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Modification of hyperon masses in nuclear matter
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We investigate the properties of baryons within the framework of the in-medium modified SU(3) Skyrme
model. The modification is performed by a minimal way, the medium functionals in the SU(2) sector being
introduced. These functionals are then related to nuclear matter properties near the saturation point. The
modifications in the SU(3) sector are performed by changing additionally kaon properties in nuclear matter.
The results show that the properties of baryons in the strange sector are sensitive to the in-medium modifications
of the kaon properties. We discuss the consistency of the in-medium modifications of hadron properties in this
approach, comparing the present results with those from other models.
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I. INTRODUCTION

Nucleons are known to undergo changes in nuclear matter
due to the strong interaction with the nuclear environment.
Since they themselves constitute nuclear matter, the medium
modifications of nucleon properties bring about the changes
of nuclear matter in a self-consistent manner. Similarly, a
hyperon lying in nuclear matter is also altered. It is essential
to understand how its attributes become different in a nuclear
medium so that neutron stars and hypernuclei can be described
in a more realistic way [1–8].

While a plethora of experimental and theoretical works on
conventional nonstrange nuclear matter and its constituents in
a wide range of nuclear matter densities has been compiled
well over decades, hyperons in nuclear matter have been
relatively less studied [9–15]. Most of the works are based on
the hyperon-nucleon (Y N) interactions. For example, Beane
et al. [12] computed the n�− scattering phase shifts using
lattice QCD to quantify the energy shift of the �− in nuclear
matter. In Refs. [13,14], the Y N potential was constructed
from effective field theory and the Bruecker-Hartree-Fock
(BHF) approximation was employed to investigate hyperons
in nuclear matter. Density functional theories were also used
to study the hyperons in nuclear matter (see a recent review,
Ref. [15]).

In the present work, we propose yet another simple frame-
work of investigating the mass shifts of the hyperons together
with the nucleon and the � isobar. Some years ago, it was
studied how they underwent the changes in nuclear matter
within the framework of the chiral topological soliton models
[16–20], where the mass shifts of the nonstrange baryons were
scrutinized and various in-medium modified form factors
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were computed. The results were in qualitative agreement
with those of other approaches and had interesting physical
implications such as the stability and shape of the nucleon in
nuclear medium.

Moreover, the in-medium modified SU(2) Skyrme model
described very well properties of isospin asymmetric nu-
clear matter near the saturation point (nuclear density ρ0 =
0.16 fm−3). The model yielded successfully the equations of
states (EoS) for nuclear matter at ordinary densities [21].
It predicted qualitatively various properties of nuclear mat-
ter in comparison with different theoretical approaches and
empirical information. In particular, the parameters of the
symmetric and asymmetric EoS determined from the present
model were in qualitative and quantitative agreement with the
empirical data [22], with those from Hartree-Fock approaches
based on Skyrme interactions [23,24] and with those from
different approaches presented in Refs. [25–28]. Furthermore,
the extrapolations of the EoS at higher densities indicate that
the model can describe rather well the state of matter that may
exist in the interior of neutron stars. The results demonstrate
that two solar mass neutron stars can be explained in the
framework of the present approach [29].

In this context, it is of great interest and significance to
extend the SU(2) version of the model to the SU(3) one in
a straightforward and simple manner. So, we will generalize
the previous analyses to investigate the hyperons in nuclear
matter. We will employ an SU(3) Skyrme model developed in
Ref. [30] and modify the relevant parameters of the model in
nuclear matter. For simplicity, we first consider only the in-
medium modification of meson dynamics in the SU(2) sector.
However, the kaon is also known to undergo the changes in
nuclear matter [31,32]. Thus, we alter the kaon properties in
nuclear medium, assuming a simple linear-density approxi-
mation. While the dynamics in the SU(2) sector remained
intact in the course of generalization to the SU(3) sector,
the model still properly explains the phenomenology in the
nonstrange sector as discussed in Refs. [21,29]. The present
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approach allows one to draw a simple conclusion as to how
the in-medium modified kaon can influence the changes of
the SU(3) baryons in nuclear matter.

The paper is organized as follows: In Sec. II, we reca-
pitulate briefly an SU(3) Skyrme model in free space [30],
where the SU(2) Skyrme model is extended into the SU(3)
by a trivial embedding of the SU(2) chiral soliton into SU(3)
[33]. In addition, we show how the strange sector incorporates
the quantum fluctuations (see Subsec. II A). Then, we explain
how the meson dynamics is altered in nuclear medium, based
on the phenomenology in the nonstrange sector, and then
discuss the in-medium changes of nucleon and � isobar
properties in Subsec. II B. The modification of kaon properties
in nuclear matter is discussed in Subsec. II C. In Sec. III,
we present and discuss the results. We first deal with the
medium effects in the mesonic sector (Subsec. III A) and then
we show how the modification of the mesonic sector brings
about the density effects on the hyperons (Subsec. III B). The
final section, Sec. IV, is devoted to the summary of the present
work and outlook of possible developments of the present
model in relation with the strangeness physics in various
nuclear environments.

II. THE MODEL

The SU(3) Skyrme models have been developed over
decades. There are many variants of the model [34–40] (see
a review [41] for extensive references). The main difference
among the models comes mainly from specific methods as to
how the strange sector is treated. We will follow an SU(3)
Skyrme model developed in Ref. [30], because one can easily
and transparently modify the model in nuclear medium.

A. Baryons in free space

The standard SU(3) Skyrme model is based on the effective
chiral Lagrangian written by

L = LWZ − F 2
π

16
Tr LμLμ + 1

32e2
Tr [Lμ, Lν]2

+ F 2
π

16
Tr M(U + U † − 2), (1)

where Lμ = U †∂μU and U (x, t ) is a chiral field in SU(3).
The mass matrix M is defined in terms of the pion and kaon
masses

M =
⎛
⎝m2

π 0 0
0 m2

π 0
0 0 2m2

K − m2
π

⎞
⎠, (2)

where mπ and mK stand for the pion and kaon masses,
respectively. The Wess-Zumino term [42] LWZ constrains the
soliton to identify as a baryon, which is expressed by the
five-dimensional integral over a disk D

SWZ = − iNc

240π2

∫
D

d5�x εμναβγ Tr(LμLνLαLβLγ ). (3)

Here the totally antisymmetric tensor εμναβγ is defined as
ε01234 = 1 and Nc = 3 is the number of colors. The in-
put parameters of the model are the pion decay constant

Fπ = 108.783 MeV, the Skyrme parameter e = 4.854, and the
masses of the π and K mesons, given respectively as mπ =
134.976 MeV and mK = 495 MeV, which are taken close to
the experimental data.

Classically, the model describes a set of absolutely stable
topological solitons with the corresponding topological in-
teger numbers that is identified as a baryon number B. The
lowest-lying baryon states can be obtained by the zero-mode
quantization of the soliton with baryon number B = 1

U (r, t ) = A(t )U0(r)A(t )†, (4)

where A(t ) is rotational matrix in SU(3). The time-
independent soliton field U0(r) is expressed as the trivial
embedding of the SU(2) soliton into SU(3)

U0(r) =
(

eiτ·nF (r) 0
0 1

)
, n = r

r
. (5)

Note that the SU(2) soliton field satisfies the hedgehog ansatz.
The profile function F (r) with the boundary conditions

F (0) = π, F (∞) = 0 (6)

satisfies the classical field equations corresponding to the
baryon number B = 1 solution.

The model [30] is characterized in dealing with the time-
dependent rotational matrix A(t ). While the SU(2) rotation
is restricted to the nonstrange sector represented by A(t ), the
transformation along the strange sector is governed by the new
matrix S(t ). Thus, A(t ) and S(t ) can be expressed respectively
as

A(t ) =
(

A(t ) 0
0† 1

)
S(t ), (7)

A(t ) = k0(t )1 + i
3∑

a=1

τaka(t ), (8)

S(t ) = exp

⎧⎨
⎩i

7∑
p=4

kpλp

⎫⎬
⎭

≡ exp (iD) = exp

{(
0 i

√
2D

i
√

2D† 0

)}
, (9)

with

D(t ) = 1√
2

(
k4(t ) − ik5(t )
k6(t ) − ik7(t )

)
. (10)

Here τ1,2,3 denote the Pauli matrices, whereas λp stand for
the strange part of the SU(3) Gell-Mann matrices. ka(t ) (a =
0, 1, 2, . . . , 7) represent arbitrary collective coordinates. The
matrix A(t ) with the collective coordinates ka (a = 0, 1, 2, 3)
stands for the rotational fluctuation of the SU(2) static soliton
in the nonstrange sector. On the other hand, the matrix S(t )
with the collective coordinates kp(p = 4, 5, 6, 7) describes the
zero-mode fluctuation along the strangeness direction. Note
that the Wess-Zumino term imposes a constraint on the eighth
component which is related to the baryon number.

S(t ) in Eq. (9) can be systematically expanded in terms of
matrix D(t ) because D(t ) satisfies the relation

D3 = d2D, d2 ≡ 2D†D.
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We will perform the expansion and will keep lower orders in
power of D terms (including D4 terms) in the Lagrangian.
Having expanded S(t ), we obtain the time-dependent
Lagrangian in the form

L = − E0 + 4�Ḋ†Ḋ − �M2D†D

+ iNc

2
(D†Ḋ − Ḋ†D) + 1

2
�ω2

+ i(� − 2�)[D†(ω · τ)Ḋ − Ḋ†(ω · τ )D]

+ 2

(
� − 4

3
�

)
(D†D)(Ḋ†Ḋ)

− 1

2

(
� − 4

3
�

)
(D†Ḋ + Ḋ†D)2

+ 2�(D†Ḋ − Ḋ†D)2 + 2

3
�M2(D†D)2

− Nc

2
[D†(ω · τ)D]

− iNc

3
(D†D)(D†Ḋ − Ḋ†D), (11)

where M2 = m2
K − m2

π and ω denotes the rotational velocity
in SU(2), defined by

A†Ȧ = 1
2 ω · τ. (12)

The energy of the static configuration E0[F ] is derived as

E0[F ] = 4π

∫ ∞

0
dr r2

{
F 2

π

8

(
2 sin2 F

r2
+ F 2

r

)

+ 1

2e2

sin2 F

r2

(
sin2 F

r2
+ 2F 2

r

)
+ F 2

π m2
π

2
sin2 F

2

}
,

(13)

where Fr ≡ ∂rF . Minimizing this functional, we obtain the
solutions of the field equations with the boundary conditions
defined in Eq. (6).

The functional �[F ] arises from the rotations of the static
soliton in the SU(2) sector, whereas the functionals �[F ] and
�[F ] explain the deviation into the strangeness sector. They
are expressed as

�[F ] = 2π

3

∫ ∞

0
dr r2 sin2 F

×
{

F 2
π + 4

e2

(
F 2

r + sin2 F

r2

)}
, (14)

�[F ] = π

∫ ∞

0
dr r2 sin2 F

2

×
{

F 2
π + 1

e2

(
F 2

r + 2 sin2 F

r2

)}
, (15)

�[F ] = 4π

∫ ∞

0
dr r2F 2

π sin2 F

2
. (16)

In order to quantize the soliton, one introduces the canon-
ical momenta conjugate to the ωi and Ḋ, which correspond
respectively to the SU(2) rotation and the deviation to the

strangeness direction

(Jud )i = ∂L

∂ωi
, �γ = ∂L

∂Ḋ†
γ

. (17)

They satisfy the following commutation relations:

[(Jud )i, α
j] = 1

i
δ

j
i , α̇ = ω, (18)

[�γ , D†
β] = [�†

β, Dγ ] = 1

i
δ

γ

β . (19)

The angular momentum operator Jud and the momentum �

are derived as

Jud = �ω + i(� − 2�)(D†τḊ − Ḋ†τD)

− Nc

2
D†τD, (20)

� = 4�Ḋ − iNc

2
D − i(� − 2�)ω · τD

−
(

� − 4

3

)
(D†Ḋ + Ḋ†D)D

− 4�(D†Ḋ − Ḋ†D)D + 1

3
Nc(D†D)D

+ 2

(
� − 4

3
�

)
(D†D)Ḋ. (21)

Then, we obtain the collective Hamiltonian to order N−1
c as

follows:

H = E0 + 1

4�
�†� +

(
�M2 + N2

16�

)
D†D

− iNc

8�
(D†� − �†D) + 1

2�
J2

ud + Nc

4�
D†Jud · τD

+ i

(
1

2�
− 1

4�

)
(D†Jud · τ� − �†Jud · τD)

+
(

1

2�
− 1

3�

)[
(D†D)(�†�) − 1

4
(D†� + �†D)2

]

− 1

8�
(D†� − �†D)2 − i

Nc

8�
(D†� − �†D)D†D

+
(

N2
c

12�
− 2

3
�M2

)
(D†D)2. (22)

The collective Hamiltonian can be diagonalized by introduc-
ing the creation and annihilation operators instead of D and
�,

D = 1√
Nc

(
1 + M2

M2
0

)−1/4

(a + b†), (23)

� = − i

2

√
Nc

(
1 + M2

M2
0

)1/4

(a − b†), (24)

where M0 is defined as M0 = Nc/(4
√

��). The operators
a†(a) and b†(b) denote respectively the creation (annihilation)
operators of the strange quark and antiquark, respectively. The
strangeness and the angular momentum of the strange quark

035212-3



HONG, YAKHSHIEV, AND KIM PHYSICAL REVIEW C 99, 035212 (2019)

are given respectively by

s = b†b − a†a, Js = 1
2 (a†τa − bτb†). (25)

Then the normal-ordered Hamiltonian to order N0
c is derived

as

H = E0 + ω−a†a + ω+b†b, (26)

where

ω± = Nc

8�

(√
1 + 16��

N2
c

M2 ± 1

)
. (27)

Since we are interested in baryons containing only the strange
quarks, not antiquarks, we will ignore the ω+ term in the
Hamiltonian. Furthermore, we also neglect the quartic terms
in the kaon field because classical dynamics in the mesonic
sector is still restricted to the pion-pion interaction. Thus,
ignoring the corresponding terms related to the kaon-kaon
interaction in Eq. (22), we arrive at the final expressions of
the collective Hamiltonian

H = E0 + ω−a†a + 1

2�
(Jud + cJs)2, (28)

where c is defined as

c = 1 − 4�ω−
8�ω− + Nc

. (29)

Sandwiching the collective Hamiltonian between the
eigenstates |ns〉|I, J〉 with the definite quantum numbers such
as isospin I , total angular momentum J , and given number of
strange quarks, we obtain the final mass formula of the SU(3)
baryons

M = E0 − sω− + 1

2�

{
cJ (J + 1)

+ (1 − c)I (I + 1) + c(c − 1)

4
s(s − 2)

}
. (30)

More details of the model in free space can be found in
Refs. [30,43].

B. Baryons in nuclear matter

We now show how to implement the medium effects into
the SU(3) Skyrme model. For simplicity, we will first take
into account a modification of meson dynamics in the SU(2)
sector, introducing the medium functionals into the effective
chiral Lagrangian, based on the low-energy phenomenology
in nuclear medium [44]. As we mentioned already, the SU(2)
Skyrme model was parametrized in terms of the density
functionals and was applied successfully to the description of
properties of the nucleon and � isobar near the normal nuclear
matter density ρ0 [21]. The model was even well extrapolated
to higher density regions [29].

In Ref. [21], the in-medium modified SU(2) Skyrme model
was discussed in detail, with isospin symmetric and asym-
metric infinite nuclear matter being considered. The effective

chiral Lagrangian is modified as follows:

L = − F 2
π

16
αt

2(ρ)TrL0L0 + F 2
π

16
αs

2(ρ)TrLiLi

− αt
4(ρ)

16e2
Tr[L0, Li]

2 + αs
4(ρ)

32e2
Tr[Li, Lj]

2

+ F 2
π

16
αχSB(ρ)TrM(U + U † − 2), (31)

where αt
2(ρ), αs

2(ρ), αt
4(ρ), αs

4(ρ), and αχSB(ρ) denote the
functionals of the nuclear matter density, which reflect the
changes of meson properties in nuclear medium. In principle,
they should be defined in a self-consistent way. However, it
will be extremely difficult to determine them self-consistently,
in particular when one considers real nuclei with respect to
their in-medium modified constituents. Therefore, we simply
assume these medium functionals to be external functions of
nuclear matter density ρ. Then we are able to study properties
of a single baryon in nuclear matter. This assumption is a
rather plausible one, as far as we are interested in homogenous
infinite nuclear matter. The medium functionals can indeed be
considered as simple external parameters at a given density
so that one can carry out the calculations in a easy manner.
Furthermore, the density-dependent parameters can be related
to the properties of infinite nuclear matter, so that one can
partially restore the self-consistency of the model [21].

In the present work, we will generalize the method de-
veloped in Ref. [21]. The in-medium modified Lagrangian in
SU(3) will be modified as done in Eq. (31), the Wess-Zumino
Lagrangian LW Z being included. However, we note that the
Wess-Zumino term should not be modified in nuclear matter,
since the topology of the model must be kept intact such that
the baryon number is preserved. So, the Wess-Zumino term
is modified in nuclear matter only inexplicitly through the
medium modification of the solutions with the same baryon
number in nuclear matter.

We want to mention an important aspect of the present
approach. The Skyrme model is based on a truncated version
of the most general effective chiral Lagrangian. It indicates
that the contributions from higher order terms enter tacitly
into the parameter of the Skyrme term. This means that the
parameter carries the effects of the higher order contributions
effectively. Therefore, the in-medium modified Skyrme model
keeps already almost all the necessary ingredients and in
principle could be a relevant theoretical framework to study
nuclear many-body problems, at least to a qualitative extent.
For example, the in-medium Skyrme term plays an essential
role in stabilizing the nucleon even in nuclear matter. The
Skyrme term brings about the repulsive nature in the inner
part of the nucleon [16,19], which assures the stability of the
nucleon. It implies that when the density of nuclear matter
grows, higher order terms of the effective chiral Lagrangian
will definitely come into play and are required so that the
collapse of nuclear matter to a singularity [45] be avoided.
Therefore, the effect of higher order derivative terms is incor-
porated by introducing the density-dependent parameter in the
Skyrme term.

If the functionals are taken to be functions of nuclear-
matter density α(ρ), then all the functional parameters are
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reduced to the simple external parameters in an infinite and
homogeneous nuclear matter approximation. We will follow
in this work the method developed in a previous work [21].
First, we introduce a convenient relation between the medium
functions in the following way:

αt
2 = αt

4α
s
2

(
αs

4

)−1
, (32)

which reduces the number of the external density-dependent
parameters to four different parameters. Furthermore, these
remaining four density-dependent parameters can be related
to each other, so that the three independent parameters can be
defined as follows:

1 + C1λ = f1(λ) ≡ √
αs

2α
s
4, (33)

1 + C2λ = f2(λ) ≡
√

αχSBαs
4(

αs
2

)2 , (34)

1 + C3λ = f3(λ) ≡
(

αs
2

αs
4

) 3
2 1

αt
2

, (35)

where λ = ρ/ρ0. This reduction allows us to keep the medium
modification of the parameters simpler and more general.

By defining Eq. (32) and by introducing Eqs. (33)–(35),
an algebraic manipulations become much simplified and yield
convenient and transparent forms of the final expressions.
Then, we can perform the main part of calculations such as
the minimization, the quantization, and so on, in terms of the
three independent density-dependent functions f1,2,3.

The numerical values of these parameters are fixed to be
C1 = −0.279, C2 = 0.737, and C3 = 1.782. They reproduce
well the EoS for symmetric nuclear matter near ρ0 and at
higher densities that may exist in the interior of a neutron star
[21,29]. The parameters of the present model are completely
fixed in nuclear matter except for the strangeness direction.
So, we will then introduce the modification of the kaon
properties after the quantization, which will be discussed in
Subsec. II C.

While the form of the baryon mass formula is kept to be
the same as in Eq. (30), it becomes now density dependent by
the functions f1,2,3

1

M∗ = E∗
0 − sω∗

− + 1

2�∗

[
c∗J (J + 1)

+ (1 − c∗)I (I + 1) + c∗(c∗ − 1)

4
s(s − 2)

]
, (36)

where ω∗
− and c∗ are changed as

ω∗
− = Nc

8�∗

(√
1 + 16�∗�∗

N2
c

M∗2 − 1

)
, (37)

c∗ = 1 − 4�∗ω∗
−

8�∗ω∗− + Nc
, (38)

1Quantities with the asterisk (*) in the expressions stand for those
modified in nuclear medium in terms of the density-dependent func-
tions f1,2,3.

where M∗2 = m∗2
K − m2

π . In Eq. (38), the value of the kaon
mass is released from the experimental data in free space by
considering the medium effects. The classical soliton mass
E∗

0 , ω∗
−, and c∗ are expressed respectively as

E∗
0 = f1

4πFπ

e

∫ ∞

0
dx x2

{
1

8

(
F 2

x + 2 sin2 F

x2

)

+ sin2 F

x2

(
F 2

x + sin2 F

2x2

)
+ β2

2
sin2 F

2

}
, (39)

�∗ = f −1
3

2π

3e3Fπ

∫ ∞

0
dx x2 sin2 F

{
1 + 4

(
F 2

x + sin2 F

x2

)}
,

(40)

�∗ = f −1
3

π

e3Fπ

∫ ∞

0
dx x2 sin2 F

2

{
1 +

(
F 2

x + 2 sin2 F

x2

)}
,

(41)

�∗ = f1 f 2
2

4π

e3Fπ

∫ ∞

0
dx x2 sin2 F

2
, (42)

where we have introduced a parameter β = f2mπ/eFπ and
a dimensionless variable x = eFπ (αs

2/α
s
4)1/2r. Other aspects

of the medium modifications can be found in Ref. [21] and
references therein.

C. Kaon properties in nuclear matter

We are now in a position to deal with the change of
kaon properties in nuclear matter. As seen in Eq. (38), an
additional medium modification was implemented by the kaon
mass in nuclear matter. Before we carry out the explicit
calculation of the SU(3) baryon masses in nuclear matter,
we need to explain how the kaon properties undergo the
change in nuclear environment. To be more consistent, one
should consider how the kaon propagator is altered in nuclear
matter, which arises from the polarization effects, as done
for that of the pion in nuclear matter [44]. The polarization
operator can be described phenomenologically by introducing
a kaon-nucleus optical potential. The properties of this optical
potential may be related either to the phenomenology of kaon-
nucleus scattering or to the properties of kaonic atoms as done
for the nonstrange sector (see, e.g., Ref. [21] and references
therein). Because of a lack of the experimental data, it is,
however, rather difficult to extract information on how the
kaon properties are varied in nuclear matter. Thus, instead of
conducting such a complicated analysis, we will rather take
into account a simple modification of the kaon properties after
the quantization in the present work, keeping dynamics of the
mesonic sector intact in nuclear medium. Since it is known
that the kaon mass drops off in dense matter [46,47], we will
consider only the change of the kaon mass in the present work
as a minimal modification of the kaon properties in nuclear
matter.

Here we note that the in-medium modified Lagrangian
in Eq. (31) can be reformulated in terms of the in-
medium modified pion decay constants and the Skyrme
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parameters

F ∗
π,t = Fπ

√
αt

2, F ∗
π,s = Fπ

√
αs

2,

e∗
t = e√

αt
4

, e∗
s = e√

αs
4

, (43)

m∗
π = mπ

√
αχSB

αs
2

.

Then the change of SU(2) dynamics in nuclear matter can be
understood as the medium modification of the input parame-
ters.

In the SU(3) case, we need to modify the kaon decay con-
stant and the kaon mass in addition to the pion observables.
Within the present framework, the kaon decay constant FK is
assumed to be equal to the pion decay constant Fπ in free
space. This is a reasonable consideration, though the value
of FK is larger than that of Fπ . At least, these two constants
become equal in the SU(3) symmetric case. If we assume that
the modified kaon decay constant will have exactly the same
form of the pion decay constant in nuclear medium F ∗

K = F ∗
π,s,

Eq. (43) implies that the kaon mass may be also modified in
nuclear matter as m∗

K = mK
√

αχSB/αs
2 = mK f2α

s
2/ f1. Hence,

we consider the following parametrization:

mK → f1

f2
(
αs

2

)3/2 (1 − Cλ)mK , (44)

which has a simple meaning and can be interpreted as follows:
C = 0 corresponds to the situation in which the kaon proper-
ties do not change in nuclear matter at all, i.e., F ∗

K m∗
K = FK mK .

On the other hand, if C 	= 0, then those of the kaon are linearly
varied in nuclear matter, which is in line with what was
observed in Refs. [46,47]. Thus, the mass term in the effective
chiral Lagrangian is changed as

F 2
π M → F ∗2

π m∗2
π

⎛
⎝1 0 0

0 1 0

0 0 2F ∗2
K m∗2

K
F ∗2

π m∗2
π

− 1

⎞
⎠, (45)

where

F ∗
K m∗

K = FπmK (1 − Cλ). (46)

In the present work, we consider C as an arbitrary external
parameter. In a more consistent approach, its value can be
adjusted according to the data on kaon-nucleus scattering or
can be related to those on the kaonic atom. The medium
modification in Eq. (46) can be explained in terms of the
alteration of the kaon decay constant and/or of the kaon mass.

III. RESULTS AND DISCUSSIONS

A. Density dependence of the low-energy constants

In order to discuss the density dependence of input pa-
rameters in the mesonic sector according to the definitions in
Eq. (43), one should fix the forms of the density-dependent
functions. We see from Eqs. (33)–(35) that at least one of
the density-dependent functions must be adjusted to fit the
explicit forms of the four functions αs

2, αs
4, αχSB, and αt

2. There
are many possible ways of modifying the functions, since

FIG. 1. The density dependence of the input parameters that are
defined in Eq. (43). The results shown are those normalized relatively
to their values in free space.

we have only three independent relations between the four
density-dependent functions. Once the forms of the functions
are fixed, then we can discuss the density dependence of the
input parameters of the model. Following Ref. [48], we try the
following form:

αs
2 = exp(−0.65λ). (47)

Then, the other three density-dependent functions can be also
fixed. Moreover, one can fix the form of αt

4 from Eq. (32).
The parametrization of Eq. (47) is consistent with the data on
low-energy pion-nucleus scattering and pionic atoms at low
densities [44].

Now we discuss the density dependence of low-energy
constants that come into play as the input parameters in the
present model. The results are drawn in Fig. 1. One can see
that the parametrization given in Eq. (47) makes the pion
mass increased as the density increases. Both the temporal
and spatial parts of the in-medium pion decay constant, F ∗

π,t
and F ∗

π,s, fall off as the density increases (see the solid and
dashed curves). These results are in qualitative agreement with
those from chiral perturbation theory [49,50] and QCD sum
rules [51]. We refer to Ref. [21] for a detailed discussion
about the consistency of the results in the present approach
and the comparison with other works. Nevertheless, we want
to note that in contrast to the mentioned works, the temporal
part of the pion decay constant falls off faster than the spatial
one in the present work. This comes from the fact that αs

2 is
chosen as in Eq. (47), which is consistent with the data on
pionic atoms only at low densities [44]. If one changes the
density dependence of αs

2, then the dependence of the pion
decay constants also will be altered.

Since the Skyrme parameter e is related to the gρππ

coupling constant, its change in nuclear matter is deeply
related to those of the ρ-meson width and its mass [17,19,20].
Interestingly, e∗

s is almost constant up to normal nuclear matter
density ρ0. This result is a plausible one, because the in-
medium change of e∗

s characterizes how the inner core of the
Skyrmion undergoes the change. On the other hand, the spatial
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FIG. 2. The ratio of functionals to their free space values as functions of ρ/ρ0: (a) E∗
0 /E0 (solid curve) and �∗/� (dashed curve) are

independent of the kaon properties; (b) c∗/c and ω∗
−/ω− are dependent on the kaon properties. In the figure (b), the solid and dashed curves

correspond to the results of c∗/c and ω∗
−/ω− with C = 0.2, whereas the dotted and dot-dashed ones illustrate those of c∗/c and ω∗

−/ω− with
C = 0, respectively.

part of the pion decay constant F ∗
π,s governs the outer shell

of Skyrmion. Figure 1 shows that the parameter e∗
s remains

almost constant by the surrounding nuclear environment up
to the normal nuclear matter density (see the dotted curve in
Fig. 1). Further, e∗

s starts to increase faster at higher densities.
At ρ0, we get the result (F ∗

π,s/Fπ )2 ≈ 0.52, which crudely
explains that the mass contribution from the outer shell of
the soliton in a static approximation is decreased by about
50%.2 For comparison, we mention that the corresponding
contribution from the inner core remains almost the same, i.e.,
(e∗

s /e)−2 ≈ 1.3

The parameter e∗
t , which is related to the quantum fluc-

tuations of the core of the spinning Skyrmion, rises faster,
as ρ/ρ0 increases. However, its change in nuclear matter
is smaller in comparison with the density dependence of
F ∗

π,t . The latter one is related to the quantum fluctuations of
the outer shell of the Skyrmion. The temporal part of the
pion decay constant is changed to be (F ∗

π,t/Fπ )2 ≈ 0.14 at
ρ0 while the corresponding temporal part is altered to be as
(e∗

t /e)−2 ≈ 0.26. Thus, in general, we conclude that the outer
shell of the Skyrmion is modified larger than its inner core.
Figure 1 reveals clearly that the temporal parts of the constants
change more strongly in nuclear medium than the spatial
ones. These results demonstrate that the quantum fluctuations
≈1/�∗ become more pronounced in nuclear medium than in
free space.

Concerning the change of the kaon properties, we will
regard C as a free parameter and will examine how it affects
the masses of SU(3) baryons in nuclear matter.

B. Density dependence of the masses of the lowest
lying SU(3) baryons

Since the classical energy of the Skyrmion and its moment
of inertia constitute essential parts of the baryon masses, we

2There will be also an inexplicit change due to the in-medium
modified profile function, which is found to be small.

3Note that the contribution from the Skyrme term is proportional to
the inverse square of the Skyrme parameter.

first discuss the density dependence of these two quantities.
Figure 2(a) depict the relative classical energy E∗

0 /E0 and
the relative moment of inertia �∗/� as functions of ρ/ρ0.
While E∗

0 /E0 decreases slowly as the density increases, �∗/�
falls off drastically until ρ reaches a half value of normal
nuclear matter density. With the further increasing density,
E∗

0 /E0 decreases in the same manner and �∗/� starts to
diminish slowly. At normal nuclear matter density, E∗

0 is
decreased by about 20%. On the other hand, �∗ drops off by
about 80%, which shows that the rotational 1/Nc corrections
increases as the density increases. As a result, the nuclear
matter becomes stabilized around the saturation density ρ0.
At higher densities, these functions describe the stiffness of
the equations of state for nuclear matter. Note that these two
quantities, E0 and �, are not at all influenced by the change of
the kaon properties. The consequence of this behavior will be
discussed soon.

Concerning the parameters in the strangeness sector, i.e.,
c∗ and ω∗

−, we will present the results for two different cases:

(i) We do not change the kaon properties in nuclear
matter, i.e., F ∗

π m∗
K = FπmK or C = 0.

(ii) We make F ∗
π m∗

K decreased linearly as the density of
nuclear matter increases. This corresponds to the value
C = 0.2.

By doing this, we can see how the change of the kaon
properties affect the mass shift of the SU(3) baryons. In
Fig. 2(b), the results of c∗/c and ω∗

−/ω− are depicted as
functions of ρ/ρ0 with the above-mentioned two different
cases considered. When we turn on the value of C, c∗/c
increases faster than that with C = 0. The behavior of ω∗

−/ω−
is also changed when C = 0.2 is taken. If one switches off C,
ω∗

−/ω− starts to increase first and then falls off slowly, as the
density increases. However, when one uses C = 0.2, ω∗

−/ω−
drops off monotonically, which is distinguished from the case
with C = 0. As will be shown below, this change with the
finite value of C, i.e., the change of the kaon properties, will
have a clear effect on the mass splitting of the baryon octet in
nuclear matter. The physical meaning of ω∗

− is the quantum
fluctuation along the strangeness direction. So, it plays an
essential role in determining the hyperon masses as shown
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TABLE I. Values of the density-dependent Skyrmion functionals
at normal nuclear matter density ρ0 in comparison with those in
free space. Those of the functionals with nonzero strangeness are
presented with the two different values of C taken into account.

Skyrmion Free space Values at ρ = ρ0

functionals values C = 0 C = 0.2

E∗
0 [MeV] 865.60 665.04 665.04

�∗ [MeV−1] 5.116 × 10−3 1.453 × 10−3 1.453 × 10−3

�∗ [MeV−1] 1.852 × 10−3 5.000 × 10−4 5.000 × 10−4

�∗ [MeV−1] 3.995 × 10−3 5.442 × 10−3 5.442 × 10−3

ω∗
− [MeV] 202.44 226.03 144.53

c∗ 0.309 0.664 0.765

in Eq. (36). On the other hand, c∗ is related to the isospin
splitting within the same multiplet when the strangeness is
equal to zero. Of course, it provides a certain contribution to
the hyperon masses [see Eq. (36)].

In Table I, we list the values of the density-dependent
Skyrmion functionals at normal nuclear matter density ρ0,
comparing them with those in free space. As mentioned
already, E∗

0 and �∗ are reduced approximately by 20% and
80%, respectively, at ρ0 in comparison with the corresponding
values in free space. Note that the functionals �∗ and �∗ have
no explicit influence on the baryon masses but they influence
the values of the other two functionals ω∗

− and c∗. Moreover,
they do not depend on C. When C is turned off, the value
of ω∗

− increases by about 12% at ρ0, compared with that in
free space. However, if one considers the in-medium changes
of the kaon properties by taking C = 0.2, ω∗

− is reduced by
about 29%. On the other hand, c∗ increases for both cases. As
expected, the changes of the kaon properties in nuclear matter
indeed influence the quantities in the strangeness direction and
will consequently affect the characteristics of the hyperons in
nuclear matter.

In Table II, we list the results of the masses of the baryon
octet and decuplet both in free space and in nuclear matter
at ρ0. The values of the nucleon mass in free space and in

TABLE II. Results of the masses of the baryon octet and decuplet
both in free space and in nuclear matter at ρ0 in units of MeV.
Note that the masses of the nucleon and the � isobar are used as
input, which are marked by asterisk (*) as the superscripts of the
corresponding numbers.

Baryon Experimental Free space Mass at ρ = ρ0

mass mass C = 0 C = 0.2

N 939 939∗ 923∗ 923∗

� 1115 1075 1004 960
� 1189 1210 1236 1122
� 1315 1302 1221 1088

� 1232 1232∗ 1956 1956
�∗ 1385 1301 1921 1912
�∗ 1530 1392 1906 1878
� 1672 1508 1911 1854

nuclear matter at ρ0, and the mass of the � isobar in free space
are used as input parameters of the model. The masses of the
nucleon and � in free space are employed to fix the values
of pion decay constant and Skyrme parameter in free space.
The in-medium mass of nucleon at ρ0 fixes the one of the
density-dependent functions f1,2,3.

We find that in general the masses of the baryon octet
tend to decrease in nuclear matter except for that of �, which
increases with C = 0 but drops off with C = 0.2 considered.
The mass of the � is changed as m∗

�/m� ≈ 0.93 for C =
0, whereas m∗

�/m� ≈ 0.89 for C = 0.2. It is interesting to
compare the present results with that from SU(3) chiral effec-
tive field theory [14] in which m∗

�/m� ≈ 0.73 was obtained.
The mass of the � hyperon is changed in a similar manner:
m∗

�/m� ≈ 0.94 for C = 0 and m∗
�/m� ≈ 0.84 for C = 0.2,

respectively, both of which are more reduced in nuclear mat-
ter in comparison with that from the quark-meson coupling
model with the bag radius of the free nucleon R0 = 0.8 fm,
i.e., m∗

�/m� ≈ 0.98 [9]. Thus, the present results of the � and
� mass dropping are in qualitatively agreement with those
from the other approaches.

In contrast with the masses of the baryon octet, those of
the decuplet are increased drastically, as the density of nuclear
matter increases. This can be understood from Eq. (36). The
second term of Eq. (36) makes the baryon decuplet split
from the octet. As shown already in Fig. 2(a), the moment
of inertia �∗ drops off rapidly as the density of nuclear matter
increases, which makes the second term of Eq. (36) increase
very fast. This brings about the drastic increment of the spin-
3/2 hyperon masses. When C = 0.2 is used, the masses of
the hyperon decuplet still increase but are found to be smaller
than the case with C = 0.

Theoretically, it is of more interest to study the density
effects on the mass splittings of the hyperons, since soliton
models predict them quantitatively in comparison with the
experimental data. We first express the formulas for the mass
splittings of the hyperon octet, given as

m∗
� − m∗

� = 1 − c∗

�∗ , (48)

m∗
� − m∗

� = ω∗
− + 5(c∗ − 1)(c∗ + 1)

8�∗ , (49)

m∗
� − m∗

N = ω∗
− + 3(c∗ − 1)(c∗ + 1)

8�∗ , (50)

and the hyperon decuplet, written by

m∗
�∗ − m∗

� = ω∗
− + (c∗ − 1)(3c∗ + 7)

8�∗ , (51)

m∗
�∗ − m∗

�∗ = ω∗
− + 5(c∗ − 1)(c∗ + 1)

8�∗ , (52)

m∗
� − m∗

�∗ = ω∗
− + (c∗ − 1)(7c∗ + 3)

8�∗ (53)

in nuclear matter.
In Fig. 3(a), the mass splittings of the hyperon octet are

drawn without changing the kaon properties in nuclear matter,
whereas in Fig. 3(b), those are depicted with C = 0.2 used.
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FIG. 3. The density dependence of the mass splittings of the baryon octet, m∗
� − m∗

N , m∗
� − m∗

�, and m∗
� − m∗

� , are illustrated by the solid,
dotted, and dashed curves, respectively. The figure (a) corresponds to C = 0 and (b) corresponds to C = 0.2, respectively.

The general density dependence of the mass splittings is not
much changed by introducing the finite C; one can clearly
see that the magnitude of the mass splittings is reduced when
C = 0.2 is employed. As seen in Fig. 3, the result of m∗

� − m∗
�

illustrated in the dotted curve exhibits a different density
dependence. Since � and � have the same strangeness, ω∗

− is
not involved in this splitting. As shown in Eq. (48), m∗

� − m∗
�

is proportional to 1 − c∗ and 1/�∗. As the density increases,
both the numerator and denominator start to decrease but �∗
falls off much faster. Thus, the mass splitting m∗

� − m∗
� grows

larger until the density reaches ρ ≈ 1.2ρ0 (ρ ≈ 0.7ρ0) in the
case of C = 0 (C = 0.2), and then it drops off until ρ ≈ 3.5ρ0

is reached.
The mass splitting m∗

� − m∗
N falls off monotonically as

the density increases, whereas m∗
� − m∗

� lessens until ρ ≈
2ρ0 with C = 0 (ρ ≈ 1.5ρ0 with C = 0.2). Note that all the
masses of baryon octet become degenerate when the density
reaches ρ ≈ 3.5ρ0. It implies that the SU(3) flavor symmetry
is restored around 3.5ρ0 within the present framework. Inter-
estingly, if we include the in-medium changes of the kaon
properties, it brings about the degeneracy of the masses at
lower densities.

Figure 4 represents the numerical results of the mass
splittings of the baryon decuplet. The general tendency of the
results is in line with that of the m� − m� shown in Fig. 3.
This can be understood by examining the formulas given in

Eqs. (48) and (53). Interestingly, there is an identity

m� − m� = m�∗ − m�∗ (54)

which is kept in nuclear matter too. All other mass splittings
of the baryon decuplet exhibit similar behaviors as the density
increases. Compared to the case of the baryon octet, the
degeneracy takes place at lower densities.

IV. SUMMARY AND OUTLOOK

In this work, we investigated the density dependence of the
baryon octet and decuplet masses in nuclear matter within
the framework of the in-medium modified SU(3) Skyrme
model. For simplicity, we first concentrated on the medium
modifications arising from the in-medium changes of the pion
properties, which encodes the modification of the pion prop-
agation in nuclear matter. The parameters were determined
by describing the properties of nuclear matter near the satu-
ration point ρ0. In particular, the in-medium modified meson
parameters provide the equation of states in the wide range of
nuclear matter densities. In addition to this, we introduced the
changes of the produced kaon properties in nuclear matter,
which are in line with Refs. [46,47], and examined their
effects on the masses of the baryon octet and decuplet.

We discussed also that the changes of the mesonic prop-
erties are generally in qualitative agreement with those from
in-medium chiral perturbation theory [49,50] and the QCD

FIG. 4. The density dependence of the mass splittings of the baryon decuplet, m∗
�∗ − m∗

�, m∗
�∗ − m∗

�∗ , and m∗
� − m∗

�∗ , are illustrated by the
solid, dotted, and dashed curves, respectively. Figure (a) corresponds to C = 0 and (b) corresponds to C = 0.2, respectively.
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sum rules [51] except for the relative density dependencies
of F ∗

π,s and F ∗
π,t . The present results of the SU(3) baryon

masses in nuclear matter are also in qualitative agreement with
those from in-medium chiral effective field theory [14] and
quark-meson coupling model [9].

In order to study the effects of the modified kaon prop-
erties, we have to go beyond the present simple scheme.
We need to associate with kaon dynamics in nuclear matter
in close relation with experimental data on kaon-nucleus
scattering and kaonic atoms. It is also of great importance
to investigate the equation of states for strange matter with
regards to the interior structure of neutron stars. The relevant
studies are under way.
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