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S = −1 meson-baryon interaction and the role of isospin filtering processes
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A study of the meson-baryon interaction in the S = −1 sector is performed, employing a chiral SU(3)
Lagrangian up to next-to-leading order (NLO) and implementing unitarization in coupled channels. The model
is constrained by a large set of experimental data, paying special attention to processes that are sensitive to the
NLO contributions, such as the K− p → K+�−, K0�0 reactions. The consideration of additional cross sections in
single isospin channels, K− p → η�, η�, has been found to provide NLO low-energy constants of rather similar
size. The stability of these constants has also been tested by the inclusion of explicit resonant terms. Predictions
for new isospin filtering processes, like the I = 1 K0

L p → K+�0 reaction that could be measured at the proposed
secondary K0

L beam at Jlab, or the weak decay of the �b into a J/� and different meson-baryon pairs in I = 0,
available at LHCb, are presented. The measurement of such reactions would put valuable constraints on the
chiral models describing the S = −1 meson-baryon interaction.
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I. INTRODUCTION

Unitaritzed chiral perturbation theory (UChPT) has shown
as an appropriate framework to treat the low-energy meson-
baryon interaction in the S = −1 sector. This nonperturbative
scheme is based on the inherited symmetries from quantum
chromodynamics (QCD), particularly the (spontaneously bro-
ken) chiral symmetry, and the unitarity and analyticity of the
scattering amplitude. The combination of these two guiding
principles permits not only a suitable reproduction of the
experimental data but also the dynamic generation of bound
states and resonances (see [1] and references therein).

The description of the �(1405) resonance in terms of a
molecular state arising from coupled-channel meson-baryon
rescattering is a paradigmatic case of success in this sector.
Its dynamical origin was predicted in the late 1950s [2]
and, almost forty years later, it was reformulated in terms
of the modern chiral effective theory approach [3], after
which several studies were devoted to the K̄N interaction
with different degrees of sophistication [4–11]. The developed
models reproduced the K̄N scattering data satisfactorily and
pinned the �(1405) down as a superposition of two poles
of the scattering amplitude, generated dynamically from the
unitarization in coupled channels [6,12,13]. Despite these
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theoretical breakthroughs, and as it was immediately pointed
out by the authors of [14], the precise location of these poles
required additional subthreshold information on the antikaon-
nucleon dynamics.

In the last years, several experimental groups have carried
out measurements that shed some new light on this topic. The
COSY Collaboration at Jülich [15] and the HADES Collab-
oration at GSI [16] provided invariant π� mass distributions
from pp scattering experiments; while mass distributions of
�+π−, �−π+, and �0π0 states in the region of the �(1405)
[17] as well as differential cross sections [18] and a direct
determination of the expected spin-parity Jπ = 1/2− of the
�(1405) [19] have been measured by the CLAS Collaboration
at JLAB. However, the most relevant experimental data that
should be considered are the precise energy shift and width
of the 1s state in kaonic hydrogen by the SIDDHARTA Col-
laboration [20] at DA�NE. This experimental achievement
establishes the strong K− p scattering length up to a precision
of around 20% and, therefore, settles the dispute between
the DEAR [21] and KEK [22] measurements with almost a
factor 2 as relative uncertainty. After these new experimental
data became available, this topic has experienced a renewed
interest. The theoretical models have been revisited [23–29] as
a response to the need to extend the approach to higher orders
and energies aiming at greater accuracy in data description
and to determine better the properties of the �(1405).

It should be noted that the fits carried out to develop
these models were accommodated to the two-body cross
sections of K− p scattering into π�, K̄N, π� states; besides,
the authors of [27–29] incorporated experimental photopro-
duction data on γ p → K+π� reactions to extract information
about the two-pole structure of the �(1405) resonance. From
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[5–12,14,23,26,29], it can be concluded that the significant
term that allows one to get a good agreement with the ex-
perimental data is the Weinberg-Tomozawa (WT) one, which
is of order O(p), and the addition of other terms such as
the direct and crossed Born terms [O(p)] as well as the
next-to-leading order (NLO) terms [O(p2)] play merely a
fine-tuning role. The only exception is the case of [25], where
authors performed a fit which included, apart from the classi-
cal channels, scattering data from K− p → η�, π0π0�0 and
data from two event distribution [K− p → �+(1660)π− →
�+π−π+π− and K− p → π0π0�0]. The difference lies on
the fact that they obtained a notable improvement in repro-
ducing the K− p → η� reaction once the NLO contribution
was taken into account.

Another challenging aspect derived from the above theo-
retical framework is the determination of the nonconstrained
low-energy constants involved in the NLO terms of the chi-
ral Lagrangian. The dissimilarity in the values of the NLO
coefficients found by the former studies made us turn our
attention to processes in which the higher order terms of the
Lagrangian could play a significant role beyond that of fine
tuning. A clear example of such processes are the K− p → K�

reactions since they receive no direct contribution from the
Weinberg-Tomozawa (WT) term and the rescattering terms
due to the coupled channels are not sufficient to reproduce
the experimental scattering data. In [30], we included the K�

scattering data into the fitting procedure to finally demonstrate
the sensitivity of the K� channels to the NLO term without
deteriorating the quality of the data description. Despite the
evidence of a non-negligible s-wave contribution of the Born
terms in [6], which reaches ∼20% of the dominant WT
contribution at 1.5 GeV, the Born terms were assumed to
be very moderate based on the results of [11,23,26] which
show therein that the inclusion of them led to tiny changes
in the fitting parameters and the quality of the fits was barely
affected.

As a matter of fact, the relevance of the Born diagrams
of the chiral model in the K̄N → K+�−, K0�0 cross sec-
tions would not have come as a surprise if one would have
considered the work [31], which was published almost at the
same time as [30]. The authors of the former paper stud-
ied these reactions employing a phenomenological resonance
model finding non-negligible contributions coming from the
exchange of the ground state 1/2+ hyperons in s- and u-
channel exchange configurations.

A step further was taken in [32], where the relevance of
the Born terms in the interaction kernel was tested when the
K� channels are included in the fits. The results revealed
the particular importance of the u and s diagrams in these
channels, assigning them a role similar to the NLO contribu-
tions. This finding led to significant modifications of the NLO
parameters. In such a situation one could expect a somewhat
improved reproduction of the experimental data, but the set of
parameters from this last fit offers very similar reproduction
of the K− p → K� scattering data to that of the best pure
chiral model in [30]. The physics involved in these two
parametrizations is understood after splitting the K− p → K�

cross section into the isospin basis showing a very different
distribution pattern between models, whose only difference

is the inclusion or not of the Born terms in the interaction
kernel. This is a clear evidence of the need to explore reactions
that proceed through either I = 0 or I = 1, thereby acting
as isospin selectors from which one can extract valuable
information to constrain the parameters of the meson-baryon
Lagrangian.

Actually, the K− p → η�, η�0 reactions provide us with
such an opportunity since they are pure isospin 0 and 1
filtering processes respectively. Although experimental data
[33–36] have already been available since the 1970s and
the most recent one from the Crystal Ball Collaboration
since 2001, they have barely been used in this sort of study.
Therefore, motivated by the findings of [30,32], we perform a
study of the meson-baryon interaction in the S = −1 sector
incorporating these experimental cross-section data in our
approach, thus having information from all possible chan-
nels of the sector. We remark that incorporating the K− p →
K+, �−, K0, �0, η� and η�0 channels provides new and
valuable information to constrain the NLO parameters but,
at the same time, involves extending the range of energies
of the model well above the K− p threshold, much beyond
what is considered acceptable in usual chiral perturbation
approaches. We therefore should regard the unitary chiral
approach presented here as an effective chirally motivated
phenomenological model that is able to describe the data on
the K̄N interaction and related channels in a wide energy
range, without compromising the good description of the
low-energy data, and accommodate the new data that might
become available at the experimental facilities. In this spirit,
we also give predictions for other reactions that will provide
additional information in this sector, such as the K0

L p →
K+�0 reaction, which is an I = 1 filtering process and has
been proposed to be measured at JLAB [37], and the weak
�b decay into a J/� and a meson-baryon pair, a reaction that
filters the I = 0 component in the final meson-baryon state
[38]. In the present work, we focus on the decay of the �b into
η� and K� final meson-baryon pairs. In addition, a study of
the pole content of the model paying special attention to the
poles of �(1405) is included for completeness.

In [30] the inclusion of additional high-spin and high-
mass resonant contributions into the K� scattering amplitudes
plays a double role: on the one hand, it improves the de-
scription of the experimental K− p → K� total cross sections;
on the other hand, it also allows us to study the stability of
the NLO coefficients because these phenomenological con-
tributions implicitly simulate higher-angular-momenta contri-
butions involving low lying meson-baryon states of the cou-
pled channel problem. Otherwise, the low-energy constants
might absorb these contributions in order to reproduce the
experimental data at the expense of taking less realistic values.
Keeping this in mind, we finally perform a new fit taking into
account resonant contributions where the NLO terms are con-
sidered to play a relevant role. More specifically, we consider
explicit �(1890), �(2030), and �(2250) resonances in the
K− p → K� total cross sections, and the �(1890) one in the
K− p → η� process.

The paper is organized as follows. In Sec. II the theoretical
aspects are presented, including a summary of the chiral
unitary theory, the formalism for calculating various isospin
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filtering reactions, and the details on how the resonant terms
are implemented. The fitting procedure and data treatment
are described in Sec. III. The results of two different fit-
ting models are presented and discussed in Sec. IV, where
predictions for processes that filter either the I = 0 or the
I = 1 component of the S = −1 meson-baryon interactions
are also given. Some final remarks and conclusions are given
in Sec. V.

II. THEORETICAL BACKGROUND

A. Chiral unitary approach

Since the meson-baryon interaction from effective chiral
Lagrangians has been widely used and one can find plenty of
literature devoted to its derivation, we just provide the main
points as a guideline and stress the particularities of our model
in this section. The SU(3) chiral effective Lagrangian up to
NLO is taken as departing point,

Leff
φB = L(1)

φB + L(2)
φB, (1)

with L(1)
φB and L(2)

φB being the most general form of the LO
and NLO (s-wave) contributions to meson-baryon interaction
Lagrangian, respectively, expressed as follows:

L(1)
φB = i〈B̄γμ[Dμ, B]〉 − M0〈B̄B〉 − 1

2 D〈B̄γμγ5{uμ, B}〉
− 1

2 F 〈B̄γμγ5[uμ, B]〉, (2)

L(2)
φB = bD〈B̄{χ+, B}〉 + bF 〈B̄[χ+, B]〉 + b0〈B̄B〉〈χ+〉

+ d1〈B̄{uμ, [uμ, B]}〉 + d2〈B̄[uμ, [uμ, B]]〉
+ d3〈B̄uμ〉〈uμB〉 + d4〈B̄B〉〈uμuμ〉. (3)

In both equations, B represents a 3 × 3 unitary matrix that
contains the fundamental baryon octet (N,�,�,�). The
chiral symmetry conservation requires a more complicated
prescription, uμ = iu†∂μUu†, to enter the pseudoscalar meson
octet (π, K, η), which are compacted in the 3 × 3 unitary φ

matrix, and with U (φ) = u2(φ) = exp (
√

2iφ/ f ) as the chiral
fields where f is the meson decay constant. The symbol 〈. . . 〉
stands for the trace in flavor space. In Eq. (2), M0 is the com-
mon baryon octet mass in the chiral limit, and the SU(3) axial
vector constants D and F are subject to the constraint gA =
D + F = 1.26 from the determination of hyperon and neutron
β decays [39]. The local character of the chiral transforma-
tion of u makes mandatory the introduction of a covariant
derivative, [Dμ, B] = ∂μB + [�μ, B] with �μ = [u†, ∂μu]/2
being the chiral connection, which transforms in the same
way as the baryon fields. Furthermore, in Eq. (3), we find
χ+ = 2B0(u†Mu† + uMu) which breaks chiral symmetry
explicitly via the quark mass matrix M = diag(mu, md , ms)
and B0 = −〈0|q̄q|0〉/ f 2 which relates to the order parameter
of spontaneously broken chiral symmetry. The coefficients
bD, bF , b0 and di (i = 1, . . . , 4) are the corresponding low-
energy constants at NLO. In principle, these constants are not
fixed by the symmetries of the underlying theory, but need
to be determined from experiment. Actually, the parameters
accompanying the first two terms of Eq. (3), involved in terms
proportional to the χ+ field, should fulfill constraints related
to the mass splitting of baryons. Once these parameters are

(i) (ii) (iii) (iv)

FIG. 1. Feynman diagrams for the meson-baryon interaction:
Weinberg-Tomozawa term (i), direct and crossed Born terms (ii)
and (iii), and NLO terms (iv). Dashed (solid) lines represent the
pseudoscalar octet mesons (octet baryons).

determined, the b0 coefficient could well be extracted from
the pion-nucleon sigma term or from the strangeness content
of the proton [40]. The rest of the low-energy constants,
namely di, can be constrained using data coming from the
meson-baryon octet such as the isospin even πN s-wave
scattering length [41] and the isospin zero kaon-nucleon
s-wave scattering length [42]. Nevertheless, given that our
study goes beyond tree level because of the implementation
of the coupled-channel unitarization, we will release these
constraints and consider the b-type constants, together with
the di ones, as free parameters in the fitting procedure, as
usually done in the literature.

At this point, the meson-baryon interaction kernel in mo-
mentum space can be derived from Eqs. (2) and (3). Being
more precise, the WT contribution corresponds to the contact
diagram (i) in Fig. 1; this comes from the term with the
covariant derivative in Eq. (2). Next, the vertices of diagrams
(ii) and (iii), which stand for the direct and crossed Born
contributions, are obtained from the second and third terms of
Eq. (2), while the NLO contact one is directly extracted from
(3) whose representation can be found in the fourth diagram
of Fig. 1. This way, the total interaction kernel up to NLO is
expressed as the sum

V̂i j = V WT
i j + V D

i j + V C
i j + V NLO

i j , (4)

where the elements of the interaction matrix, written as V̂i j =
〈i|V̂ | j〉, couple the meson-baryon channels. The indices (i, j)
cover all the initial and final channels, which, in the case of the
sector explored here, amount to ten: K− p, K̄0n, π0�, π0�0,
π−�+, π+�−, η�, η�0, K+�−, and K0�0. The interaction
V̂i j depends on the total energy of the meson-baryon system
in the center-of-mass frame

√
s, on the solid angle of the

scattering �, and on the σi, σ j spin degrees of freedom of
the baryons in channels (i, j). Considering the scattering of
a Nambu-Goldstone (NG) boson with a spin 1

2 baryon target
leads to a contribution which depends only on

√
s coming

from the projection of V̂i j (
√

s,�, σi, σ j ) onto the s wave:

Vi j (
√

s) = 1

8π

∑
σ

∫
d� V̂i j (

√
s,�, σi, σ j ). (5)

The reader is referred to [30,32,43] for a detailed derivation of
the different contributions to the final interaction kernel and
their corresponding algebraic expressions.

The extension from SU(2) to SU(3) of the Chiral La-
grangian carries an inherent effect associated with explicit
chiral symmetry breaking by the strange-quark mass. More-
over, the K̄N interaction is strong enough to dynamically
generate the �(1405) resonance. Under such circumstances,
a plain chiral perturbation theory (ChPT) expansion is not
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appropriate, making the use of a nonperturbative method
absolutely necessary. The UChPT method consists of solving
the Bethe-Salpetter (BS) equations, which come in a complex
system of coupled-integral equations for the scattering ampli-
tudes, once we get a well-defined potential, i.e., Eq. (5). In
order to obtain the scattering amplitude, we proceed follow-
ing [5,24] where the interaction kernel is conveniently split
into its on-shell contribution and the corresponding off-shell
one. The off-shell part gives rise to a tadpole-type diagram,
which can be reabsorbed into renormalization of couplings
and masses and could, hence, be omitted from the calculation.
This procedure permits factorizing the interaction kernel and
the scattering amplitude out of the integral equation, leaving
a simple system of algebraic equations to be solved which, in
matrix form, reads

Ti j = (1 − VilGl )
−1Vl j, (6)

where Vi j and Ti j are the interaction kernel and its correspond-
ing scattering amplitude, respectively, for a given starting i
channel and an outgoing j channel, and Gl is the loop function
standing for a diagonal matrix with elements:

Gl = i
∫

d4ql

(2π )4

2Ml

(P − ql )2 − M2
l + iε

1

q2
l − m2

l + iε
, (7)

where Ml and ml are the baryon and meson masses of the
l channel. Since this function diverges logarithmically, the
dimensional regularization is applied obtaining as a final
expression

Gl = 2Ml

(4π )2

{
al (μ) + ln

M2
l

μ2
+ m2

l − M2
l + s

2s
ln

m2
l

M2
l

+ qcm√
s

ln

[
(s + 2

√
sqcm )2 − (

M2
l − m2

l

)2

(s − 2
√

sqcm )2 − (
M2

l − m2
l

)2

]}
. (8)

The loop function Gl comes in terms of the subtraction con-
stants al that replace the divergence for a given dimensional
regularization scale μ which is taken to be 1 GeV in the
present work. These constants are unknown, a fact that implies
the inclusion of them in fitting procedures to determine their
values. The number of independent subtraction constants is
commonly reduced by isospin symmetry arguments and, in
this particular sector, amount to 6. Nonetheless, the lack of
knowledge about the values of the al constants does not rule
out the possibility of establishing a natural size for them.
Indeed, as discussed in [6], a direct comparison between the
dimensional regularization method and an approximation to
calculate the loop function using a cutoff, which was carried
out in [5], provides the following relation (it should be noted
that we use a different remapping than that of [6]):

al (μ) = 1

16π2

⎡
⎣1 − 2 ln

⎛
⎝1 +

√
1 + M̄2

l

μ2

⎞
⎠ + · · ·

⎤
⎦, (9)

where M̄l stands for the average mass of the octet of Jπ = 1
2

+
,

and the ellipses indicates higher order terms in the nonrela-
tivistic expansion as well as powers of ml/Ml . As we use μ =
1 GeV, and taking into account these corrections, natural-sized

values for the subtraction constants would lie in the range
(−10−2,+10−2).

The dynamically generated resonance states show up as
pole singularities (zp = MR − i�R/2) of the scattering ampli-
tude in the second Riemann sheet (RS) of the complex energy
plane, whose real and imaginary parts correspond to its mass
(MR) and half width (�R/2). Since the loop function is written
in terms of the relative momentum of the two-body system,
one is able to determine the RS of the amplitude. Practically
speaking, it means that one must perform a calculation of
the loop function given by Eq. (8) taking into account a
reflection on momentum (ql → −ql ), which is equivalent to
the following rearrangement on the loop function:

GII
l (

√
s) = Gl (

√
s) + i 2Ml

ql

4π
√

s
, (10)

for a general complex value of
√

s, where the superscript II
denotes the rotation to the second RS. It should be stressed
that, when it comes to a multichannel sector, each channel’s
loop function will only be rotated to the second RS if the real
part of the complex energy is larger than the corresponding
channel threshold.

Having located the pole and assuming a Breit-Wigner
structure for the scattering amplitude in the proximity of the
found pole on the real axis,

Ti j (
√

s) ∼ gig j√
s − zp

, (11)

the complex coupling strengths (gi, g j) of the resonance to
the corresponding meson-baryon channels can be connected
to the residue of the pole.

In Ref. [44] it was discussed that some conceptual and
practical drawbacks appear when the Born contributions are
included in the driving term of the BS equation. Thus, the
on-shell scheme described above must be treated with care.
This is of special relevance for the u-channel Born diagram
where the propagator of its intermediate baryon could gener-
ate nonphysical subthreshold cuts. A possible consequence is
the contribution of the cuts of some heavy meson-baryon pairs
to physical processes involving light meson-baryon channels.
The authors of [11] suggested to assign a constant value to the
u-channel interaction kernel below a certain invariant energy
in order to deal with this artifact. Such a case was detected
when exploring the subthreshold analytical extension of the
kernel for the η� transition, giving rise to a cusp in the
amplitude around 1423 MeV. We proceed in the way sug-
gested in [11] and fix the elastic η� u-diagram contribution
to the potential to V C (

√
s) = V C (

√
s = 1430) for energies√

s � 1430 MeV. This choice does not affect either the results
of the observables employed here because all of them are
calculated above this energy value or the �(1405) properties
given its I = 0 nature.

B. Isospin filtering processes

As previously noted in the Introduction, the inclusion of
the Born terms in the interaction kernel in [32] did not
improve significantly the description of data over the best
pure chiral model of [30], a fact that was already previously
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found [11,23,26]. Actually, in [11,26], the authors obtain
very similar parametrizations when studying the impact of a
systematic inclusion of the Born terms into models that are
based on an interaction kernel which considers WT and NLO
contributions and which are fitted to the classical channels.
The only eye-catching feature of the models that incorporate
the u and s diagrams in the interaction kernel is the more natu-
ral size of the subtraction constants. The same finding applies,
of course, to the model developed in [32]. But, in contrast to
other groups, the effect of including the K� scattering data in
the fits led to a very different set of NLO parameters than those
obtained from the best chiral model of [30], which neglects
the Born terms and was fitted to the same experimental data.
These differences denote the significant role played by the
Born contributions once the K� channels are taken into
account. A detailed look at the total cross sections obtained
from the models of [30,32] makes one realize that there
is not any substantial difference between the models when
reproducing the classical channels. The explanation stems
from the similar f values for these two models combined
with the well-known dominant role played by the WT term
for the former channels. This is not the case for the K− p →
K� reactions. Apart from the differences in reproducing the
details of the structure shown by the experimental points, both
models present opposite patterns in cross-section strength
for the K+�− and K0�0 channels despite peaking at the
same energies [see Fig. 5 in [32]]. Obviously, these findings
indicate that these models predict a different distribution of
the isospin amplitudes. Indeed, the breakdown into the I = 0
and I = 1 components of the K− p → K� total cross sections
performed in Ref. [32] reflects this fact, being more evident
for the I = 0 components, where the size and distribution of
strength predicted by the two models was very different. This
observation points towards using data coming from isospin
filtering reactions as a tool to discriminate between the models
and, what is even more important, to provide more solid
constraints on the fitting parameters.

The meson-baryon interaction in the S = −1 sector com-
prises several reactions with single-isospin outgoing channels.
Particularizing those that come from K− p scattering, one has
the production of η� with I = 0 and the π�, η�0 produc-
tions with I = 1. The π� experimental data has been widely
employed by most of the previous cited models. By contrary,
as far as we know, the available K− p → η� scattering data
has only been used in [25,45] and we were not able to find
a reference related to the use of K− p → η�0 data. Given
this situation, the next natural step is the study of the effects
on the fitting parameters when the scattering data from the
K− p → η�, η�0 reactions is included in the fits, as done
in the present work. In Sec. IV it will be shown that these
channels have a positive impact on the NLO coefficients and
on the subtraction constants.

1. K0
L p → K+�0 reaction

The K-Long Facility for JLab has planned the measure-
ment of two-body reactions induced by a secondary K0

L beam
on a liquid hydrogen cryotarget to improve the knowledge of
the �∗ and �∗ spectroscopy [37]. To this end, they propose

several reactions (K0
L p → Ks p, π+�, K+�0, K+n, K−π+ p)

to be explored within a center-of-mass (c.m.) energy from
1490 to 4000 MeV. Given that K0

L = (K0 − K̄0)/
√

2, the
former reactions would proceed through the K̄0 component
of the K0

L , and, thus, would be of pure isovector character.
As our model is purely s wave, it can study the K0

L p →
K+�0 reaction, which will be measured sufficiently close to
threshold. Nevertheless, the experimental data of this process
will provide valuable constraints for NLO low-energy con-
stants because it involves K� channels in the S = −1 and
Q = +1 sector whose amplitudes can be related to the ones
of our sector (S = −1, Q = 0), employing isospin symmetry
arguments. Indeed, the amplitude for the JLab process can be
written in terms of the strong-interaction states in |II3〉 = |11〉,

〈K+�0|T ∣∣K0
L p

〉 = − 1√
2
〈K+�0|T ∣∣K̄0 p

〉
, (12)

and, invoking the invariance of the strong interaction under I3

rotations, this amplitude can be expressed in terms of states
with I3 = 0, which are the ones employed in our studies, as

〈K+�0|T |K0
L p〉 = − 1

2
√

2
[〈K0�0|T |K̄0n〉−〈K0�0|T |K− p〉

− 〈K+�−|T |K̄0n〉 + 〈K+�−|T |K− p〉].
(13)

Even though there is no experimental data for this reaction
at the moment, the only two points obtained from the K−
deuteron reactions on bubble chamber experiments [46,47]
can be employed as baseline for our predictions. These two
experimental points coming from K−n → K0�− cross sec-
tion must be divided by 2 to properly account for the size of
the S = −1 component of K0

L p. This could be easily seen by
performing a calculation similar to the one done previously to
finally find that both sections are related by

σK−n→K0�− ∝ |〈K0�−|T |K−n〉|2 = 2
∣∣〈K+�0|T ∣∣K0

L p
〉∣∣2

σK0
L p→K+�0 = 1

2σK−n→K0�− . (14)

2. �b → J/� K�, J/� η� decays

Another opportunity to learn about the isoscalar compo-
nent of the meson-baryon interaction of interest here comes
from the weak decay of the �b into final states containing a
J/� and a S = −1 meson-baryon pair. The pioneering theo-
retical study of Ref. [48] focuses on the �b → J/ψ K− p(π�)
decay, finding that this type of reaction does filter the final
meson-baryon components in I = 0. Subsequent experimen-
tal findings at LHCb [38] supported this idea showing that
this specific decay is dominated by intermediate �∗ reso-
nances and, in particular, they confirm the contribution of the
�(1405) tail in the K− p invariant mass distribution predicted
by the authors of [48]. The success of this mechanism has
triggered a lot of activity in the community; the recent study
of �b → ηc K− p(π�) decay [49] is an evidence of it, where
the authors show that the final-state interaction is basically
mediated by the �(1405) and where it is highlighted that this
decay is a very clean one, free of any I = 1 contribution, to
produce such resonance. Even more recently, the theoretical
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b

u

d

c c̄

W

s

ūu + d̄d + s̄s

u

d
Weak decay Hadronization

FIG. 2. Diagram describing the weak decay of the �b into the
J/ψ and a meson-baryon pair formed through a hadronization
mechanism.

analysis in [50] provides new insights on π� spectra in the
region of the �(1405) by means of exploring the meson-
baryon final state interaction in the �0

b weak decay into
D0 and a meson-baryon pair. There, it is shown that the
π+�− channel is the only suitable one to provide a signal
for the resonance due to the interference effect between the
direct and rescattering processes. Although the production
rate of �b relative to that of �b has much poorer statistics
[51], ongoing and future measurements of these heavy-hadron
weak decays will provide new opportunities to obtain more
information about this decay mechanism and the �(1405)
puzzle.

Prior to the previous references yet in the same footing,
in [52], the �b → J/�K+�−(η�) reactions were studied
aiming for making progress in our understanding of hadron
dynamics at higher energies. A comparison between the ex-
perimental K� and η� invariant masses with the theoreti-
cal predictions would reveal information of the low-energy
constants, given the sensitivity of the final meson-baryon
interaction in these two processes to the NLO terms. In this
respect, we present new results for these processes when we
employ the interaction model developed here, which uses new
isospin filtering data in the fits as well as the Born terms in the
driving potential.

These reactions involve an elementary weak transition
at the quark level that proceeds via the creation of a J/ψ
meson and an excited sud system with I = 0 that hadronizes
into a final I = 0 meson-baryon pair. The Cabibbo favored
mechanism for J/ψ production is depicted by the first part
of the diagram of Fig. 2, where one can see the W -exchange
weak process transforming the b quark into cc̄s. As, in this
topology, the u and d quarks remain as spectators, they keep
the I = 0 configuration they had in the �b and, consequently,
the sud state after the weak decay must also be in I = 0. This
is in good agreement with the analysis of the experimental
K− p invariant mass performed by the LHCb Collaboration,
as we have already advanced. The next step consists of the
hadronization of sud state, which requires the creation of
q̄q pairs with the quantum numbers of the vacuum, i.e., in
the form ūu + d̄d + s̄s, which ends up producing meson-
baryon states in the final state. The technical details of the
hadronization can be found in [48,52,53]. Here, we merely
give the resulting state |H〉 in terms of its meson-baryon

Λb Λb

J/ψ J/ψ

(a) (b)

η

Λ

K+, η

Ξ−, Λ

FIG. 3. Diagrammatic representation of the decay amplitude
for �b → J/ψ φ jB j : (a) tree level and (b) the φ jMj = η�, K+�−

production through the coupled channel interaction of the initially
produced φiMi = η�, K̄N meson-baryon pairs.

components

|H〉 = |K− p〉 + |K̄0n〉 +
√

2

3
|η�〉, (15)

where the |η′�〉 contribution has been omitted on account of
the η′ large mass [48].

Finally, the amplitudes for the �b decay into J/ψ η�

and J/ψ K+�− states split into two contributions: the direct
tree-level process and the final-state interaction contribution
of the primary meson-baryon pair into final η� or K+�−
production, depicted in Figs. 3(a) and 3(b), respectively. This
amplitude can be written as

M(MφB, MJ/ψB) = Vp

[
hφB +

∑
i

hiGi(MφB)ti,φB(MφB)

]
,

(16)

where the weights hi, obtained from Eq. (15), are

hπ0�0 = hπ+�− = hπ−�+ = 0 , hη� =
√

2

3
, (17)

hK− p = hK̄0n = 1 , hK+�− = hK0�0 = 0; (18)

Gi, with i = K− p, K̄0n, η�, denotes the one-meson-one-
baryon loop function [see Eq. (8)] and the amplitude ti,φB is
chosen in accordance with the models employed in the present
study. Here, φB can be either η� or K� and MφB, MJ/ψB stand
for the corresponding invariant masses. As an interesting ob-
servation, it should be mentioned that the production of K+�−
states is only allowed from the rescattering of meson-baryon
components and, hence, the �b → J/ψ K+�− decay process
depends strongly on the meson-baryon interaction model em-
ployed. The factor Vp, which includes the common dynamics
of the production of the different pairs, is unknown and we
take it as constant, which means that the decay distributions
will not have units. This also implies that the form factors at
the weak vertex have been assumed to behave smoothly with
energy, so that the energy dependence of M(MφB, MJ/ψB)
in Eq. (16) can be associated essentially to the changes of
the final state interaction. There is a thorough discussion to
support this point in Ref. [52].

The double differential cross section for the �b → J/ψ φB
decay process reads

d2�

dMφBdMJ/ψB
= 1

(2π )3

4M�bMB

32M3
�b

×
∑

|M(MφB, MJ/ψB)|22MφB2MJ/ψB, (19)
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where
∑

stands for the sum over final spins and polarizations
and the average over initial spins, which can be replaced by a
factor 3 (see the Appendix in [54]). Since we are interested
in presenting the results in terms of the invariant masses
Mη� and MK+�− , we fix the invariant mass MφB and integrate
expression (19) over MJ/ψB in order to obtain d�/dMφB.

C. Inclusion of high spin hyperon resonances

Encouraged by the improved data description when adding
resonant contributions into the K� cross sections obtained
by chirally motivated models [30], we extend this proce-
dure to the K− p → η� reaction in the present work. In
addition to this phenomenological reason, the incorporation
of resonances also offers the possibility of checking the
stability of the NLO coefficients. The resonant terms take
into account, in an effective way, higher angular momen-
tum contributions and, in principle, the more relevant the
higher-angular-momenta terms are, the further the low-energy
constants will be from their nominal values in the absence
of such contributions. Therefore, the resonant contributions
permit these parameters to get relaxed, avoiding a possible
overestimation of their values.

Currently, eight three- and four-star status resonances with
masses lying in the range 1.89 < M < 2.35 GeV are listed
in the PDG compilation [55]. However, guided by [30,31,56]
and after an exhaustive inspection of the effects of all the
possible resonances on the K− p → K�, η� cross sections,
we conclude that the candidates which reproduce the ex-
perimental data better are �(2030), �(2250), and �(1890)
with spin parity Jπ = 7/2+, 5/2−, and 3/2+, respectively. It
should be clarified that, although the Jπ quantum numbers
for �(2250) are not known, we choose Jπ = 5/2−, which
is one of the most probable assignments. If the 9/2− choice
had been made, the calculation would have been unnecessarily
complicated since it would not have changed the results
drastically [56].

The high-spin resonant contributions require a special
treatment, analogous to that performed in [56–58]. This
consists of adopting the Rarita-Schwinger method that
permits building resonant amplitudes from effective La-
grangians, which describe spin 3/2, 5/2, and 7/2 baryon
fields as rank 1, 2, and 3 tensors (Y μ

3/2, Y μν

5/2, and Y μνα

7/2 ),
respectively,

L7/2±
BY φ (q) = −gBY7/2φ

m3
K

B̄�(∓)Y μνα
7/2 ∂μ∂ν∂αK + H.c.,

L5/2±
BY φ (q) = i

gBY5/2φ

m2
K

B̄�(±)Y μν

5/2∂μ∂νK + H.c., (20)

L3/2±
BY φ (q) = i

gBY3/2φ

mK
B̄�(±)Y μ

3/2∂μK + H.c.,

where

�(±) =
(

γ5

1

)
,

depending on the parity of the resonance being studied, and
gBYJ φ stands for the baryon-meson-YJ coupling.

Y (MY , ΓY )

K−(kµ)

p(pµ)

K+(k µ), η(k µ)

Ξ−(p µ), Λ(p µ)

FIG. 4. S-type diagram describing the resonant amplitude, where
the intermediate hyperon [Y = �(1890), �(2030), �(2250)] has
mass MJ and decay width �J .

The implementation of the K̄N → Y → K�(η�) transi-
tion amplitudes has been carried out by the standard s-channel
diagram which is represented in Fig. 4. This is the simplest
way to systematically approach the study of the parameter
stability, which is in agreement with the treatment above the
K� threshold developed in [56]. The vertices present in the
diagram can be derived from Eqs. (20), and their explicit
analytical form as well as the corresponding propagators,
which depend on the spin and parity of the intermediate
resonance, can be found in [30,43]. The resonant contributions
to the scattering amplitudes can then be obtained straight-
forwardly as

T 7/2+
s′,s = F7/2(k, k′) ūs′

B (p′)k′
αk′

βk′
σ S7/2(q)kδkμkνus

N (p),

T 5/2−
s′,s = F5/2(k, k′) ūs′

B (p′)k′
αk′

βS5/2(q)kδkμus
N (p), (21)

T 3/2+
s′,s = F3/2(k, k′) ūs′

B (p′)γ5k′
αS3/2(q)kδγ5us

N (p),

where us
X is the spinor structure of a baryon with spin s,

while the propagator is incorporated by means of the tenso-
rial structures SJ (q) = Sβ1...β2J−1

α1...α2J−1 (q) and FJ (k, k′) contains the
couplings of the resonance to the meson-baryon channels and
a Gaussian-type form factor that suppresses high powers of
the meson momentum:

FJ (k, k′) = gBYJ φ
gNYJ K̄

m2J−1
K

e−�k2/�2
J e−�k′2/�′2

J . (22)

We have adopted this exponential prescription from the reso-
nance based model of [56]. As pointed out in our earlier work
[30], strictly speaking, these exponential factors are not gen-
uine form factors, since these should depend on the off-shell
momentum of the off-shell particle and should be normalized
to 1 at the on-shell point. They should be regarded as ad hoc
functions introduced to tame the high-energy behavior of the
resonant contributions.

Summarizing, the resonant contributions are only taken
into account in the K− p → Y → K� and K− p → X → η�

transition amplitudes, where Y stands for �(1890), �(2030),
and �(2250), while X stands for �(1890). The scattering
amplitudes are then rewritten according to the following pre-
scription: For K− p → K0�0, K+�− processes, we have

Ti j (s
′, s) = T BS

i j (s′, s) + 1√
4MpM�

∑
Jπ

T Jπ

i j (s′, s), (23)
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and, for K− p → η�,

Ti j (s
′, s) = T BS

i j (s′, s) + 1√
4MpM�

T 3/2+
i j (s′, s), (24)

where T BS
i j is the scattering amplitude obtained from the

chiral Lagrangian and unitarized by means of the BS equa-
tion, while T Jπ

i j accounts for the corresponding resonant term
with Jπ quantum numbers, which take the values Jπ =
3/2+, 5/2−, 7/2+ in Eq. (23). We note that the former con-
tributions to the scattering amplitudes contain the appropriate
Clebsh-Gordan coefficients projecting the i and j states into
the isospin 0 or 1 of the resonance. The prefactor 1/

√
4MiMj

has been included to properly normalize the resonant con-
tributions in accordance with [30]. Let us point out that
we could have inserted the resonant terms with a real bare
mass in a unitarized scheme, the effect of which would have
been to displace the mass of the resonance and to provide it
with a width. Employing the physical mass and width in a
nonunitarized resonant amplitude, as done here, is a simpler
approach and gives effectively similar results as employing a
bare real mass in a unitarizable resonant term.

III. FITTING PROCEDURE AND DATA TREATMENT

In the context of UChPT, the S = −1 sector offers us a
good chance to extract information about the parameters that
are present in the model from the ChPT expansion. Our model
is derived from a chiral Lagrangian up to NLO in s wave,
which involves a number of low-energy constants that could
amount to a maximum of 16: the meson decay constant f , the
axial vector couplings D and F , the NLO coefficients b0, bD,
bF , d1, d2, d3, d4; and six subtraction constants aπ� , aK̄N , aπ�,
aη� , aη�, aK�.

The f parameter has systematically taken larger values
than the experimental one in the models based on UChPT,
with values ranging from f = 1.15 fπ to f = 1.36 fπ , meaning
to be a sort of average over the decay constants of the
mesons involved in the various coupled channels. Actually,
some authors assigned fixed values to this parameter [25,29]
depending on the meson involved in the incoming and out-
going channels ( fπ = 92.4 MeV and fK = 110.0 MeV [55],
fη = 120.1 MeV estimated from the results in [59]) for each
given meson-baryon process in the S = −1 sector. Other
authors [23] allow these three values to vary slightly or, as
in our case, there are authors [25,26] that prefer to employ
a single effective f parameter which should be fitted to the
experimental data. With regard to the axial vector couplings D
and F , some works assign them fixed values (D = 0.8, F =
0.46) [23,25], hence fulfilling the constraint gA = F + D =
1.26. We allow them to vary within 12.5% of their canonical
value in order to accommodate to the dispersion of values
seen in the literature. For the NLO parameters, the situation
is also diverse. Although with some exceptions [3,4,25], most
of the performed fits have relaxed the constraints over the bi

parameters, related to the mass splitting of baryons and the
pion-nucleon sigma term as discussed after Eq. (3), due to the
unitary character of the amplitudes. This is also the approach
followed in the present work.

TABLE I. Number of experimental points used in our fits, which
are extracted from [20,33–36,60–72], distributed per observable.

Observable Points Observable Points

σK− p→K− p 23 σK− p→K̄0n 9
σK− p→π0� 3 σK− p→π0�0 3
σK− p→π−�+ 20 σK− p→π+�− 28
σK− p→η�0 9 σK− p→η� 49
σK− p→K+�− 46 σK− p→K0�0 29
γ 1 �E1s 1
Rn 1 �1s 1
Rc 1

Having reported on the role and importance of the dif-
ferent parameters present in our chiral model, we perform
a fit called WT+Born+NLO, which determines an effec-
tive set of low-energy constants that is valid in a wide
energy range, including the description of the K− p →
K+�−, K0�0, η�, and η� reactions. This fit corresponds
to a unitarized calculation employing the chiral Lagrangian
up to NLO, that is, an interaction kernel which incorpo-
rates the contribution of the WT, the Born, and the NLO
terms.

All the observables employed in the fit require the knowl-
edge of the T matrix, which is given by Eq. (6) in Sec. II A.
The unpolarized total cross section for the i → j reaction can
be defined according to our normalization as

σi j = 1

4π

MiMj

s

k j

ki
Si j, (25)

where s is the square of the c.m. energy, and where we have
averaged over the initial baryon spin projections and resumed
over the final ones:

Si j = 1

2

∑
s′,s

|Ti j (s
′, s)|2. (26)

We considered a large amount of cross section data for K− p
scattering into different final channels [33–36,60–70]. with
the exception, for consistency, of the same three points that
were disregarded in the fits of [32] due to their strong devi-
ation from the main trend. This fact leaves us with a total of
219 experimental points coming from K− p scattering which
are collected in Table I.

We also fit the parameters of our model to the measured
branching ratios of cross section yields [71,72]. These can
be obtained from the elastic and inelastic K− p cross sections,
Eq. (25), evaluated at threshold:

γ = �(K− p → π+�−)

�(K− p → π−�+)
= 2.36 ± 0.04,

Rc = �(K− p → π+�−, π−�+)

�(K− p → inelastic channels)
= 0.189 ± 0.015,

Rn = �(K− p → π0�)

�(K− p → neutral states)
= 0.664 ± 0.011. (27)
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The K− p scattering length is obtained from the K− p scat-
tering amplitude at threshold as

aK− p = − 1

4π

Mp

Mp + MK̄
TK− p→K− p. (28)

This scattering length is related to the energy shift and width
of the 1s state of kaonic hydrogen via the second order
corrected Deser-type formula [73]:

�E − i
�

2
= −2α3μ2

r aK− p

[
1 + 2aK− p α μr (1 − ln α)

]
, (29)

where α is the fine-structure constant and μr is the reduced
mass of the K− p system. These important empirical con-
straints were recently measured by the SIDDHARTA Collab-
oration [20]: �E1s = 283 ± 36 (stat) ± 6 (syst) eV and � =
541 ± 89 (stat) ± 22 (syst) eV. The distribution of points per
observable is summarized in Table I.

The fitting procedure followed here consists of minimizing
the χ2 per degree of freedom (χ2

d.o.f.). The standard definition
of the χ2

d.o.f. could skew the outputs of the fits, particularly,
when the observables present substantial differences in the
number of experimental points within their sets. Hence, this
definition could favor the observables with a larger number of
experimental points over those with a smaller amount. This
bias is avoided, for instance, by adopting the method already
used in [9,23,25,29], which takes a normalized χ2

d.o.f. that
assigns equal weight to the different measurements, namely

χ2
d.o.f =

∑K
k=1 nk( ∑K

k=1 nk − p
) 1

K

K∑
k=1

χ2
k

nk
(30)

with

χ2
k =

nk∑
i=1

(
yth

i,k − yexp
i,k

)2

σ 2
i,k

.

In these expressions yexp
i,k , yth

i,k , and σi,k represent, respectively,
the experimental value, theoretical prediction, and error of the
ith point of the kth observable, which has a total of nk points,
K is the total number of observables, and p denotes the num-
ber of free fitting parameters. As it can be appreciated from
Eq. (30), the renormalizing effect is achieved by averaging the
χ2 per degree of freedom over the different experiments. The
analysis for the χ2 function was carried out by means of
the minimization techniques embedded in the MINUIT pack-
age.

Error bands are also estimated for the K− p scattering cross
sections into different final meson-baryon channels for the
previous fit. The method followed is based on that proposed in
[74], and more recently employed by the authors of Ref. [25]
for the definition of χ2 given by Eq. (30). First of all, we gen-
erate new parametrizations that consist of a random variation
of all the free parameters around their central values, within
a wide enough band, and only keep those configurations for
which the χ2 value [Eq. (30)] satisfies

χ2 � χ2
0 + χ2(p, 1σ ), (31)

where χ2
0 corresponds to the minimum found by MINUIT and

χ2(p, 1σ ) is the value of a chi-squared distribution with a

number p of degrees of freedom at a confidence level of
1σ . Then, within the good configurations, we look for the
maximum and minimum of each parameter, values that are
then employed to determine its corresponding correlated error
band.

As previously mentioned, we also perform another fit,
WT+NLO+Born+RES, with the aim of studying the ef-
fects of the resonant terms on the low-energy constants. The
model contains the same chiral part together with the high
spin resonance contributions in the K− p → K+�−, K0�0,
η� channels in the way specified in Sec. II C. Concerning
the fitting technicalities, the part coming from the chiral
model involves the fitting of the same 13 parameters as in
the former model. With respect to the resonant part, we
add 13 new parameters, namely masses and widths of the
resonances (MY3/2 , MY5/2 , MY7/2 , �3/2, �5/2, and �7/2), which
are present in the resonance propagator [30], the product of
couplings (g�Y3/2ηgNY 3/2K̄ , g�Y3/2K gNY3/2K̄ , g�Y5/2K gNY5/2K̄ , and
g�Y7/2K gNY7/2K̄ ) and the cutoff in the form factors (�3/2, �5/2,
and �7/2). The number of fitting parameters amounts to a total
of 29, but we would like to remark that not all parameters are
fully free. The masses and widths of the resonances are taken
to lie within the ranges given in the PDG compilation [55]
and the form-factor cutoff values are constrained in the range
500 MeV < �J < 1000 MeV. This fit considers the same
amount of experimental data as the previous one (Table I).

IV. RESULTS AND DISCUSSION

This section is devoted to present the results obtained with
the two models described in the previous section, with inter-
action kernels based on the WT+Born+NLO contributions,
with or without the resonant terms, and both fitted to the
same amount of experimental data summarized in Table I. We
focus first on the outputs provided by the WT+Born+NLO fit
and, subsequently, we discuss the results for the observables
involved in the fitting procedure as well as the analysis of
the spectroscopy from its pole content. To conclude, we
show our predictions for isospin filtering processes, such as
the K0

L p → K+�0 reaction and the �b → J/� K�, J/� η�

decays. At the end of this section, we proceed analogously
for the WT+Born+NLO+RES model but paying special
attention to the NLO parameters.

The parameters of the WT+Born+NLO fit are displayed in
the first column of Table II. Compared to the values obtained
in our previous studies [30,32], there is an overall improve-
ment precision. Another remarkable result is that we get
natural-sized values for all the subtraction constants, while,
in [32], the value corresponding to aπ� took an unexpectedly
large value forced by the fit to accommodate the experimental
data. But the most significant feature in Table II is the similar
size achieved by the NLO coefficients, with values within the
range 0.12–0.30.

Even though the χ2
d.o.f. of the WT+Born+NLO fit

(Table II) cannot be compared directly to that of the models in
[30,32], because we have included 58 additional experimental
points, one can check its goodness by looking at the agree-
ment between experimental scattering data and the theoretical
results present in Fig. 5.
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TABLE II. Values of the parameters and the corresponding χ2
d.o.f.,

defined in Eq. (30), for the different fits described in the text.
The subtraction constants are taken at a regularization scale μ =
1 GeV. The error bars in the parameters of the WT+Born+NLO
fit are determined as explained in the text, while those of the
WT+Born+NLO+RES fit are directly those provided by the MINUIT

minimization procedure.

WT+Born+NLO WT+NLO+Born+RES

aK̄N (10−3) 1.268+0.096
−0.096 1.517 ± 0.208

aπ� (10−3) −6.114+0.045
−0.055 −2.624 ± 13.926

aπ� (10−3) 0.684+0.429
−0.572 2.146 ± 1.174

aη� (10−3) −0.666+0.080
−0.140 0.756 ± 1.215

aη� (10−3) 8.004+2.282
−0.978 10.105 ± 3.660

aK� (10−3) −2.508+0.396
−0.297 −2.013 ± 0.743

f / fπ 1.196+0.013
−0.007 1.180 ± 0.028

b0 (GeV−1) 0.129+0.032
−0.032 −0.071 ± 0.016

bD (GeV−1) 0.120+0.010
−0.009 0.128 ± 0.015

bF (GeV−1) 0.209+0.022
−0.026 0.271 ± 0.022

d1 (GeV−1) 0.151+0.021
−0.027 0.144 ± 0.034

d2 (GeV−1) 0.126+0.012
−0.009 0.133 ± 0.011

d3 (GeV−1) 0.299+0.020
−0.024 0.405 ± 0.022

d4 (GeV−1) 0.249+0.027
−0.033 0.022 ± 0.020

D 0.700+0.064
−0.144 0.700 ± 0.148

F 0.510+0.060
−0.050 0.400 ± 0.110

g�Y3/2ηgNY3/2K̄ 8.924 ± 11.790
g�Y3/2K gNY3/2K̄ 6.200 ± 8.214
g�Y5/2K gNY5/2K̄ −3.881 ± 9.585
g�Y7/2K gNY7/2K̄ −14.306 ± 14.427
�3/2 (MeV) 839.66 ± 406.68
�5/2 (MeV) 541.31 ± 290.01
�7/2 (MeV) 500.00 ± 426.82
MY3/2 (MeV) 1910.00 ± 44.70
MY5/2 (MeV) 2210.00 ± 39.07
MY7/2 (MeV) 2040.00 ± 14.88
�3/2 (MeV) 200.00 ± 120.31
�5/2 (MeV) 150.00 ± 52.42
�7/2 (MeV) 150.00 ± 43.12
χ 2

d.o.f. 1.14 0.96

The total cross sections for K− p scattering to all channels
of the S = −1 sector in the case of the WT+Born+NLO fit
are represented by solid lines in Fig. 5, while the grey area de-
picts the corresponding estimation of the error bands. Because
of the novelty, we first inspect the total cross sections of the
η channels. One can clearly see that these cross sections are
properly reproduced with this fit, excluding the small bump in
the η� cross section around 2000 MeV where this theoretical
model slightly underestimates its strength. The agreement
with the experimental data just above the η� threshold de-
scribing the �(1670) resonant structure implies that this fit
is able to dynamically generate such a resonance. It should
be noted that the dynamical generation of this resonance was
confirmed for the first time in [77] by means of a unitarized
coupled-channels method using the lowest order (WT) chiral

Lagrangian. The authors examined the contribution of the
�(1670) tail, and hence the role of the rescattering terms, on
the K− p → K� reactions, because they found this resonance
to couple strongly to K�, being the squared value of the
corresponding coupling one or two orders of magnitude larger
than the ones to other isospin 0 states in the S = −1 sector.
Relatedly, the position of the pole associated to the �(1670)
was quite sensitive to the aK� subtraction constant. The re-
sults obtained there clearly suggest that there is a correlation
between the ability of a model in reproducing the �(1670)
resonance and the simultaneous accommodation of the K�

production cross sections. This is a very valuable argument
to discriminate among all possible parametrizations which
describe in an acceptable way the K� cross sections. In this
sense, the set of parameters of the present WT+Born+NLO
fit is in line with the findings of [77].

Concerning the K− p → K+�− cross section (bottom pan-
els in Fig. 5), the WT+Born+NLO model gives a reasonable
reproduction of data, although slightly worse than those ob-
tained by our previous best pure chiral models [30,32], since
the maximum of the present distribution is shifted 50 MeV
towards higher energy. From [30,32], one can also appreci-
ate that the older models (WT+NLO and WT+NLO+Born
respectively) clearly offer a better agreement with the exper-
iment than the new one for the K− p → K0�0 cross section.
We note that this is the price one has to pay in order to include
and correctly describe the new channels K− p → η�, η�. Ac-
tually both older models, WT+NLO and WT+NLO+Born,
miss the experimental data in these channels by up to an
order of magnitude, as can be seen in [43]. The difference
in the behavior of the K− p → K� cross sections in the
WT+Born+NLO model with respect to the older models,
in particular the rather sharp rise of the K− p → K0�0 cross
section just above the threshold, is related to the changed role
of the isospin I = 0 component, which becomes dominant at
threshold energies as it picks up the tail of the dynamically
generated �(1670) resonance that describes the K− p → η�

reaction. Below we will discuss in detail the interplay be-
tween I = 0 and I = 1 components at different energies in
the present and older models, showing in particular that our
new model gives a much better prediction for the pure I =
1 K0

L p → K+�0 reaction.
Coming back to the K− p → K0�0 and K− p → K+�−

cross sections, the model can be improved by the inclusion of
resonant terms, similarly to what is done in [30], where these
proved to be very helpful to accommodate the theoretical
cross section to the experimental data. We will discuss such
a development in Sec. IV C. However, looking at the bottom
panels in Fig. 5, we can already anticipate that the explicit
inclusion of the �(1890) is a good strategy, since it is located
in the energy region of interest and it is an isospin 0 resonance,
the relevance of which is clarified at the end of this section.

Finally, the total cross sections of the classical processes
obtained by the WT+Born+NLO fit, represented in the three
top rows of Fig. 5, reproduce the experimental data very well.
This agreement is consequently reflected on the threshold
observables, whose values are collected in Table III, together
with the results obtained by other works which include in
their fits the recent experimental data from [20]. A similar
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FIG. 5. Total cross sections of the K− p → K− p, K̄0n, π−�+, π+�−, π 0�0, π 0�, η�, η�0, K+�−, K0�0 reactions obtained for
the WT+Born+NLO fit (solid line), with the corresponding estimation of the error bands (grey area), and for the WT+Born+NLO+RES fit
(dashed line). Experimental data have been taken from [33–36,60–70]. See text for a detailed description of the models. The inset in the fourth
panel of the left column shows the K− p → η� cross section in a reduced energy range close to threshold.
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TABLE III. Threshold observables obtained from our fits and from other recent studies [23,25,26,29,75,76] which incorporated the
SIDDHARTA measurements in the fitting procedure. Experimental data are taken from [20,71,72].

γ Rn Rc ap(K− p → K− p) �E1s �1s

Ikeda-Hyodo-Weise (NLO) [23] 2.37 0.19 0.66 −0.70 + i0.89 306 591
Guo-Oller (fit I + II) [25] 2.36+0.24

−0.23 0.188+0.028
−0.029 0.661+0.012

−0.011 (−0.69 ± 0.16) + i(0.94 ± 0.11) 308 ± 56 619 ± 73
Mizutani et al. (model s) [26] 2.40 0.189 0.645 −0.69 + i0.89 304 591
Mai-Meissner (fit 4) [29] 2.38+0.09

−0.10 0.191+0.013
−0.017 0.667+0.006

−0.005 288+34
−32 572+39

−38

Cieply-Smejkal (NLO) [75] 2.37 0.191 0.660 −0.73 + i0.85 310 607
Shevchenko (two-pole model) [76] 2.36 −0.74 + i0.90 308 602
WT+Born+NLO 2.36+0.03

−0.03 0.188+0.010
−0.011 0.659+0.005

−0.002 −0.65+0.02
−0.08 + i0.88+0.02

−0.05 288+23
−8 588+9

−40

WT+NLO+Born+RES 2.36 0.189 0.661 −0.64 + i0.87 283 587
Expt. 2.36 ± 0.04 0.189 ± 0.015 0.664 ± 0.011 (−0.66 ± 0.07) + i(0.81 ± 0.15) 283 ± 36 541 ± 92

degree of accuracy is reached by all the fits in reproducing
the branching ratios, while, for the K− p scattering length and
the related energy shift and width of the 1s state of kaonic
hydrogen, the various models show slightly larger differences,
yet all of them within the error range. These similarities can be
attributed to their similar values of the f parameter, given the
dominance of the WT term at threshold, with the exception of
the study [76], which is based on a phenomenological strong
isospin-dependent K−N − π� potential.

We next analyze the pole content of the scattering ampli-
tude derived from the WT+Born+NLO fit. The resonances
found and their couplings to the different channels in the
various sector are summarized in Table IV. In I = 0, our
model generates the double-pole structure of the �(1405) and
a pole representing the �(1670). As can be appreciated in
Table IV, the broader pole of �(1405), which couples mostly
to π�, is located at 1419 MeV. The other pole with smaller
imaginary part is located very close to the former one, 1420
MeV, but more strongly coupled to K̄N . The characteristics
of this narrower pole coincide with the results of other re-
cent studies [23,25–27,29,75,76], which mostly fall within
the range (1415–1435, 10–25) MeV, as is reflected in Fig. 6
which contains the pole positions obtained by the previous
authors in the complex plane. One also can see the huge
differences in the position of the wider pole among the dif-
ferent groups. For a more detailed comparison between the
pole content in some of the cited studies based on UChPT,

TABLE IV. Pole positions of the pure chiral model
WT+Born+NLO, expressed in MeV, and the corresponding
modulus of the couplings |gi| found in isospin 0 and 1 basis.

0− ⊕ 1
2

+
interaction in (I, S) = (0,−1) sector

Pole |gπ� | |gK̄N | |gη�| |gK�|
�(1405)

1419+16
−22 − i 71+24

−31 3.40 2.98 1.10 0.65

1420+15
−21 − i 27+18

−11 2.31 3.51 1.26 0.36
�(1670)

1675+10
−11 − i 31+4

−7 0.47 0.59 1.74 3.71

0− ⊕ 1
2

+
interaction in (I, S) = (1,−1) sector

Pole |gπ�| |gπ� | |gK̄N | |gη� | |gK�|
�∗

1701+16
−1 − i 170+2

−7 1.96 0.47 1.21 0.36 0.98

we recommend the exhaustive analysis of [78]. In Fig. 6,
we also include the dispersion of the pole positions for the
configurations selected by the condition of Eq. (31) when we
let the parameters vary within their error bands, as explained
in Sec. III.

Although we find the two poles to lie above the nominal
value of the �(1405) resonance, we note that the signal would
be peaked between 1405 and 1415 MeV. This is clearly seen in
Fig. 7, where we represent the quantities qπ�|Tπ�→π� |2 and
qπ� |TK̄N→π�|2 as functions of the center-of-mass energy, with
qπ� being the momentum in the π� center-of-mass frame.
These quantities determine the cross section in experiments
where the �(1405) production is mainly driven by π� or K̄N
intermediate states, respectively.

The �(1670) resonance naturally shows up and helps
describing the experimental K− p → η� total cross sections.
The corresponding properties are collected in Table IV, from
which we can appreciate that our results are in good agree-
ment with [55], quoting a mass (1670 − 1680) MeV and a
width (25 − 50) MeV. We note that, although within errors,
our resonance is slightly wider than the average while its mass
is completely coincident. The �(1670) resonance found in the
models of [25] lies, on the contrary, on the narrow side of the
error band, while the width of that found in [77] reproduces
very satisfactorily the experimental one.

With respect to the I = 1 resonances, we found a pole
at 1701 − i170 MeV that can be related to some of the
signals or bumps quoted by the PDG [55] in the range 1600–
1800 MeV. An identification with the �(1750) resonance is
discarded, as this resonance is hardly seen to decay in π�

and has similar branching ratios to decay into K̄N and η�

states, a phenomenology that could not be reproduced with
the coupling constants listed in Table IV. However, our pole,
which couples strongly to π� states, could be associated to
the two-star �(1690) wide structure, which has been seen in
production experiments only, and mainly in π�.

A. Predictions for isospin 1 processes

In the Introduction and also in Sec. II B 1 we discussed
the constraining effects of the inclusion of the future K0

L p →
K+�0 experimental data, because of its I = 1 nature, on the
NLO coefficients. To check the predictive power of the present
models (WT+Born+NLO and WT+Born+NLO+RES), we
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FIG. 6. Pole positions of the �(1405) for the approaches included in Table III, where we have also included the results from [27].
The colored areas indicate the possible pole positions by varying the fitting parameters within their corresponding error bars in our
WT+NLO+Born model.

present their corresponding K0
L p → K+�0 cross section in

Fig. 8. For completeness, we have also included the predic-
tions of other previous models to see how the description of
this observable evolves when more ingredients are taken into
account. These two additional models [30,32] were fitted to
the same experimental data collected in Table I, except for
the total cross sections involving the η channels, and their
names inform on which terms are taken into account in the
interaction kernel. Moreover, the experimental points of the
pure I = 1 K−n → K0�− reaction, which have been divided
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FIG. 7. Squared I = 0 amplitudes for transitions from initial K̄N
and π� channels to final π�, weighted by the three-momentum of
the final particles in the c.m.

by 2 to properly account for the size of the strangeness S =
−1 component of the K0

L (see Sec. II B 1), are also included
in this figure. These two data points have not been used in any
of the performed fitting procedures.

As one can see from Fig. 8, the WT+Born+NLO (solid
line), the WT+Born+NLO+RES (dashed line), and the
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FIG. 8. Total cross sections of the K0
L p → K+�0 reactions

for the models described in the present work (WT+Born+NLO
and WT+Born+NLO+RES) and for the models of our previous
studies [30,32]. A more detailed explanation can be found in
the text. The grey area corresponds to the error band related to
the WT+Born+NLO fit and the experimental points of the I =
1 K−n → K0�− reaction, taken from [46,47] and divided by 2; see
Sec. II B 1 for more details.
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K− p → K+�− cross section data are represented. The figure shows the complete results by means of solid lines, the results where only isospin
I = 1 component (dashed lines) or the I = 0 one (dot-dashed line) have been retained.

WT+NLO+Born [32] (dot-dashed line) fits do a good job
at higher energy, while the WT+NLO fit [30] (dotted line)
provides a too low prediction. More significant is the be-
havior around 2 GeV, where the old models overshoot the
experimental cross section by about a factor of 2, while the
new models, having their maximum strength shifted 50 MeV
towards higher energies, provide a much better prediction. We
therefore see that, as more contributions are implemented in
the interaction kernel and more data are included in the fits,
especially from isospin filtering processes, the results from
the theoretical models get closer to the available experimental
points. Given these results, everything seems to indicate that
new data from scattering induced by the secondary K0

L beam
proposed at Jlab would be very helpful to further constrain the
theoretical models.

Another opportunity to check the validity of our mod-
els has been recently provided by the AMADEUS Col-
laboration, which has determined the I = 1 K− p → π−�

amplitude around threshold [79] from K− absorption pro-
cesses on 4He. The chiral WT+Born+NLO model predicts
a value of 0.38+0.02

−0.06 fm, while the model with resonances
WT+Born+NLO+RES gives 0.36 fm. These values are in
complete agreement with the experimental determination of
|AK−n→π−�| = (0.334 ± 0.018 stat+0.034

−0.058 syst) fm.

B. �b → J/� K�, J/� η� prediction

We start this subsection by presenting in Fig. 9 the
cross section of the K− p → K0�0 reaction (top panels)
and the K− p → K−�+ reaction (bottom panels), obtained
from the old WT+NLO [30] (left panels) and the new
WT+Born+NLO (right panels) models. Let us remind the

reader that the WT+NLO model employs the dynamics of the
chiral Lagrangian up to NLO, specifically the contributions of
the WT term and the NLO ones. The WT+Born+NLO model
also considers the Born terms and includes additional data
in the fits, namely the cross sections of the K− p → η�, η�

processes. The WT+NLO model was employed in our first
study [52] of the �b decays into J/�K� and J/�η� states
and we want to compare with the predictions of our new fit
in the present work. The figure shows the complete cross
sections (solid lines), as well as the results obtained when
only the isospin I = 1 component (dashed lines) or the I = 0
one (dash-dotted lines) are retained. It is interesting to see
that, in both models, the I = 1 component is dominant. The
I = 1 distribution for the WT+NLO model is a little bit
more enhanced at low energies than that corresponding to
the WT+Born+NLO model that peaks about 50 MeV higher
away in energy. The contribution of I = 0 to the K− p → K�

cross section for the WT+NLO model is mainly significant
around and beyond 2300 MeV, which is in contrast to what
is found for the WT+Born+NLO model: a I = 0 distribution
that grows rapidly near threshold and, after reaching a plateau,
experiences a smooth fall, being practically negligible around
2300 MeV.

In the upper panel of Fig. 10 we present the invariant mass
distributions of K+�− pairs from the decay process �b →
J/ψ K+�−. We note that the invariant mass distribution of
K+�− states and the corresponding phase-space distribution
for the WT+Born+NLO model are multiplied by a factor 10
to aid its visualization. The fact that this decay filters the I = 0
components makes the differences between the WT+NLO
(dash-dotted line) and WT+Born+NLO (solid line) models
more evident, not only in the strength but also in the shape
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FIG. 10. Invariant mass distributions, in arbitrary units, of K+�−

states (upper panel) and η� states (lower panel) obtained for the
two models discussed in this section: WT+NLO [30] (dash-dotted
lines) and WT+Born+NLO (solid lines). The pure phase-space (PS)
distributions (dotted and dashed lines) are normalized to the corre-
sponding invariant mass distribution; see more details in the text.
The invariant mass distribution of K+�− state and the corresponding
phase-space distribution for WT+Born+NLO are multiplied by a
factor 10 to aid its visualization.

of the invariant mass distribution, which is in accordance with
the I = 0 cross sections shown in Fig. 9. The strength from
the WT+NLO model exceeds by more than a factor 20 that
from the WT+Born+NLO model. The reason lies in the fact
that the �b decay processes producing the J/ψ do not allow
the formation of primary K� pairs, which are only produced
through rescattering of the K̄N and η� primary components.
Thus, the �b → J/ψ K+�− reaction is directly proportional
to the meson-baryon scattering amplitude, specifically to the
η� → K� and K̄N → K� components in I = 0, which can
lead to a marked interference pattern. Indeed, the invariant
mass distribution of the K+�− state for the WT+Born+NLO
model is a clear example of a strong destructive interference
among the K̄N the η� mediated processes. By contrast, the
�b → J/ψ η� decay can proceed at tree level, making the
possible interference effects of the loop diagrams acquire a
secondary role, which explains the similar size of the distribu-
tions for this process obtained by the two models. Note that,

in spite of the lack of a direct term in the �b → J/ψ K+�−
decay, its strength in the case of the WT+NLO model is
comparable to that of the �b → J/ψ η� decay, indicating a
strong constructive interference of the rescattering terms in
the former reaction, just the opposite of what happens for the
WT+Born+NLO model.

The phase space (PS) distributions shown in Fig. 10 permit
a comparison with the corresponding invariant mass distribu-
tions to point out the dynamical features in the meson-baryon
amplitudes. The PS distributions are obtained by taking the
amplitude M as a constant in Eq. (19) and normalizing to the
area of the invariant mass distribution of the corresponding
model. In the case of the WT+NLO model, we observe a
peaked structure around 2350 MeV in the K+�− distribu-
tion. This is not a resonance but merely a reflection of the
phase space limitation at about 2500 MeV which produces
a narrower structure than that in the cross sections of the
K− p → K� reactions, as we can see from the much broader
I = 0 contribution in Fig. 9 (left panels). Actually, if it was
a resonance, a peaked structure would also appear in the
η� mass distribution at the same energy, which is absent.
An analogous explanation holds for the bump observed in
the invariant K+�− mass distribution in the case of the
WT+Born+NLO model at the lower end of the spectrum.
On the other hand, the η� invariant mass distribution corre-
sponding to the WT+Born+NLO model makes evident the
presence of the dynamically generated �(1670) resonance.
What is clear from this study is that the measurement of
these �b decay channels will provide valuable information
concerning the meson-baryon interaction at higher energies,
beyond what is offered to us by present scattering data.

C. Inclusion of resonances: WT+Born+NLO+RES fit

As already mentioned, the main motivation for carrying out
a new fit including the resonances is to study the implications
of these terms on the low-energy constants. As in the previous
fit, the inclusion of data at higher energies has not affected
the quality of the low-energy observables. A clear proof of
it is the good description of the low-energy data compiled
in Table III and in the six upper panels in Fig. 5. The
inclusion of resonances in the new WT+Born+NLO+RES
model improves slightly the overall agreement of the
threshold observables, as we see in Table III. The to-
tal K− p → K− p, K̄0n, π−�+, π+�−, π0�0, π0� cross sec-
tions obtained by the WT+Born+NLO+RES model (dashed
line in Fig. 5) offer a very similar description, almost indistin-
guishable to naked eye, to that of the WT+Born+NLO one.

Obviously, much more pronounced structures in the cross
sections are expected to be provided by the additional reso-
nant contributions in the processes whose amplitudes contain
explicitly such terms, namely the K− p → η�, K0�0, K+�−
ones. Partly, the inclusion of the �(1890) resonance moti-
vated by the lack of agreement between the WT+Born+NLO
model (solid line in the four bottom panels of Fig. 5) and
the scattering data corresponding to the K− p → K0�0 reac-
tion at low energy and to the K− p → η� reaction around
1950 MeV. From the dashed lines in the corresponding panels,
one can appreciate a clear improvement in reproducing the
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experimental K− p → η� cross section in the energies rang-
ing from 1850 to 2200 MeV without affecting the resonant
structure from the �(1670). But, probably, the most notable
effect is the one observed in the results for the K− p → K0�0

cross section, which now reproduces better the experimental
data just above threshold. The reason becomes evident when
looking at the distribution of the I = 0 component of the
K� production of WT+Born+NLO in Fig. 9 (right panels),
which shows that �(1890) resonance has a prominent back-
ground to interfere with. The favorable contribution of the
�(2030) and �(2250) resonances can also be appreciated
in the K− p → K0�0, K+�− cross sections shown in Fig. 5.
Again, this is due to the interference of these resonant terms
with the I = 1 distribution seen in Fig. 9 (right panels), which
introduces some structure and provides a better account of the
experimental data in the 2000–2200 MeV energy range. With
respect to the K− p → η�0 cross section, we do not notice any
difference in the reproduction of the experimental data, but
for energies around 1800 MeV the WT+Born+NLO+RES
model presents a more pronounced slope. In summary, this
better general description of the experimental data results in a
16% of improvement in the goodness of the fit, as reflected by
the χ2

d.o.f. values in Table II.
Now we turn our attention to the analysis of the fitting-

parameter stability, which was the main goal when performing
the WT+Born+NLO+RES fit. From Table II, it can be
appreciated that the fitting parameters are quite stable when
going from the purely chiral-model fit to the one including
resonances, the reason stemming from the fact that we have
employed additional observables that are sensitive to the
NLO term, namely the scattering data from the K− p → η�

reaction (apart from K0�0, K+�− reactions). In other words,
although the inclusion of resonances help in fine-tuning the
agreement with experimental data, the so-called background
contributions obtained by the WT+Born+NLO model al-
ready perform an excellent job. Going more into the details,
we would like to first stress the particular case of the d2 and d3

coefficients, which have kept especially stable even from our
earlier model, WT+NLO+Born [32], which does not employ
the K− p → η�, η� data. This is tied to the prominent role
that these NLO coefficients have in the description of the
K0�0, K+�− reactions, as can be seen by exploring the Li j

Clebsch-Gordan-type coefficients for these transitions in [30].
When including the resonances, the parameter d3 varies more
prominently, but still within a moderate 30%. The stability of
other parameters has also clearly increased by the inclusion
of the K− p → η�, η� reactions. The additional parameters
relevant for the NLO K− p → η�, η� amplitudes are bD,
bF , and d1, which appear in the corresponding Di j and Li j

Clebsch-Gordan-type coefficients [30]. The stability of these
parameters can be noticed when comparing the outputs of
the WT+Born+NLO and WT+Born+NLO+RES models in
Table II. This is in contrast with the large volatility of the
b0 and d4 parameters, which only have a role in the elastic
transitions of the sector as can be seen from Table VIII in
[30], thereby not being directly affected by the experimental
data employed here. Measuring processes that are affected by
elastic S = −1 meson-baryon amplitudes that cannot proceed
at lowest order, such as the decay �b → J/� η� studied here

involving the tη�,η� diagonal transition, would provide valu-
able information to better constrain the b0 and d4 parameters
of the NLO Lagrangian. As a consequence of the overall
stability of the NLO parameters, the WT+Born+NLO+RES
model also produces natural sized subtraction constants.

Another interesting result shown in Table II is that the f
parameter has decreased after the inclusion of the resonances,
which is in contrast to what happens when comparing the f
values for the different models in [30], where this parameter
remains almost invariable.

V. CONCLUSIONS

We have performed a new study of the meson-baryon
interaction in the S = −1 sector in s wave, aiming at an
improved determination of the NLO terms of the chiral SU(3)
Lagrangian that effectively permits the description of the data
in a wide energy range. To this end, we have taken into
account in the fitting procedure experimental data of processes
that are especially sensitive to higher orders of the Lagrangian,
such as the K− p → K+�−, K0�0 reactions. We have also
included explicit resonant contributions in order to test the
stability of the NLO order parameters.

The novelty with respect to our previous studies is the
consideration in the present work of additional isospin fil-
tering reactions, K− p → η� in I = 0 and K− p → η�0 in
I = 1. The former reaction is interesting because it is also
sensitive to the NLO terms. Our purely chiral fit describes
the �(1670) resonant structure just above the η� threshold,
indicating the dynamical origin of such state, as found in other
works in the literature. We also find this resonance to couple
strongly to K� states. Therefore, even if located subthreshold,
its tail influences, through rescattering, the K− p → K� cross
sections studied here. The most remarkable feature of the
incorporation of the K− p → η�, η�0 data in the fits is the
homogeneity of values found for the next-to-leading order
low-energy constants, which, in turn, also show to be of rather
natural size.

The inclusion of explicit resonances in the K− p → K+�−,
K0�0, and η� amplitudes incorporates higher-angular mo-
mentum contributions and does improve the description of the
corresponding cross sections in the 2 GeV region, as expected.
We find that the fitted parameters remain quite stable when
going from the purely chiral-model fit to the one including res-
onances, indicating that the former model already implements
sufficient observables that are sensitive to the chiral NLO
terms and the effect of higher angular momentum components
is moderate. In other words, although the inclusion of reso-
nances help in fine-tuning the agreement with experimental
data, the so-called background contributions obtained by the
pure chiral model already perform satisfactorily. In particular,
we find the coefficients d2 and d3 to be very sensitive to
the K− p → K0�0, K+�− cross sections, while bD, bF , and
d1 play a prominent role in the K− p → η�, η� ones. Only
the b0 and d4 parameters are not directly affected by the
experimental data employed here, which explains their lower
degree of stability.

We have also given predictions for new single isospin
component processes, such as the I = 1 K0

L p → K+�0
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reaction that could be measured in the proposed secondary K0
L

beam at Jlab. We have observed that, as more contributions
are implemented in the interaction kernel and more data are
included in the fits, especially from isospin filtering processes,
the predictions of the model get much closer to the two avail-
able experimental points extracted from the K−n → K0�−
reaction. Our result for the strength of the I = 1 K− p → π�

amplitude at energies close to threshold is also in complete
agreement with the recent determination provided by the
AMADEUS Collaboration from K− absorption processes on
4He. The weak decay of the �b into a J/� and different
meson-baryon pairs selects then the I = 0 component of
their interaction and is available at LHCb. We have pre-
sented results for the decay of the �b into J/�K+�− and
J/�η� states and have found the invariant mass distributions
to depend strongly on the meson-baryon interaction model
employed.

In summary, our study has made evident the success of
isospin filtering processes in constraining the parameters of
the chiral Lagrangian. The measurement of the above men-
tioned reactions, that select a pure isospin component, would
greatly contribute to having a better knowledge of the S = −1
meson-baryon interaction.
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