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By using the valence quark exchange model, the up- and down-quark distribution functions as the distributions
of three constituent quark inside the bound nucleons have been extracted and will be used in the context of the
Altarelli, Cabibbo, Maiani, and Petronzio (ACMP) constituent quark model formalism to calculate the different
pointlike parton distribution functions of the bound nucleons and the structure functions of 3He and 3H mirror
nuclei at the energy scale of Q2 = 4 GeV2. In the latter picture the constituent quarks are assumed to be complex
objects, made of pointlike partons which can be pointlike valence quarks, pointlike sea quarks, and pointlike
neutral gluons. The sea quark and the gluon contributions to the structure functions of the helium-3 and the
tritium nuclei have been analyzed in this scale of energy by reparameterizing the ACMP constituent quark
model formalism. Unlike our previous works, where the parton densities inside the nucleon have been computed
at the hadronic scale of energy, i.e., Q2

0 = 0.34 GeV2, and then those distributions have been evolved to the
high-energy scales by using the Dokshitzer, Gribove, Lipatov, Altarelli, and Parisi evolution equations, in the
present study the parton distribution functions have been calculated at the energy scale of Q2 = 4 GeV2 directly
by using the new parameters in the context of the dressed-quark scenario. Thus, at the first step, the extracted
partonic distributions have been considered to calculate the nucleons and the nuclei structure functions and then
the ratios of the neutron to the proton and 3He to 3H nuclei structure functions as well as the European Muon
Collaboration ratios for the valence quark distributions, 3He and 3H nuclei, are calculated. The results are in a
good agreement with both theoretical and available experimental data.
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I. INTRODUCTION

Several electron deep inelastic scattering (DIS) experi-
ments have been carried out on the various polarized and
unpolarized nucleon and nucleus targets, for instance, the
proton, deuterium, helium-3, tritium, etc., to attain some
knowledge about the partonic structure of hadrons and nuclei
like valence-up and -down quarks, sea quark-antiquarks, and
neutral gluons [1–7].

In order to investigate and explain the results of these
experiments, various theoretical models and interpretations
have been suggested [8,9]. One of these theoretical models is
the valence quark exchange model (QEM), that originally was
presented in 1987 to explain the deviation from unity of the
ratios of the structure functions of the bound nucleon to that
of the free nucleon [10,11]. This ratio, called the EMC ratio,
the name that was adopted after the discovery of the European
Muon Collaboration group, Aubert et al. [1], has been inves-
tigated by both theoretical and experimental groups [12–23].

The polarized and unpolarized QEM have been used in
several theoretical research works to study the structured
content of the nuclei. The results of these calculations show a
reasonable agreement with the outcomes of the corresponding
experiments [11,18–27]. In this formalism, it is assumed
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that the exchange of the valence constituent quarks between
the nucleons bound in the nucleus could be considered to
explain the partonic structure of the nuclei; moreover, such
an exchange may have a noticeable contributions or perhaps
domain to the EMC ratio [10]. Also, this model has been
successfully used in the context of the chiral quark model to
investigate both the transverse momentum dependence of the
parton distribution functions [28] and the EMC ratio of the
helium-3 and tritium nuclei [29]. Recently, the QEM frame-
work was successfully used in the very small-x region to cal-
culate the unintegrated parton distribution functions (UPDF)
of the 6Li structure function with six nucleons, in which the
results show an extreme improvement in the calculation of the
partonic distribution functions of the bound nucleons and also
the predictions have an excellent agreement with the NMC
experimental data [30]. It should be mentioned that the study
of the UPDF in the case of the nuclei were proposed by de
Oliveira et al. [31] and they have shown that the structure
function of the nucleus can get a very good modification in
the very small-x region by considering the UPDF.

Another point worth noting is by considering the sea quark-
antiquark pairs and gluons as the new degrees of freedom in
the framework of QEM, the calculations of the model became
dramatically very complicated but, due to the important role
of the sea quark and the gluon at the small-x regions [32–34],
it was very important to include them to shed some light on to
this x region in the context of QEM.
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To study the above degrees of freedom and to estimate their
contributions to the QEM, the Altarelli, Cabibbo, Maiani, and
Petronzio (ACMP) constituent quark model formalism have
been used. In fact, this scheme was proposed by them in
the background of SU(2) × O(3) to investigate the nucleon
structure function from the idea that the constituent quarks
themselves have a structure [35]. It should be noted that the
ACMP constituent quark model is not the only constituent
quark model and other model schemes such as the chiral quark
model [36–40], the valon model [41,42], and the bag model
[43] have been also suggested.

In the framework of the constituent quark model (CQM),
each constituent quark is assumed to be a complex object
dressing the valence pointlike (PL) quark with the PL quark-
antiquark pairs and the PL neutral gluons as its constituents
in quantum chromodynamics (QCD). The compatibility of
this suggestion with QCD have been checked; moreover, it is
shown that the constituent quark that is made by the dressed
QCD Lagrangian field is consistent with the concept of the
color confinement [44].

The CQM has been used in different studies with various
contexts to calculate the structured content of the unpolar-
ized nucleon [45–53], the structure function of polarized
nucleons [54], and the pion structure function [55]. Recently,
this formalism has been used to extract the bound parton
distribution function in proton [56], helium-3, and tritium
[57] and the A = 6 isoscalar system [58]. The results of all
these works have been reasonably in good agreement with
the corresponding experimental data. It should be mentioned
that it would be possible to calculate the generalized parton
distribution functions (GPDs) and transverse momentum de-
pendence (TMDs) in the context of the ACMP constituent
quark exchange model. This issue could proceed because the
present model could be extended [21,28,59] to calculate the
GPD and TMD as we hope to study this subject in the future
works to compare the results with the outcome of the Jefferson
Laboratory (JLab) data and although some investigations that
have been done [60–62].

Thus, the purpose of this paper at the first step is to use
the quark exchange model in the framework of the constituent
quark model formalism to extract the various bound parton
distributions like PL valence-up and -down quarks, PL sea
quarks, and PL gluon distributions. Furthermore, by using
these distributions, the structure functions of the bound and
the free nucleon and also the nuclear structure-function targets
have been calculated. Then, the EMC ratios of the valence
quarks, 3He and 3H nuclei, are extracted. Finally, the ratio
of the helium-3–to-tritium structure functions as well as the
ratio of the neutron-to-proton structure functions have been
derived.

The paper will be organized as follows: In Sec. II, the
ACMP constituent quark model formalism is introduced and
the parameters of the model at the new scale of energy i.e.,
Q2

0 = 4 GeV2, have been shown. The procedure of extracting
the U -type and D-type constituent quark distribution func-
tions in the bound nucleons as the input for the CQM are
obtained by using the QEM for three-nucleon systems such
as helium-3 and tritium nuclei which have been discussed in
Appendix. In Sec. III, the next-to-leading-order (NLO) level

of the nucleus structure functions in terms of the PL parton
distribution functions as well as the procedure of calculating
the structure functions of the free nucleon have been clearly
defined. Our results and discussions related to the different
PL partons distributions, the structure function of 3He and 3H
nuclei, their EMC ratios, and the ratio of the neutron-to-proton
structure functions are discussed in Sec. IV. Finally, in Sec. V,
our conclusion will be given.

II. PARTON DENSITIES IN ACMP CONSTITUENT
QUARK MODEL

In this section, I start with a brief summary of the con-
stituent quark model formalism. In this model the constituent
quark (CQ) is assumed to be a complex object and their
weak and electromagnetic structure functions are defined in
terms of the functions �q/CQ(x) that specify the number of PL
partons type q inside the U -type or D-type constituent quark,
with a fraction x of its total momentum. These functions are
not all independent, but they are restricted by isospin and
charge conjugation [35]. The �q/CQ(x) are called the structure
functions of the constituent quarks [35,46]. As a consequence,
the parton distributions in a nucleon can be expressed, ac-
cording to the structure function of the constituent quarks and
the probability distributions of the up- and down-constituent
quarks inside the nucleon, i.e., GU/N and GD/N , as follows:

xq
(
x, Q2

0

) =
∫ 1

x
x

dy

y

[
�q/U

(
x

y
, Q2

0

)
GU/N

(
y, Q2

0

)

+�q/D

(
x

y
, Q2

0

)
GD/N

(
y, Q2

0

)]
. (1)

In this equation, labels q represents the different PL partons
such as the PL valence quarks, uval and dval, the PL sea
quarks, qsea, and the PL gluons, g, where the Q2

0 is the
momentum scale, at which the parameters of the CQM will
be defined. Also in Eq. (1) GU/N (y, Q2

0) and GD/N (y, Q2
0) are

the probability distribution functions of the U -type and D-type
constituent quarks, respectively, having momentum fraction y
of the bound nucleon at Q2

0.
The functional forms of the constituent quark structure

functions of the various types, would be extracted by taking
three natural assumptions, namely the determination of the PL
partons by the QCD, the Regge behavior for x → 0 and the
duality idea [35,55], and, finally, the isospin and the charge
conjugate invariant. By taking these considerations into ac-
count, for different kind of the parton structure functions
inside the constituent quark, the following definition have
been proposed [46]:

�q/CQ(x) = αq xβq (1 − x)ηq−1, (2)

where q = qval, qsea, g denote valence quarks, sea quarks,
and the gluons, respectively. As it was shown in Refs. [35,48],
the value of βqval have been derived −0.5 that was concluded
in order to describe the Regge behavior, i.e., the ρ meson
exchanged and βqsea = βg = −1 from pomeron exchange. By
considering these points, the various pointlike parton distri-
butions inside the constituent quarks will be given by the
following relations:
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(i) for the case of valence quark distributions in CQ,

�qval/CQ
(
x, Q2

0

) = αqval x−0.5(1 − x)ηqval −1, (3)

(ii) for the sea quarks in CQ, related structure function is

�qsea/CQ
(
x, Q2

0

) = αqsea x−1(1 − x)ηqsea−1 , (4)

and, finally, (iii) the probability distribution of the gluons in
CQ is as follows:

�g/CQ
(
x, Q2

0

) = αg x−1(1 − x)ηg−1. (5)

Note that the QCD sum rules indicate that each constituent
quark contains only one valence quark; therefore, Eq. (3)
should satisfy the following relation at all values of Q2:∫ 1

0
�qval/CQ

(
x, Q2

0

)
dx = 1. (6)

By substituting Eq. (3) in this renormalization condition, the
parameter αqval will be determined as follows:

αqval = �
(
ηqval + 1

2

)
�(ηqval )�

(
1
2

) . (7)

where it should be mentioned that the numerical values of ηqval

will be listed later. The other parameters of the model can be
extracted by using the approach of Ref. [35]. We choose the
Q2

0 = 4 GeV2, because the momentum that has been carried
by different partons are well known experimentally at this Q2

0.
We use the data of Ref. [63] to calculate the second moments
of the different partons. By using these data, it has been
derived that 28.65% of the nucleon momentum is carried by
the valence-up quarks, 10.34% by the valence-down quarks,
45.60% by the gluons, and the remaining momentum are be-
long to the sea quarks. Thus, by using the derived second mo-
ments of the various parton distribution functions, the parame-
ters ηqval , ηg, αg and the ratio αqsea /ηqsea at Q2

0 = 4 GeV2 scale
of energy will be determined. As discussed in Refs. [35,46],
the remaining parameter, αqsea (or ηqsea ), which describes
the sea-quark distributions, has been evaluated through the
value of the unpolarized structure function F ep

2 at low x, where
the sea quarks in these regions are known to be dominant. The
value of F ep

2 at x = 10−2 for this scale of energy has been
used, as given by the fit of GRV [63], which are in a good
agreement with available data. So, in this scale, the parameters
of the model take the following values:

αqsea = 0.075; αg = 0.439, (8)

ηqval = 0.65; ηqsea = 2.918; ηg = 0.2, (9)

It should be mentioned that the ACMP constituent quark
model formalism also have been used to extract the partonic
content of the pion structure [55], in which the parameters
have been obtained at the same Q2 but with a different number
of active flavors, Nf , and different QCD cut-off, �. In fact at
sufficiently low Q2, the effective QCD coupling, αs(Q2), will
become large. It is common to show that Q2 scale at which
this happens by �2. It is natural to take the �2 as marking the
boundary between a world of quasifree quarks and gluons and
the world of strongly coupled world of pions, protons, and so
on. It is expected that the value of � would be of the order of
a typical hadronic mass.

In Eq. (3) the CQ (qv) can be equal to U (uval) or D (dval),
which are the U -type constituent quark (PL valence-up quark)
and D-type constituent quark (PL valence-down quark). One
should noted that �dval/U (x, Q2

0) and �uval/D (x, Q2
0) are zero,

because in the U -type CQ, there is no net quark valence
type d and vice versa. Besides this, as will be shown in the
next section, GU/N (y, Q2

0) and GD/N (y, Q2
0) have a different

functional form in the valence QEM; therefore, the different
form for uval(x, Q2

0) and dval(x, Q2
0) will be obtained from

Eq. (1), but for the sea quarks or the gluons in the nucleon
bound in the nucleus the same distributions will be extracted
because in the case of the PL sea quarks [qsea(x, Q2

0)] and
the PL gluons [g(x, Q2

0)], there is no flavor dependent as it
is presented in Eqs. (4) and (5).

In fact, in the ACMP constituent quark model formalism,
it is assumed that the gluons will produce equally all the sea
quark flavors, e.g., u-ū pair generated as the same as the pair of
d-d̄ , therefore; there is no flavor dependence of the PL gluons.
As a consequence, in this work it is not possible to analyze the
effects of the flavor dependence of the sea quarks as well as the
flavor dependence of the gluons hence the SU(2) symmetry
breaking of the nucleon sea in the context of the CQM cannot
be checked, the fact imposed by the observed Gottfried sum
rule [64,65]. We hope to study this issue in our next works in
the framework of the CQM.

III. STRUCTURE FUNCTIONS OF A = 3
NUCLEI AND EMC RATIO

In the preceding section, I will discuss the calculation
of the structure functions of the light nuclei by taking the
momentum density distribution for the constituent quarks in
the nuclear environment. By the rule and the definition of the
structure function, it measures the distribution of the quarks
as a function of k+/P+ (the ratio of the light-cone momentum
of the initial quark to the momentum of the proton) in the
target rest frame which is equivalent to boost the nucleus
to an infinite-momentum frame. This is usually done in the
literature by using an ad hoc prescription for k0 as a function
of |�k| as follows:

k0 = [(�k2 + m2)
1
2 − ε0]. (10)

The sensitivity analysis of this hypothesis is verified and
it is shown that the calculating structure functions are not
sensitive to this assumption [10,11,66]. So, the constituent
quark distributions at each Q2 = Q2

0, can be related to the
momentum density distributions for each flavor in the nucleon
of the nucleus Ai, according to the following equation [ j =
p, n (a = U ,D) for proton (up constituent quark) and neutron
(down constituent quark), respectively]:

q a
j

(
y, Q2

0; Ai
) = 1

(1 − y)2

∫
ρa

j (�k; Ai )δ

[
y

(1 − y)
− k+

Mt

]
d�k.

(11)

After doing the angular integration, we get

q a
j

(
y, μ2

0; Ai
) = 2πMt

(1 − y)2

∫ ∞

ka
min

ρa
j (�k; Ai )k dk, (12)
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with

ka
min(y) = 1

2

(
yMt

1 − y
+ εa

0

)
− m2

a

2

1( yMt

1−y + εa
0

) . (13)

Equations (12) and (13) have been calculated by consid-
ering the relativistic and the covariant properties [67]. In
these equations, Mt and ma denote the nucleon up and down
quark masses, respectively. The binding energy of quarks
inside the bound nucleons are given by εa

0 . It should be men-
tioned that, according to Refs. [10,11,19,20] and our Gaussian
choice for the nucleon wave function in terms of quarks, see
Appendix, the above issue is not working properly near x = 1,
because the structure-function probe quark is very far from
their mass shell. Also, the present prescription is different
from those works, e.g., Ref. [68], in which only the nuclear
effects are regarded. It should be mentioned that Eq. (11) is not
covariant but this procedure is dynamically justified. In fact, it
assumed that the final-state interaction effects could produce
a PDF of the form of the Eq. (11) which has correct support.
This fundamental feature can be analytically reached without
any assumptions on the dynamics by using the relativistic
Light-Front approach, especially for the case of the nuclear
target, which has been described in more detail in Ref. [69].

By using the averaged mass for the proton and the neu-
tron, i.e., Mt = MN = 1

2 (Mp + Mn) in Eq. (12), the U -type
and D-type constituent quark distributions in the helium-3
and the tritium targets are obtained in the following form,
respectively [57]:

GU/N
(
y, Q2

0; Ai
) = 2πMN

(1 − y)2

∫ ∞

ku
min

ρU (k)k dk, (14)

GD/N
(
y, Q2

0; Ai
) = 2πMN

(1 − y)2

∫ ∞

kd
min

ρD (k)k dk, (15)

where Ai denotes the nucleus in which the constituent quark
distributions have been calculated. Now, in order to calculate
the different PL parton distributions inside the bound nucle-
ons, i.e., q = uval, dval, qsea, and g, it is necessary to substitute
the structure function of the constituent quark, �q/CQ(x),
Eqs. (3)–(5), in addition to the U -type and D-type constituent
quark distributions, GCQ/N (y, Q2

0; Ai ), Eqs. (14) and (15), in
the convolution integral relation of Eq. (1).

These discussions for the case of the PL up- and down-
valence quarks, uval(x, Q2

0) and dval(x, Q2
0), take the following

form:

xuval
(
x, Q2

0

) =
∫ 1

x
x

dy

y
GU/N

(
y, Q2

0

)
�uval/U

(
x

y
, Q2

0

)
, (16)

xdval
(
x, Q2

0

) =
∫ 1

x
x

dy

y
GD/N

(
y, Q2

0

)
�dval/D

(
x

y
, Q2

0

)
, (17)

The PL valence quark is the valence quark which will be cal-
culated from the ACMP constituent quark model formalism,
uval and dval from Eqs. (16) and (17), respectively. In fact, the

PL valence quark distribution has been chosen to be different
from those of the constituent quarks, GU/N and GD/N . Also,
the PL valence quark extracted from the combination of the
uval = u − ū and dval = d − d̄ for the up- and down-quarks,
respectively.

For the PL sea-quark distribution, qsea (x, Q2
0), and the PL

gluon distribution, g(x, Q2
0), we get, respectively:

xqsea
(
x, Q2

0

) =
∫ 1

x
x

dy

y

[
�qsea/U

(
x

y
, Q2

0

)
GU/N

(
y, Q2

0

)

+�qsea/D

(
x

y
, Q2

0

)
GD/N

(
y, Q2

0

)]
, (18)

xg
(
x, Q2

0

) =
∫ 1

x
x

dy

y

[
�g/U

(
x

y
, Q2

0

)
GU/N

(
y, Q2

0

)

+�g/D

(
x

y
, Q2

0

)
GD/N

(
y, Q2

0

)]
. (19)

Finally, the target structure function FAi
2 (x, Q2) in the NLO

level is related to the various types of PL parton distribution
functions like the valence-up and -down quarks, the sea quark,
and the gluon distributions as follows [57,63]:

FAi
2 (x, Q2) = x

∑
a=u,d,s
[ j=p,n]

Q2
a

{[
q a

j (x, Q2; Ai ) + q̄ a
j (x, Q2; Ai )

]

+ αs(Q2)

2π

[
q a

j (x, Q2; Ai ) + q̄ a
j (x, Q2; Ai )

+ 2ga
j (x, Q2; Ai )

]}
, (20)

where the NLO coupling constant, αs(Q2), is as follows:

αs(Q2)

4π
∼= 1

β0 ln
( Q2

�2

) − β1 ln ln
( Q2

�2

)
β3

0 ln( Q2

�2 )
, (21)

in which β0 and β1 are the first two universal coefficients of
the QCD β functions [63].

Thus, by taking these considerations into account and using
the SU(6) symmetry, i.e.,

up
val(x, Q2) = dn

val(x, Q2) = uval(x, Q2),

d p
val(x, Q2) = un

val(x, Q2) = dval(x, Q2),

qsea (x, Q2) = us(x, Q2) = ūs(x, Q2) = ds(x, Q2)

= d̄s(x, Q2) = ss(x, Q2) = s̄s(x, Q2),

the NLO level of the structure functions of helium-3 and
tritium take the following forms, respectively:

F 3He
2 (x, Q2) = x

{
9

4

(
2

3

)2

uval(x, Q2) + 6

(
1

3

)2

dval(x, Q2)

+ 4qsea (x, Q2) + αs(Q2)

2π

[
uval(x, Q2)

+ 2

3
dval(x, Q2) + 4qsea (x, Q2)+4g(x, Q2)

]}
,

(22)
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F 3H
2 (x, Q2) = x

{
3

2

(
2

3

)2

uval(x, Q2) + 9

(
1

3

)2

dval(x, Q2)

+ 4qsea (x, Q2) + αs(Q2)

2π

[
2

3
uval(x, Q2)

+ dval(x, Q2) + 4qsea (x, Q2) + 4g(x, Q2)

]}
.

(23)

So we have found the relation between the various PL par-
ton distribution functions and 3He and 3H structure functions.
Consequently, the EMC-type ratios for the structure functions
of helium-3 and tritium can be obtained from the following
definitions:

R3He
EMC(x, Q2) = F 3He

2 (x, Q2)

2F p
2 (x, Q2) + Fn

2 (x, Q2)
, (24)

R3H
EMC(x, Q2) = F 3H

2 (x, Q2)

F p
2 (x, Q2) + 2Fn

2 (x, Q2)
. (25)

It should be noted that in Eqs. (24) and (25), the structure
function of the proton and the neutron in the denominator are
those of free nucleons.

Now the question raised is how to calculate the free-
nucleon structure functions in the context of the constituent
quark exchange model. In QEM the constituent up- and
down-quark distribution functions inside the three-nucleon
systems are related to their momentum density distributions,
Eqs. (A10) and (A11), where in those equations I is the
exchange integral due to the contribution of the nucleus wave
function, χ (x, y, cosθ ), to the constituent quark momentum
distributions that have been derived as follows [11]:

I = 8π2
∫ ∞

0
x2 dx

∫ ∞

0
y2 dy

∫ 1

−1
d (cos θ ) exp

[
−3x2

4b2

]

× |χ (x, y, cos θ )|2. (26)

So the answer to the above question is that by taking I = 0 in
the constituent quark momentum distributions, one can get the
parton densities inside the free nucleon, Eqs. (A10) and (A11),
where it means that the nucleons are sufficiently distinct from
each other, i.e., without any correlation and quark exchange
effect. Thus, by dropping the exchange term and ignoring the
Fermi motion effect, we are left with the collection of free
nucleons in each nucleus,

F 3He
2 (x, Q2)|I=0 = 2F p

2 (x, Q2) + Fn
2 (x, Q2), (27)

F 3H
2 (x, Q2)|I=0 = F p

2 (x, Q2) + 2Fn
2 (x, Q2). (28)

Equations (27) and (28) can be simultaneously solved; there-
fore, the free proton and neutron structure functions will be
determined,

F p
2 (x, Q2) = 1

3

[
2F 3He

2 (x, Q2)|I=0 − F 3H
2 (x, Q2)|I=0

]
, (29)

Fn
2 (x, Q2) = 1

3

[
2F 3H

2 (x, Q2)|I=0 − F 3He
2 (x, Q2)|I=0

]
. (30)

In the QEM we take the nucleon radius b = 0.8 fm because of
the charge radius for 3He nucleus and 3H is about 1.68 fm and
1.56 fm respectively [70], which corresponds to b = 0.837
and b = 0.780, fm. Therefore, b = 0.8 fm is a good choice.
In our model, for each flavor, there are two free parameters,
which are the quark mass, mq, and their binding energies, ε

q
0 ,

where their values physically have to be around 200 MeV with
respect to the mass of the proton [11,17,18,23]. We take their
numerical values to be mq = MN /3 and ε

q
0 = mq/2, where the

index q indicate the U -type or D-type constituent quarks. On
the other hand, as it has been shown in the previous works,
the final results are not very sensitive to these parameters as
far as they are chosen in the above range. Our model did
not work well and not good enough as x → 1, especially, for
the nucleus targets, because by considering the leading-order
expansion of the nuclear wave function in QEM the Fermi mo-
tion effect has been ignored by both bound and free nucleons.

IV. RESULT AND DISCUSSION

In this research paper, I calculate the various parton distri-
bution functions inside the bound nucleons of light nuclei by
using the convolution method, Eq. (1), to draw the hadronic
structure functions of free and bound proton and neutron out
by presuming a nucleon as the bound state of constituent
quarks. In high-energy physics, it is very important to study
the partonic contents of the nucleon and nucleus to calculate
the structure function of the nucleus like helium-3 and tritium
and the bound nucleon by using the different parton distribu-
tion functions.

The concept of the CQ as the building block of the nu-
cleons, in which the CQ can be assumed as a composite
object as well as the quark exchange formalism, has been used
to extract the different parton distribution functions like PL
valence-up and -down quarks, PL sea quarks, and PL gluons
inside the bound nucleon to shed some light on the subject
of the structure functions of the bound nucleon and the light
nuclei like helium-3 and tritium. The constituent quark is a
dressed-up quark surrounded by clouds of PL valence quarks,
PL sea quarks, and PL neutral gluons. Thus, a constituent
quark obtains its own structure by dressing a PL valence
quark with the gluons and the quark-antiquark pairs in the
framework of QCD. The structure function of the constituent
quark is reformulated with the new parameters at the energy
scale of Q2 = 4 GeV2. There are a lot of available and relevant
data at this scale of energy, which, therefore, is one of our
reasons that this scale has been chosen. Especially, the neutron
to the proton structure-function ratio as well as helium-3 to
tritium could be calculated in order to compare with the recent
experimental data of the ratio of structure function of 3He
to 3H at Q2 = 4 GeV2 from the JLab experiment Ref. [71].
Moreover, at this value of Q2, it is possible to compare
our results with various theoretical outcomes like the one of
Bissey et al. [16].

Thus, in the first step, I tried to determine the density
distributions of the U -type and the D-type constituent quarks
inside the bound nucleon from a completely consistence
realistic formalism, where for this purpose the quark ex-
change model formalism has been chosen. By using these
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FIG. 1. The PL valence-up quarks uval (x) (the heavy full curve),
Eq. (16), the constituent up quarks GU/N (dashed curve), Eq. (14), in
the 3He for the (mu, εu

0 ) pairs of ( 1
3 MN , 1

2 mu) and b = 0.8 fm at Q2 =
4 GeV2. I have also shown the PL up-quark distribution of the free
nucleon (the full curve) and the predictions of GRV’s free valence-up
quark distributions (dotted curve) at Q2 = 4 GeV2 [63].

densities, the different PDFs inside the bound nucleon will be
calculated.

I start by presenting the extracted PL valence quark dis-
tributions inside the bound nucleon (the heavy full curves),
the PL valence quark distribution of the free nucleon (the full
curve), and U -type and D-type constituent quarks (dashed
curves) of up- and down-quarks for 3He in Figs. 1 and 2,
respectively. The former were extracted from the convolution
of the constituent quark inside the bound nucleon by using
Eq. (1) for q = uval and q = dval. It should be pointed out
that, in this paper, the probability distributions of the con-
stituent quark, i.e., GU/N (y, Q2

0) and GD/N (y, Q2
0) (the dashed

curves in Figs. 1 and 2, respectively), have been obtained by
using the QEM according to the procedure that is explained
in Appendix. This model is a realistic model; therefore, it
produces more reliable results than with the nonrelativistic

FIG. 2. The same as the Fig. 1 but for the d quarks. The PL
valence-down quarks dval(x) (the heavy full curve), Eq. (17), the
constituent up-quarks GD/N (the dashed curve), Eq. (15), in the
3He for the (md , εd

0 ) pairs of ( 1
3 MN , 1

2 md ) and b = 0.8 fm at Q2 =
4 GeV2. I have also shown the PL down-quark distribution of the free
nucleon (the full curve) and the predictions of GRV’s free valence
down-quark distributions (dotted curve) at Q2 = 4 GeV2 [63].

model of Isgur and Karl [72–74] or the algebraic model of
Bijkar et al. [75–77]. They are both based on field-theoretical
approaches and we made a comparison among these models
and the present model in Ref. [56].

In the QEM formalism, for each constituent quark flavor,
there are two parameters that have to be fixed in order to
predict the parton densities inside the bound nucleon. In order
to construct our constituent quark distribution functions, I take
the proton parton distribution functions that can be provided
by the GRV’s (Glück et al.) valence quark distributions [63],
which are extracted by performing the next-to-leading-order
QCD calculations on F P

2 (x, Q2), and their results have a very
good fit with respect to the available data in the whole (x, Q2)
plane, therefore; their parton distributions at the energy scale
Q2 = 4 GeV2 should be reliable. In this scale of energy, the
PL valence-up and -down quark distributions become closer to
those of GRV, especially, for the x < 0.1. Also, it is interesting
that the shape of the distributions has the same pattern of
those GRV. It is acceptable because in the small-x-region one
we are dealing with other nuclear effects like the shadowing
effect, which is not included in the present model. So in the
small-x region, it is expected that the nuclear distributions are
close to those of GRV parametrization which describe the free
nucleon distributions. Thus, I just take the nuclear effect of the
quark exchange between bound nucleons into account where
it is important in the 0.2 < x < 0.7 region. But as x → 1, the
behavior of the present distributions is different from those of
GRV’s, mainly for the nuclear targets, in which the effect of
Fermi motion of bound nucleon inside the nucleus has been
ignored by using the leading-order expansion of the nuclear
wave function. Therefore, as is obvious from Fig. 1, because
of the binding and the Fermi motion effect, it is expected
that for the large x the PL valence-up and -down quark
distributions behave differently with respect to those have
been fitted to produce the free-nucleon structure function, i.e.,
GRV.

On the other hand, it is obvious that since U -type and
D-type constituent quarks have different momentum density
distribution in the QEM, Eqs. (A10) and (A11), the PL
valence-up and -down quark distributions take a different
shape through using the CQM formalism, i.e., Eq. (1). But
in the case of the sea quarks or the gluon distributions in the
nuclear systems, there is no flavor dependent so the single
distributions for the sea quarks or gluons will be obtained. The
flavor independence of the gluon is that in the ACMP con-
stituent quark formalism, there is no difference between the
PL gluon distribution inside the U -type constituent quark and
the D-type constituent quark, because in the Eq. (1), the same
functional form for both of them have been derived; therefore,
the gluon distributions are flavor blinded. It is obvious that by
using the convolution methods the distributions of PL up- and
down-valence quarks produce a very reliable outcome rather
those of constituent quark, which will give better results in
the case of the ratios of the structure functions of the neutron
to the proton as well as the ratio of the helium-3–to-tritium
structure functions.

In Fig. 3, the sea-quark distributions have been presented
which calculated through Eq. (1) by using the U -type and
the D-type constituent quark distributions of QEM (the full

044302-6



EFFECT OF NUCLEAR CORRECTIONS ON THE PARTON … PHYSICAL REVIEW C 99, 044302 (2019)

FIG. 3. The PL sea quarks qsea (x) (the full curve), Eq. (18), in
the 3He for the (mq, ε

q
0 ) pairs of ( 1

3 MN , 1
2 mq) and b = 0.8 fm at

Q2 = 4 GeV2. The dashed curve is our previous results from
Ref. [57] at Q2 = 0.34 GeV2. I have also shown the predictions of
the free GRV’s isospin average sea quarks (dotted curve) at Q2 = 4
GeV2 [63].

curve). The parameters of the calculations, i.e., the quark
mass, mq, the quark binding energy, εq, the nucleon’s radius,
b, and the scale of energy, Q2

0, are the same as Figs. 1 and
2. In the previous works that the quark exchange model has
been used to explain the results of the DIS experimental data
especially the EMC ratios of an A = 3 isoscalar target [10]
and the 3He and 3H nuclear structure functions [22], only the
exchange of the U -type and D-type constituent quark among
the nucleons bound in the nucleus have been considered
and the existence as well as the exchange of the sea quarks and
the gluons have been ignored due to the complexity of the cal-
culations. But in the present work, the important role of the sea
quarks in the structure functions of the bound nucleons and
nuclear targets in the high-energy physics have been consid-
ered through the application of the QEM formalism in the con-
text of the CQM framework, so the obtaining results are in a
very good agreement with the available and relevant data, see
Figs. 7 and 8. On the other hand, as pointed out before there is
no flavor dependence in the case of the sea quarks, qsea (x, Q2

0),
and the gluons, g(x, Q2

0), so for all types of sea-quark distri-
butions, namely qsea = usea, dsea, ūsea, d̄sea, ssea, and s̄sea, and
gluon distributions a single distribution inside 3He or 3H
nucleus have been extracted. The dashed curve is the PL
sea-quark distribution for the hadronic scale of energy, i.e.,
Q2

0 = 0.34 GeV2, which is presented for comparison [57]. It
could be seen that, as the energy values become higher, the PL
sea-quark distributions grow, which means that more quark-
antiquark pairs have been created and the momentum of the
nucleon should be shared between them, so the contribution
of the PL valence quarks decreases and that of PL sea quarks
increases. Also, it should be mentioned that the free-nucleon
GRV’s sea quarks are flavor dependent, but for comparison, I
have plotted their isospin average distributions in Fig. 3 (the
dotted curve), so the inconsistency between our results and
those of the GRV should be considered as qualitative in nature.

In Fig. 4, I have plotted the results of the calculations for
the PL gluon distributions (the full curve), g(x, Q2), which
have been calculated through Eq. (1) by taking q = g with
the same value of parameters like b, Q2

0, mq, and ε
q
0 of

FIG. 4. The PL gluons g(x) (the full curve), Eq. (19), in the
3He for the (mq, ε

q
0 ) pairs of ( 1

3 MN , 1
2 mq) and b = 0.8 fm at

Q2 = 4 GeV2. I also added to the present figure our previous results
from Ref. [57] at Q2 = 0.34 GeV2 (dashed curve). The dotted curve
is the GRV’s gluon distribution in the free nucleon at Q2 = 4 GeV2

[63].

Fig. 3 along with the GRV’s free-nucleon gluon distribution
function (the dotted curve) at Q2 = 4 GeV2. Like Fig. 3, the
previous result at the energy scale of Q2

0 = 0.34 GeV2 (dashed
curve) have been presented for comparison. The effect of
the presence of the gluons in the quark exchange model is
considerable, as will be shown in the following results. I have
plotted GRV’s isospin average gluon distributions in Fig. 4
(dotted curve). An interesting point is that in the 0.1 < x <

0.4 region, the bound gluon distribution inside the nucleon is
larger than the GRV free-nucleon gluon distributions at the
high energy scale and the behavior of the gluon in the small-x
region differs from those of the free nucleon. It should be
noted that our sea quark and gluon distributions have been
calculated for the bound nucleons so it is natural that the
behavior of these distributions is different from those of the
“free nucleon.” The functional form of the gluon distributions
inside bound nucleon, i.e., �g/CQ(x), has been determined
through the total amount of the momentum of the nucleon
which has been carried by the gluons. Thus, the shape of
these distributions has been imposed from these physical sum
rules. Also the distributions presented in Figs. 3 and 4 are
for two values of Q2 = 0.34 GeV2 and 4 GeV2; therefore,
it is obvious that by increasing the energies, the sea quark
and gluon distributions have been increased, especially in the
small-x regions.

In Fig. 5, the ratios of the bound PL valence-up and -down
quark densities to those of the valence-up and -down quark
distributions in the free nucleon are shown by the dash-dotted
and dashed curves, respectively. The full curve is the PL va-
lence quark distributions, qval = uval + dval. The filled squares
are the experimental data [78] and the small dashed curve is
the theoretical predictions of Afnan et al. [16] for helium-3
and the tritium, which are shown just for comparison. In
the present calculations, it is clearly obvious that the EMC-
type ratio of the PL valence quark has the same pattern as
the one that has been obtained for the EMC-type ratio of the
bound nucleon. It should be noted that the bound PL valence
quark distributions are smaller than the free valence quark
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FIG. 5. The EMC ratios of the bound PL valence-up and -down
quarks to the free valence quark in the helium-3 nucleus. The full
curve is the PL valence quark distributions, qval = uval + dval and the
dash-dotted and dashed curves are the same ratios but for the PL up-
and down-quarks, respectively. The filled squares are the experimen-
tal data [78]. The small dashed curve is the theoretical result [16] for
helium-3 and tritium, which is presented for comparison.

distributions in the interval 0.15 < x < 0.65. It is expected
because, as explained before, in the mentioned region the
quark exchange effect between the bound nucleons is present
and causes a shift in the CQ momentum distributions. Also
one can conclude that the effect of the quark exchange is
reliable for the PL valence-down quarks rather than the PL
valence-up quarks.

The EMC-type ratios of 3He and 3H nuclei, Eqs. (24) and
(25), are presented in Fig. 6 for the nucleon radius b = 0.8 fm,
(the full curves). It should be mentioned that the original EMC
effect is the ratio of the nuclear structure functions to those
of the deuteron. So in the present model, Eqs. (24) and (25)
are for the ratio of the bound-nucleon structure function to
the corresponding free nucleon; therefore, it is not calculating

FIG. 6. The EMC ratios of the 3He and 3H nuclei, Eqs. (24) and
(25), for b = 0.8 fm. The full curves are from present calculations by
taking into account the contributions of the PL sea quarks and the PL
gluons in the structure functions at Q2 = 4 GeV2. The dashed curves
are the same ratio, but only the U-type and D-type constituent quarks
are included [22]. The empty triangles are the data from HERMES
helium-3 analysis Refs. [13,14], The filled circles are the SLAC
experiment for the 56Fe nucleus [12], the filled squares are taken
from Ref. [78], and the small dashed curve is those of the theoretical
approach of Afnan et al. [16].

the ratio addressed in the experimental analysis. Of course,
our results here are a good indication of the goodness of
the ACMP constituent quark exchange model to explain the
available data.

The EMC ratio of 3He and 3H nuclei in which just U -
type and D-type constituent quarks, i.e., GU/N (y, Q2

0; Ai ) and
GD/N (y, Q2

0; Ai ), have been considered in the nuclear structure
functions (dashed curves), also presented from Ref. [22].
Thus, by comparing the results of the present study with the
previous one, it is obvious that by taking the different parton
density distributions such as the PL valence-up and -down
quarks, PL sea quarks, and PL neutral gluons into account,
reliable ratios have been obtained in the discussed region.
The empty triangles are the data from HERMES helium-3
analysis that is a combinations of helium-3, the deuterium,
and the proton cross sections R = F 3He

2 /(F d
2 + F2

p), and they
have been taken from Refs. [13,14]. The filled circles are the
Stanford linear accelerator center (SLAC) experimental data
for the 56Fe nucleus [12], the filled squares are taken from
Ref. [78], and the small dashed curve is those of Afnan et al.
[16] for the helium-3 and the tritium nuclei. Afnan et al. have
used the spectral function and convolution approaches with
inclusion of the Fermi motion effect to get their outcomes.
Our results for the small-x region and the valence domains
are in a good agreement with both the experimental data
and theoretical results, but they are not comparable for the
deep valence region, x > 0.7, in which the Fermi motion is
an important effect while has been ignored in the present
calculations. Thus, as is obvious, the results fall short off
representing experimental data. One should note that the
results are a good indication of the goodness of the model
to explain data. The outcomes of the model for large x not
surprising, for it is a well-established fact that in this study,
as in our previous works [22,57], the exchange term has been
approximately calculated due to the leading-order expansion
of the nuclear wave function, χ (p, q); i.e., discarding the
Fermi motion. In fact, as I discuss completely in Appendix,
in the QEM formalism the state of the nucleus with three
nucleons has been defined as follows [11]:

|Ai = 3〉 = (3!)−1/2 χα1α2α3N †
α1
N †

α2
N †

α3
|0〉. (31)

The nuclear wave function χα1α2α3 could be defined as the
center-of-mass motion of the three nucleons and we write it
as follows:

χα1α2α3 = χ (P, q)D(α1, α2, α3; Ai ), (32)

where D(α1, α2, α3; Ai ) are the C-G coefficients for the three-
nucleon system. It should be noted that the effect of the Fermi
motion in the nuclear targets are predominant at x > 0.65, as
obvious from the data and theoretical results of Fig. 6 and
Refs. [12,16,26]. I hope to consider the effect of the Fermi
motion in our future works to the constituent quark exchange
formalism by taking into account the variation of the nuclear
wave function in the configuration space [56]. In Ref. [16], it
has been shown that the ratio of the EMC ratio of helium-3
to tritium should be approximately equal to unity, where our
results in the present figure are in a good agreement with this
prediction.
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In the next two figures, the ratio of the neutron to the
proton structure functions as well as the helium-3–to–tritium
structure functions are shown as a function of x at Q2 =
4 GeV2 and we compare them with the available data to check
the validity of our model. It is good to present the outcomes
for the ratio of the helium-3–to–tritium structure-function
ratio F

3He
2

F
3H

2

. The nuclear target structure functions like 3He and
3H in the constituent quark exchange formalism have been
calculated by Eqs. (22) and (23). Using the same numerical
values as the one I have chosen in Fig. 1, the mentioned ratios
will be obtained.

In Fig. 7, the full curve shows the ratio of the 3He-
to-3H structure functions and the dashed curve represents
the same ratio but only the U -type and D-type constituent
quark distributions GU/N (y, Q2

0) and GD/N (y, Q2
0) have been

considered to calculate the nuclear structure functions. For the
purpose of comparing our results with the available data and
checking the validity of the present calculations, the expected
ratios that have been predicted by using the kinematics of
the proposed 11-GeV JLab experiment [15,16,71] (the filled
circles) also have been included in Fig. 7. The results are
in excellent agreement with the prediction as was expected,
because in the present calculations the role of the PL sea
quarks and the PL gluons have been considered through using
the convolution relation of constituent quarks, i.e., Eq. (1). I
achieved a very good agreement between the results of the
present calculations and the experimental data for the ratio
of the helium-3–to–tritium structure function in the valence
region, in which the model works properly, so the dashed
curve has been modified. Notice that in the present calculation
the Fermi motion has been ignored; therefore, the results are
not close to the experimental data for x > 0.7.

Finally, in Figs. 8(a) and 8(b) I have plotted the ratio of
the neutron to the proton NLO structure functions, F n

2

F p
2

, vs x

at Q2 = 4 GeV2. The form of the various PL parton distri-
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x

0.9

1
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FIG. 7. The ratios of the structure functions of helium-3,
F 3He

2 (x, Q2), to tritium, F 3H
2 (x, Q2), for b = 0.8 fm at Q2 = 4 GeV2.

The full curve is based on the CQM in which the PL sea-quark and
the PL gluon densities have been considered in the calculations and
the dashed curve is the same ratio from Ref. [22] in which the sea
quarks and the gluons are not taken into account. The circle points
are the experimental data from Refs. [16,71].

bution functions inside the bound nucleon has been defined
in Eqs. (16)–(19). By taking those relations, along with the
same numerical values as the ones that have been used in
Fig. 1, this ratio has been calculated via Eqs. (30) and (29).
The full curve (dashed-double-dotted curve) is the mentioned
ratio with (without) contributions of the sea-quark and gluon
distributions to calculate the nucleon structure functions.

Considering the PL sea quarks and the PL gluons to the
quark exchange model calculations in the context of the
ACMP constituent quark formalism has improved the men-
tioned ratio very well for the small and the deep-valence x
region such that a very good agreement between our results
and both the experimental data and the theoretical prediction
has been obtained. It should be mentioned that our ratio is
for the bound nucleons so the difference between our results
and the experimental data in the large-x region is because
we ignored the Fermi motion effect in QEM. The dashed

FIG. 8. (a) The ratio of the neutron to the proton NLO structure
functions,

F n
2

F p
2

, as a function of x at Q2 = 4 GeV2 (the full curve).

I have also shown the same ratio but without the role of the sea
quarks and the gluon (the dash-dotted curve). The dashed curve
(dotted curve) is the prediction of GRV’s structure-function ratios
with (without) the sea quarks and the gluons. The experimental data
are from Whitlow et al. [79], Melnitchouk and Thomas [80], Bodek
et al. [81], and NMC [12,82]. The results are plotted for x > 0.001.
(b) The same as Fig. 8(a), i.e., the ratio of the neutron to the proton
NLO structure functions,

Fn
2

F p
2

, as a function of x at Q2 = 4 GeV2 but

results are plotted for x > 0.1.
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curve is the full NLO GRV F n
2 /F p

2 ratio and the dotted curve
is the same ratio but without the gluon and the sea-quark
distributions [63]. It should be noted that I assumed the isospin
symmetry. The presented data are for Q2 = 3–7 GeV2.

V. CONCLUSION

In conclusion, I have used quark exchange formalism to
produce the U -type and D-type constituent quark distribution
functions to be used as the constituent quark distributions to
the ACMP constituent quark model. The constituent quark
obtains their own structure by grabbing a valence quark with
the quark-antiquark pairs and the neutral gluons. I have cal-
culated and reparameterized the constituent quarks structure
functions, i.e., �q/CQ, at energy scale Q2 = 4 GeV2. The con-
volution theorem has been used to calculate the PL up-valence
quark, uval, the PL down-valence quark, dval, the PL sea quark,
qsea, and the PL gluon, g, where they are the partonic structure
of the bound nucleons. I have explicitly shown the results of
the present calculation to compare them with the available and
relevant experimental data as well as with the prediction of
the theoretical outcomes. It has been found that our results
are in a good agreement with the experimental data. Also,
our derived structure functions are more reliable and realistic
because in the present calculations, the contribution and the
role of the sea quark and the gluon distributions to obtain the
structure functions of nucleons and nuclear targets, especially
for x < 0.1 have been considered, so the ratio of the structure
functions pass to the experimental data very closely.

The model can be improved by considering the Fermi
motion effect explicitly in the constituent quark distributions,
i.e., considering the full overlap integral in the context of
the quark exchange model by taking the full nuclear wave
function into account rather than the leading-order expansion
of the nuclear wave function; moreover, the results will be
improved by evaluating the connected three-body diagram of
the quark exchange, which has been ignored in the present
calculations. It should be pointed out that the unintegrated
parton distribution function in the nuclei has a major role
[31] and it was very recently used for the case of A = 6
nuclei [30], in which the result was noticeable. I hope that
in our future works we add this point to the helium-3 and the
tritium nucleus structure functions in order to calculate the
very small-x behavior of the structure functions of 3He and
3H nuclei in the framework of the constituent quark exchange
model.
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APPENDIX: DERIVATION OF THE U -TYPE AND D-TYPE
CONSTITUENT QUARK DISTRIBUTIONS FROM QEM

In this Appendix, I describe the derivation of the con-
stituent quark distribution functions from QEM [11]. In this
formalism, it is considered that the exchange of the quarks
between the bound nucleons inside the nucleus may cause a

displacement in the momentum distribution of their partons
relative to partons inside the free nucleon. In this Appendix,
the procedure leads to the explanation of this calculation
and it was shown that the shift and exchange of the partons
among bound nucleons contributes to the parton distributions
functions. To this end, it assumed that the nucleon state be
composed of three constituent quarks, where each of them has
its own special quantum numbers, such as the spin, isospin,
and the color factor, which have been collectively shown by
the index μ.

The constituent quark state can be defining by the con-
stituent quark creator operator, (cq)†, as follows:

|cq〉 = (cq)†
μ|0〉 (A1)

and equivalently for the nucleon kind N made of three con-
stituent quarks, cq. It can be written [11,19–22],

|N 〉 = N †
α |0〉 = 1√

3!
N μ1μ2μ3

α (cq)†
μ1

(cq)†
μ2

(cq)†
μ3

|0〉. (A2)

In this equation the indices αi (μi) describe the nucleon (CQ)
states {P,MS,MT } ({k, ms, mt , c}) [note that MT (mt ) = + 1

2
and − 1

2 for the proton (up constituent quark) and the neutron
(down constituent quark), respectively]. The creation operator
for the constituent quark (nucleons) is shown as cq†

μ (N †
α ) in

which μ (α) is a state index. It should be pointed out that, as
a convection, repeated indices means a summation over those
indices and also integration over k. In Eq. (A2), N μ1μ2μ3

α is a
totally antisymmetric nucleon wave function and is written as
follows:

N μ1μ2μ3
α = D(μ1, μ2, μ3; αi ) × δ(k1 + k2 + k3 − P)

×�(k1, k2, k3, P), (A3)

in which �(k1, k2, k3, P) describe the nucleon wave func-
tion in terms of the constituent quarks. Also, it should be
mentioned that because the quark exchange model is a non-
relativistic framework, it would be possible to separate the
center-of-mass motion of the nucleon from the motion of its
constituent quarks. Thus, by considering this point, there is
some simplifying of the calculation in the quark exchange
model, for which the nucleon wave function is approximated
by a Gaussian form:

�(k1, k2, k3, P)

=
(

3b4

π2

) 3
4

exp

[
−b2

2

(
k2

1 + k2
2 + k2

3 − P2

3

)]
, (A4)

(b � nucleon radius). The D(μ1, μ2, μ3; αi ) part in the
Eq. (A3) is the abbreviation for the products of the color factor
εc1c2c3 and four Clebsch-Gordon coefficients C j1 j2 j

m1m2m, so it is
written as the following form:

D(μ1, μ2, μ3; αi ) = 1√
3!

εc1c2c3

1√
2

∑
s,t=0,1

C
1
2 s 1

2
msσ msMSαi

×C
1
2

1
2 s

msμ msν msC
1
2 t 1

2
mtσ mt MTαi

C
1
2

1
2 t

mtμ mtν mt . (A5)

Now the nucleus state with Ai = 3 can be defined by
using the above nucleon creation operator and the completely
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antisymmetric nuclear wave function, χα1α2α3 , as follows:

|Ai = 3〉 = (3!)−1/2 χα1α2α3N †
α1
N †

α2
N †

α3
|0〉. (A6)

Afnan et al. [16] show that there is a degree of freedom in
which the choice of the nucleon-nucleon potential does not
affect the EMC ratio, which has been proved in several works
where the EMC effect have been studied [22,26,27]. In fact,
the binding energy and nuclear effects cause the EMC ratio
for 0.2 < x < 0.8, which is the valence region. The different
potentials are responsible for the same binding energy of the
nucleons inside the nucleus so the change of the potential does
not change the binding energy; therefore, the EMC ratio, as
has been checked by various works, does not depend on the
potential’s model to describe the nuclear systems. In other
words, the EMC ratio is rather independent from the potential
model if the latter is realistic. Recently, we have used the
Malfliet-Tjon V potential [26] to calculate the wave function
of the three-nucleon systems in the coordinate space in order
to calculate the EMC effect. The results were the same as that
in which the Reid or AV18 potential have been used. Thus,
one can conclude that the EMC ratio is not affected by the
change of the nucleon-nucleon potential.

Also, it worth noting that, for the three-nucleon systems the
nuclear density is sufficiently low; therefore, it should be cor-
rect to ignore the possibility of simultaneous quark exchange
among all three nucleons. The nuclear wave function χα1α2α3

could be defined as the center-of-mass motion of the three
nucleons and write it by this assumption as follows:

χα1α2α3 = χ (P, q)D(α1, α2, α3; Ai ), (A7)

where D(α1, α2, α3; Ai ) are the C-G coefficients for the three
nucleons as the one in Eq. (A5), i.e.,

D(α1, α2, α3; Ai ) = 1√
2

∑
S,T =0,1

C
1
2 S 1

2
MSα1

MSMSi
C

1
2

1
2 S

MSα2
MSα3

MS

×C
1
2 T 1

2
MTα1

MT MTi
C

1
2

1
2 T

MTα2
MTα3

MT
. (A8)

In order to extract the constituent quark distribution inside
the bound nucleon of the nuclear system, the momentum
density distributions is needed. The momentum distribution
functions of a constituent quark with the fixed flavor and the
nucleon isospin projection in the three-nucleon system can be
written as

ρμ̄(k; Ai ) = 〈Ai = 3|(cq)†
μ̄(cq)μ̄|Ai = 3〉

〈Ai = 3|Ai = 3〉 . (A9)

We used the sign bar to indicate that there is no summation
on MT , mt and integration over k on the repeated index μ.
The details of the calculations of 〈Ai = 3|Ai = 3〉 and 〈Ai =
3|(cq)†

μ̄(cq)μ̄|Ai = 3〉 can be found in Ref. [22].
Now by performing all summations on the free repeated

indices in Eq. (A9), but for fixed MT = 1
2 and − 1

2 , the
momentum density distributions of the 3He and the 3H nuclei
could be calculated, respectively (MT is the three-nucleon

system isospin projection) [22]:

ρ
3He(k)=

[
2A(k) + 2

9
B(k) + 4

9
D(k)

][
1 + 9

8
I
]−1

, (A10)

ρ
3H(k)=

[
A(k) + 1

9
B(k) + 4

9
C(k) − 2

9
D(k)

][
1 + 9

8
I
]−1

,

(A11)

with ∫
ρ

3H(k)dk = 1

2

∫
ρ

3He(k)dk. (A12)

In Eqs. (A10) and (A11), A(k), B(k), C(k), and D(k) are
the direct and exchange integrals calculated from the three-
nucleon wave function. The mentioned terms are as follows:

A(k) =
[

3b2

2π

] 3
2

exp

[
−3

2
b2k2

]
,

B(k) =
[

27b2

8π

] 3
2

exp

[
−3

2
b2k2

]
I, (A13)

C(k) =
[

27b2

7π

] 3
2

exp

[
−12

7
b2k2

]
I,

D(k) =
[

27b2

4π

] 3
2

exp

[
−3b2k2

]
I, (A14)

and

I = 8π2
∫ ∞

0
x2 dx

∫ ∞

0
y2 dy

∫ 1

−1
d (cos θ ) exp

[
−3x2

4b2

]

× |χ (x, y, cos θ )|2, (A15)

in which the exchange integral, i.e., I, is the contribution of
the nucleus wave function [χ (x, y, cos θ )] to the constituent
quark momentum distributions [11]. It is assumed that if one
takes I = 0, it means that there is no exchange of the quarks
between the nucleons inside the nucleus, so the nucleon can be
taken as the free one. This procedure has been used to obtain
the free-nucleon structure function to be used to calculate the
EMC-type ratios.

By assuming the SU(6) symmetry, the constituent up- and
down-quark distribution functions inside the three-nucleon
systems can be obtained as the following relations:

ρU (k) =
[

2A(k) + 2

9
B(k) − 16

27
C(k) + 28

27
D(k)

]

×
[

1 + 9

8
I
]−1

, (A16)

ρD(k) =
[
A(k) + 1

9
B(k) − 20

27
C(k) + 26

27
D(k)

]

×
[

1 + 9

8
I
]−1

, (A17)
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