Pb(2), 195Pb(2), 197Pb(2), 192Tl(1, 2) (see Table II). Also,
the calculation of �0 parameter for the yrast and excited
SD bands of the A ≈ 150, having nearly constant �(2) [39],
reveal that their �0 parameters (�0 ≈ 0.01–0.02) are very
similar in magnitude to the �0 parameter obtained for the flat
bands 193Pb(2), 195Pb(2), 197Pb(2), 192Tl(1, 2) of the A ≈ 190
mass region. The negligible �0 parameter obtained for the SD
bands of the A ≈ 150 mass region is because of the fact that at
large deformation, 152Dy is a doubly magic nucleus and thus
the pairing correlations are strongly quenched for all the SD
bands in the neighboring isotopes/isotones of 152Dy nucleus.
The negligible �0 parameter obtained for the A ≈ 150 mass
region and flat bands of the A ≈ 190 mass region implies
that the pairing correlations are strongly quenched in both the
cases. The comparative study of the �(2) for the flat bands in
193Pb, 195Pb, 197Pb, and 192Tl reveals that the rise in �(2) with
h̄ω is strongly quenched only for 193Pb(2), 195Pb(2), 197Pb(2),
and 192Tl(1) SD bands when compared with the other flat
bands within the same isotope (see Fig. 7). Furthermore, the
average values of the �(2) for bands 193Pb(2), 195Pb(2), and
197Pb(2) (96.0 h̄2MeV−1, 98.3 h̄2MeV−1, and 99.5 h̄2MeV−1,
respectively) are somewhat smaller than the corresponding
values for the flat bands in 193Pb, 195Pb, and 197Pb.
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FIG. 7. The variation of experimental dynamic moment of iner-
tia [40] with rotational frequency for flat bands in 193Pb, 195Pb, 197Pb,
and 192Tl.

It is a well-known fact that for a perfect rigid rotor the
kinematic and dynamic MoI should be similar, i.e., �(1) ≈
�(2). Using the deduced band-head spins (see Table II) and
calculated transition energies from the exponential model, we
have calculated the kinematic and dynamic MoI of the flat SD
bands. It is evident from Fig. 8 that the calculated �(1) and �(2)

of flat SD bands 193Pb(2), 195Pb(2), 197Pb(2), and 192Tl(1)
are almost identical. Also, the �(1) and �(2) of flat SD bands
195Pb(2) and 192Tl(1) are identical throughout the observed
frequency. This further supports the superrigid character of
the flat SD bands, especially of 195Pb(2) and 192Tl(1) bands.

The pairing parameter, �0, is an effective pairing pa-
rameter which may include a contribution from the Coriolis
antipairing effect as well as from the higher-order cranking
effect [21]. Since the static pairing correlation is generally
very different for different configurations (e.g., between even

FIG. 8. The variation of calculated kinematic and dynamic mo-
ment of inertia with rotational frequency for the flat bands 193Pb(2),
195Pb(2), and 197Pb(2) using the exponential model and comparison
with experimental data [40]. The solid/hollow circles correspond to
the dynamic/kinematic MoI and solid squares with error (yellow
region) correspond to experimental data of dynamic MoI.

and odd nuclei) [41], it was proposed that �0 parameter
could be analogous to the dynamic pairing correlation [9].
The almost zero effective pairing parameter obtained for flat
bands is consistent with the results of Ref. [5] and Ref. [42],
where the dynamic MoI remains constant in no pairing limit.
Also, as calculated in Ref. [43], once the pairing correlations
disappear, the Hartree-Fock-Bogoliubov (HFB) dynamic MoI
becomes identical to the Hartree-Fock (HF) MoI, which re-
mains almost constant with rotational frequency. From this, it
can be concluded that the variation in the pairing correlations
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is expected to play a substantial role in the SD bands of the
A ≈ 190 mass region.

It is important to mention that Qt [191Hg(1)] ≈
Qt [193Hg(1)] ≈ 17.5eb [3], having similar favored N = 7
intruder configuration, yet two different variations of dynamic
MoI were obtained in both SD bands. Furthermore, similar
quadrupole moments Qt ≈ 20eb were obtained for yrast SD
bands in 194Pb, 196Pb (normal SD bands) and 195Pb(1, 2) (flat
SD bands) [3]. Taking these observations into consideration,
it is not necessary that the occupation of high-N states or
the enhanced deformation alone is responsible for the flat
behavior of dynamic MoI in the Tl and odd-A Pb isotopes.
Our proposition is also supported by Ref. [36] where it was
concluded that the pairing interactions are sufficient enough
to diminish the influence of high-N states in the A ≈ 190
mass region. Hence, we propose that the neutron intruder
orbital blocking and the absence of proton alignment (up to
h̄ω ≈ 0.35 MeV) [24] coupled with the negligible value of the
pairing correlations [effective pairing parameter �0, which
decreases smoothly with spin via. Eq. (9)] could be responsi-
ble for the flat bands observed in the A ≈ 190 mass region.

IV. CONCLUSION

A systematic study of flat SD bands in the Tl and Pb
isotopes is made using the shape fluctuation model. The
intraband γ -transition energies of the SD bands in the Tl and
Pb isotopes have been split into the rotational energy and
shape fluctuation part. According to our results, we observe
two trends in the SD bands of the Tl and Pb isotopes: (i)
SD bands that follow the ESF

γ curve of the yrast SD bands
192Hg and 196Pb and have a pronounced increase in the
dynamic MoI with the increasing frequency. (ii) The SD
bands that do not follow the ESF

γ curve of the yrast SD
bands 192Hg and 196Pb and have nearly constant dynamic MoI
with increasing rotational frequency. The SD bands in the
classification (ii) [192Tl(1, 2), 193Pb(1, 2, 9), 195Pb(1, 2), and

197Pb(1–4)] follow different ESF
γ curve than the rest of the SD

bands in the A ≈ 190 mass region. The ESF
γ of these curve

reveal that they have a negligible contribution to the total
intraband γ -transition energies and maximum contribution is
from the rotational energy term. The results obtained from
the SF model further lend support from the calculation of the
minimal vibrational distortion factor �(2)

vib for 192Tl(1, 2) and
195Pb(1, 2). The negligible value of the softness parameter and
alignments obtained from the NS formula and semiclassical
PRM reveals that the deformation is higher and, vice versa, the
alignments are negligible for the flat SD bands. The similar
systematics of the flat SD bands have been obtained using
the exponential model where the effective pairing parameter
obtained is negligible.

Taking these evidence into consideration, it seems that
the flat SD bands have minimal shape fluctuation energy
and effective pairing parameter, and higher deformation. This
observation gives support to our proposition that the flat
SD bands are superrigid SD bands. Hence, we propose that
neutron intruder orbital blocking and the absence of proton
alignment (up to h̄ω ≈ 0.35 MeV) coupled with the negligible
value of the pairing correlations [effective pairing parameter
�0, which decreases smoothly with spin via. Eq. (9)] and
larger deformation is responsible for the flat bands observed
in the Pb and Tl isotopes. According to the Mottleson-Valatin
effect [44], the static pairing is quenched in the SD bands, and
any remaining correlations are speculated to be of dynamic
character [41]. The observation of almost negligible pairing
parameter for the flat bands of the A ≈ 190 mass region shows
that the static and dynamic pairing correlations do not play
a significant role for flat bands in the evolution of �(2) with
increasing h̄ω.
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