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We calculate the electromagnetic (charge, magnetic, and quadrupole) form factors and the associated static
moments of heavy quarkonia (charmonia and bottomonia) using the basis light front quantization (BLFQ)
approach. For this work, we adopt light front wave functions (LFWFs) generated by a holographic QCD
confining potential and a one-gluon exchange interaction with fixed coupling. We compare our BLFQ results
with the limiting case of a single BLFQ basis state description of heavy quarkonia and with other available
results. These comparisons provide insights into relativistic effects. Using the same LFWFs generated in the
BLFQ approach, we also present the generalized parton distributions (GPDs) for selected mesons including those
for radially excited mesons such as ψ ′ and ϒ ′. Our GPD results establish the foundation within BLFQ for further
investigating hadronic structure such as probing the spin structure of spin-one hadrons in the off-forward limit.
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I. INTRODUCTION

Exploring the electromagnetic (EM) properties of spin-one
hadrons has been of great interest because it provides insight
into the spin-sensitive structure and the internal dynamics of
the hadrons. In particular, hadronic form factors (FFs) serve
as one important tool to understand the structure of bound
states in quantum chromodynamics (QCD). The numerous
investigations on the structure of the spin-zero and spin-
one hadrons that include FFs in different formalisms [1–25]
provide a window for understanding hadronic structure at
low and medium momentum transfer. The investigations with
relativistic approaches [1,6–13,20–24] have presented results
for FFs, decay constants, and the distribution amplitudes of
spin-zero and spin-one bound-state systems such as the pion
(π ), kaon (K), rho meson (ρ), and J/ψ meson adopting dif-
ferent light front (LF) models. Note a recent investigation [23]
has shown the FFs of (pseudo)scalar mesons calculated in a
general frame. That work has also pointed out the differences
among the results calculated in the various frames including
the Drell-Yan frame.

Despite these numerous studies and growing interests,
there is little consensus on how to obtain static moments such
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as the quadrupole moments on the LF. Furthermore, investi-
gations on the EM FFs and the associated static moments of
radially excited vector mesons such as ψ ′ and ϒ ′ are rare to
the best of our knowledge [14,15]. It is therefore natural to ask
what one can learn about the spin-one hadronic structure from
an investigation using the recently developed nonperturbative
basis light front quantization (BLFQ) approach. In this paper,
we present the EM FFs and the associated static moments,
the charge radii, magnetic moments, and the quadrupole mo-
ments, for a selection of heavy quarkonia. We also calculate
corresponding quantities in a simplified basis, which is re-
ferred to as the single basis limit (SBL) approach in this paper,
and interpret the differences with the BLFQ results to uncover
dynamical effects arising from the different interactions. We
also compare our results with corresponding results from the
contact interaction (CI) [16–18], Dyson-Schwinger equation
(DSE) [4,5] and lattice [3] approaches wherever available.

The generalized parton distribution (GPD) has emerged as
a powerful tool to describe hadrons in terms of quark and
gluon degrees of freedom. Several reviews cover the GPDs
and their connections to experiments [26–39]. In particular,
there are several investigations on the spin-zero and spin-
one GPDs [27,31–38]. For example, in Refs. [34,38], the
pion GPDs have been calculated in the LF phenomenological
models with both the valence and nonvalence contributions.
Similarly, in Ref. [27], the angular momentum sum rule
for the spin-one system within the gauge-invariant decom-
position framework has been investigated. That study has
also discussed the connections between the deeply virtual
Compton scattering (DVCS) amplitudes and the total quark
angular momentum for the ground-state vector meson GPDs.
In Refs. [36,37], The deuteron GPDs have been investigated
within the impulse approximation in a framework with non-
zero longitudinal momentum transfer. The recent study of the
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deuteron in Ref. [32] has also presented the GPDs in the
framework of holographic QCD.

These studies, however, do not address the heavy mesons
(for example, cc̄ and bb̄). Hence, such basic properties as
the momentum-transfer dependence of the valence quarks
for the radially excited states ψ ′ and ϒ ′ are not previously
available. Furthermore, we are motivated by the feasibility
of experiments to investigate the hadronic structure of the
(pseudo)scalar and vector meson GPDs in the forward limit
(zero momentum transfer limit). Such measurements provide
connections with unpolarized parton distributions [31].

In this work, we calculate the EM FFs and GPDs through
the corresponding matrix elements which are defined by the
overlap integrals of light front wave functions (LFWFs) in
the Drell-Yan frame. The nonperturbative solutions for the
LFWFs are provided by a recent BLFQ study [20] of heavy
quarkonia. This work implements a transverse confining po-
tential from light front holography and a longitudinal confin-
ing interaction which has a similar shape in the nonrelativistic
limit. It also includes the one-gluon exchange interaction
with a fixed coupling to generate the spin structure of the
charmonium and bottomonium systems. Note a recent investi-
gation [40] following the quarkonia study [20] with a running
coupling [21] provides comparisons of the mass spectrum and
decay constant between the results obtained from the BLFQ
and that from the covariant spectator theory (CST). The CST
treatment [40] is an independent, fully relativistic approach
and the comparison of the results of CST and BLFQ showed
favorable correspondence.

For this work, we adopt the BLFQ approach which is
developed for solving bound-state problems in quantum field
theory [20,41,42]. This approach not only provides easy con-
version between the transverse coordinates and momentum
space [21,43], but also connects mass spectroscopy with other
observables [20,44]. The BLFQ is a Hamiltonian-based for-
malism that uses the advantages of LF dynamics [45] with
advances in solving many body bound-state problems [46]. It
has been successfully applied to the single electron problem
in quantum electrodynamics (QED) [47], the strong coupling
bound-state positronium problem [42,43] and the running
coupling quarkonium problem [21]. Furthermore, the BLFQ
approach has been extended to time-dependent strong external
field problems such as nonlinear Compton scattering [48]. The

reviews related to BLFQ and its application are available in
Refs. [20–23,40–44,46–52].

We organize this paper as follows. In Sec. II, FFs and GPDs
are defined through the local and nonlocal matrix elements
of the plus component of the current operator, respectively.
Then, the FFs and GPDs are expressed in terms of the overlap
integrals of LFWFs. In Sec. III, we briefly introduce BLFQ
along with SBL, the simplified case of a single BLFQ basis
state, and in Sec. IV, we present our results. Finally, we
present the summary of this work and outlook for further
research in Sec. V.

II. FORM FACTORS AND GENERALIZED PARTON
DISTRIBUTIONS FOR SPIN-ONE HADRONS ON THE

LIGHT FRONT

The Lorentz-invariant, elastic FFs Fi (t ) for spin-one
hadrons are defined by the local matrix elements of the current
operator Jμ[� ψ̄ (0)γ μψ (0)] as [1,12,53]

ImJ ,m′
J
(t ) � 1

(p + p′)μ
〈p′, J = 1,m′

J |Jμ|p, J = 1,mJ 〉

= 1

P μ

[
− F1(t )(ε′∗ · ε)P μ + F2(t )[εμ(ε′∗ · P )

+ ε′∗μ(ε · P )] − F3(t )
(ε · P )(ε′∗ · P )

2M2
P μ

]
, (1)

where ψ (ψ̄ ) is the quark (antiquark) field operator, p (p′)
is the momentum of the initial (final) state of the hadron,
J is total angular momentum for the hadron, mJ (m′

J ) is
the total angular-momentum projection in the initial (final)
state of the hadron, t ≡ (p′ − p)2, M is the mass of the
hadron, P = p′ + p, ε = ε(p,mJ ) and ε′ = ε′(p′,m′

J ) are
the polarization vectors of the hadron in the initial and fi-
nal helicity states,1 respectively, satisfying ε · p = ε′ · p′ = 0,
and ImJ ,m′

J
(t ) represents the helicity amplitudes. In this work,

the possible values +1,−1, and 0 of mJ (and m′
J ) for the spin-

one hadrons are represented by +, −, and 0, respectively. For
simplicity, the charge of the quark is excluded in the definition
of the FFs in Eq. (1).

We adopt the following conventions [12] to calculate helic-
ity amplitudes ImJ ,m′

J
(t ) in the Drell-Yan equivalent frame:

pμ =
(

M
√

1 + τ√
2

,
M

√
1 + τ√
2

,−q

2
, 0

)
, p′μ =

(
M

√
1 + τ√
2

,
M

√
1 + τ√
2

,
q

2
, 0

)
,

εμ(p,mJ = ±) = ∓ 1√
2

(
0,− q

2p+ , 1,±i

)
, εμ(p′,m′

J = ±) = ∓ 1√
2

(
0,

q

2p+ , 1,±i

)
,

εμ(p, 0) = 1

M

(
p+,

−M2 + q2/4

2p+ ,−q

2
, 0

)
, ε′μ(p, 0) = 1

M

(
p+,

−M2 + q2/4

2p+ ,
q

2
, 0

)
, (2)

1Here, helicity refers to the light front helicity, also known as the
light front spin. It is the eigenvalue of the spin operator projected to
the light front longitudinal direction [26].

where vμ ≡ (v+, v−, vx, vy ) is the light front variables in this
paper, q = √−t , and τ ≡ −q2/(4M2).

There is only one helicity amplitude I0,0(t ) for J = mJ =
0 that can be computed from the plus component of the
current defined in Eq. (1), and the charge form factor for
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spin-zero hadron is therefore defined by GC (t ) ≡ I0,0(t ). But,
in the case of J = 1 with mJ (and m′

J ) = +, 0,−, there are
nine helicity amplitudes ImJ ,m′

J
(t ) that can be computed for

the same current. One can reduce them to four amplitudes
I+,−(t ), I+,+(t ), I+,0(t ), and I0,0(t ) using the light front par-
ity and the charge conjugation symmetries in LF dynamics.

Using Eq. (2) in Eq. (1), it is straightforward to extract the
four helicity amplitudes as

I+,+(t ) = F1(t ) + τF3(t ),

I+,0(t ) =
√

τ

2
[2F1(t ) − F2(t ) + 2τF3(t )],

(3)
I+,−(t ) = −τF3(t ),

I0,0(t ) = (1 − 2τ )F1(t ) + 2τF2(t ) − 2τ 2F3(t ).

In the case of the spin-one hadrons, there are three Lorentz-
invariant, elastic FFs Fi (t ), and hence three EM FFs, but
there are four helicity amplitudes. Studies presented in
Refs. [1,6,9,10,12,13] have claimed that computing the EM
FFs is more feasible than the elastic FFs Fi (t ). The four helic-
ity amplitudes in LF dynamics and the three EM FFs create
an ambiguity on how to compute them, and therefore the
relations that define the EM FFs from the helicity amplitudes
are not unique. In principle, this ambiguity can be resolved by
the requirement of rotational symmetry which is dynamical.
There are several choices in which the four helicity amplitudes
can be combined to extract the EM FFs. One can find the most
popular choices in Refs. [1,8–10,13]. The studies available
in Refs. [1,6,12] suggest to adopt the prescription defined by
Grach and Kondratyuk (GK) available in Refs. [7,13] because
this prescription does not contain any contribution from the
helicity amplitude I0,0(t) showing the prescription free from
the zero-mode contributions. In this work, we therefore use
the GK prescription to calculate EM FFs.

Following the GK prescription, one can define the three
EM FFs, the charge FF GC (t ), the magnetic FF GM (t )
and the quadrupole FF GQ(t ), in terms of the four helicity
amplitudes as

GC (t ) = 1

3
[(3 − 2τ )I+,+(t ) + I+,−(t ) + 2

√
2τI+,0(t )], (4)

GM (t ) = 2I+,+(t ) −
√

2

τ
I+,0(t ), (5)

GQ(t ) = 2
√

2

3
[−τI+,+(t ) − I+,−(t ) +

√
2τI+,0(t )]. (6)

The charge root-mean-squared (rms) radius
√

〈r2〉, magnetic
moment μ, and the quadrupole moment Q are defined by [9]

〈r2〉 = −6
∂

∂t
GC (t )

∣∣∣∣
t→0

, (7)

μ = GM (t = 0), (8)

Q = 3
√

2
∂

∂t
GQ(t )

∣∣∣∣
t→0

(9)

with normalization GC (t = 0) = 1. Note that heavy quarko-
nium is charge symmetric, thus the total charge of the system
is zero. We therefore calculate the form factors by consid-
ering only “the quark” contribution. Although this case is
fictitious, it is well defined and can be compared with related
spin-one-hadron theoretical work. It is noted that, in LFWF
representation [54], the rms radii can also be related to the
impact parameter b⊥ ≡ (1 − x)r⊥ [30] by 〈r2〉 = (3/2)〈b2

⊥〉
[21,22].

One can define a total of nine real GPDs for the spin-
one hadrons through the nonlocal matrix elements of the
(axial) vector current on the LF. Five of them are computed
from the nonlocal matrix elements of the same current op-
erator (plus component) which is used as a local operator
in Eq. (1) whereas the remaining four are computed from
that of the axial current [31,36]. Although there are nine
nonlocal matrix elements that can be computed from the
plus component of the current, only five of them are linearly
independent because of the constraints from parity invariance.
Thus, there are five real GPDs that can be calculated from
the five linearly independent nonlocal matrix elements. In this
paper, we only present the (pseudo)scalar and vector meson
GPDs that are computed from the current with no quark
helicity flip because the meson GPDs with no helicity flip
are the ones most readily compared with phenomenological
applications [31]. It is however straightforward to calculate
helicity-flip GPDs using the same method that is used for
helicity-nonflip GPDs.

The five vector meson GPDs for the spin-one hadron are
defined through the nonlocal matrix elements of the vector
current on the LF as [31,36]

VmJ ,m′
J
(x, ξ, t ) �

∫
dz−

2π
eixP +z−〈p′, J = 1,m′

J |ψ̄
(

− z−

2

)
γ +ψ

(
z−

2

)
|p, J = 1,mJ 〉

∣∣∣∣
z+=0,z⊥=0⊥

= −(ε′∗ · ε)H1(x, ξ, t ) + (ε · n)(ε′ · P ) + (ε′∗ · n)(ε · P )

P · n
H2(x, ξ, t ) − (ε · P )(ε′∗ · P )

2M2
H3(x, ξ, t )

+ (ε · n)(ε′ · P ) − (ε′∗ · n)(ε · P )

P · n
H4(x, ξ, t )+

[
4M2 (ε · n)(ε′∗ · n)

(P · n)2

]
H5(x, ξ, t ). (10)

Here, n = (1, 0, 0, 1) is a null vector perpendicular to the
light front direction. We choose Ji’s convention [55] to define

arguments x, ξ , and t of the GPDs Hi, i = 1, 2, . . . , 5, where
x is the momentum fraction carried by the quark in the
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longitudinal direction and ξ is the skewness parameter. In this
work, we choose the Drell-Yan frame �+ = 0, or equivalently
ξ = 0 so that �2(≡ t ) = −�2

⊥ < 0.
It is straightforward to extract the five GPDs in terms

of the five linearly independent nonlocal matrix elements
using Eq. (2) in Eq. (10). Due to the time reversal
symmetry on matrix elements VmJ ,m′

J
(x, 0, t ), one can

write V+,0(x, 0, t ) = −V0,+(x, 0, t ) [31,36], and we there-
fore choose those independent non-local matrix elements
to be V0,0(x, 0, t ), V+,+(x, 0, t ), V+,0(x, 0, t ), V+,−(x, 0, t ).
Thus, the expressions for the GPDs read

H1(x, 0, t ) = 1
3 [V0,0(x, 0, t ) − 2(τ − 1)V+,+(x, 0, t )

+ 2
√

2τV+,0(x, 0, t ) + 2V+,−(x, 0, t )], (11)

H2(x, 0, t ) = 2V+,+(x, 0, t ) − 2√
2τ

V+,0(x, 0, t ), (12)

H3(x, 0, t ) = −V+,−(x, 0, t )

τ
, (13)

H4(x, 0, t ) = 0, (14)

H5(x, 0, t ) = V0,0(x, 0, t ) − (1 + 2τ )V+,+(x, 0, t )

+ 2
√

2τV+,0(x, 0, t ) − V+,−(x, 0, t ). (15)

Note our expressions are consistent with those from
Ref. [36] in the limit ξ = 0. It is interesting to observe that
the integrations of H4(x, 0, t ) and H5(x, 0, t ) over x do not
correspond to Fi (t ) of the local current [see Eq. (1)] and
therefore vanish. This arises from the time reversal constraints
in the case of H4(x, 0, t ). In the case of H5(x, 0, t ), this
arises because of the term nμnν/(P · n)2 whose analog is
absent in the decomposition of the local current [Eq. (1)] as
a consequence of Lorentz-invariance [31,36]. Here, we point
out that the right-hand side of Eq. (15), after integrating over
x, is widely known and cited in the spin-one FF calculations
as the angular condition [12,13]. Thus, the first moments of
the GPDs can be related to Fi (t ) for the spin-one hadrons by
the first set of sum rules on the LF as [31,36]

∫
Hi (x, 0, t ) dx = Fi (t ), i = 1, 2, 3, (16)∫

H4(x, 0, t ) dx = 0,

∫
H5(x, 0, t ) dx = 0. (17)

Similarly, the second moments of the GPDs can be related
to gravitational FFs by a second set of sum rules (via stress
tensor decomposition) as defined in Refs. [27,56].

In the Drell-Yan frame, within the impulse approximation,
the helicity amplitudes ImJ ,m′

J
(t ) and the nonlocal matrix

elements VmJ ,m′
J
(x, 0, t ) in the region 0 �x�1 can be written

as overlap integrals between LFWFs. The expression for
VmJ ,m′

J
(x, 0, t ) reads [29,34]

VmJ ,m′
J
(x, 0, t ) =

∑
λq ,λq̄

∫
d2k⊥

2x(1 − x)(2π )3

×ψJ∗
m′

J
(k′

⊥, x, λq, λq̄ ) ψJ
mJ

(k⊥, x, λq, λq̄ )

(18)

and that for ImJ ,m′
J
(t ) reads [11,23,57]

ImJ ,m′
J
(t ) =

∑
λq ,λq̄

∫ 1

0

dx

2x(1 − x)

∫
d2k⊥
(2π )3

×ψJ∗
m′

J
(k′

⊥, x, λq, λq̄ ) ψJ
mJ

(k⊥, x, λq, λq̄ ), (19)

where k⊥ and k′
⊥ = k⊥ + (1 − x)�⊥ are the respective rela-

tive transverse momenta of the quark before and after being
struck by the virtual photon, λq (λq̄ ) is the light front helicity
of the quark (antiquark). Note that integrating VmJ ,m′

J
(x, 0, t )

over x yields the local matrix elements (helicity amplitudes)
ImJ ,m′

J
(t ). Here, the LFWFs are truncated to only the valence

Fock sector. The valence sector LFWF is normalized accord-
ing to [20]

∑
λq ,λq̄

∫ 1

0

dx

2x(1 − x)

∫
d2k⊥
(2π )3

∣∣ψJ
mJ

(k⊥, x, λq, λq̄ )
∣∣2 = 1. (20)

Note that this convention for normalization is introduced in
Ref. [20] and the nonperturbative solutions of LFWFs are
generated accordingly.

III. FORMALISM

A. Basis light front quantization (BLFQ)

A recent study of heavy quarkonia [20], in a LF Hamilto-
nian approach [41], presents the effective Hamiltonian based,
in part, on the LF holographic QCD [58] as

Heff ≡ k2
⊥ + m2

q

x(1 − x)
+ VT + VL + Vg, (21)

where mq is the mass of the quark. VT is the “soft-wall” light
front holography in the transverse direction and is defined as

VT ≡ κ4ζ 2
⊥ = κ4x(1 − x)r⊥ with r⊥ = rq⊥ − rq̄⊥, (22)

where ζ is holographic variable [58], κ is the confining
strength, and r⊥ is the transverse separation between the quark
and the antiquark. The longitudinal confining potential reads

VL ≡ − κ4

(2mq )2
∂x (x(1 − x)∂x ) with ∂x ≡ (∂/∂x)ζ⊥ . (23)

Vg is the one-gluon exchange term and in the momentum
space, it reads [20,42]

Vg = −CF 4παs

Q2
ūλ′

q
(k′)γμuλq

(k)v̄λq̄
(k̄)γ μvλ′̄

q
(k̄

′
), (24)

where CF = 4/3 is the color factor for the color singlet state,
αs is the fixed coupling constant, and Q2 = −(1/2)(k′ −
k)2 − (1/2)(k̄

′ − k̄)2 is the average momentum squared car-
ried by the exchanged gluon.

In the BLFQ approach, if quarkonium is described by state
vectors |ψJ

mJ
〉, the eigenvalue equations can be defined by

Heff

∣∣ψJ
mJ

〉 = M2
∣∣ψJ

mJ

〉
(25)

and solved nonperturbatively to obtain eigenfunctions
that represent the LFWFs ψJ

mJ
(k⊥, x, λq, λq̄ ) for heavy
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quarkonium. To solve Eq. (25), two functions φnm and χl are
adopted to form the basis in which to evaluate the Hamiltonian
matrix. In the transverse direction, two-dimensional (2D) har-
monic oscillator (HO) functions are adopted and are defined,
in terms of the dimensionless transverse momentum variable
v⊥ (=k⊥/b), by [20]

φnm(v⊥) = eimθv|m|e−v2/2L|m|
n (v2), (26)

where v = |v⊥|, θ = arg v⊥, n and m are the radial and
angular quantum numbers, L

|m|
n (z) is the associated Laguerre

polynomial, and b is the HO basis scale with dimension of
mass. In the longitudinal direction, the basis functions are
defined by

χl (x; α, β )

=
√

4π (2l + α + β + 1)

√
�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

× x
β
2 (1 − x)

α
2 P

(α,β )
l (2x − 1), (27)

where P
(α,β )
l (z) is the Jacobi polynomial, α = β = 4m2

q/κ
2

are dimensionless basis parameters, and we drop α and β from
the arguments of χl hereafter.

Using Eqs. (26) and (27) as basis functions, the expansion
of momentum-space LFWFs reads [20,43]

ψJ
mJ

(k⊥, x, λq, λq̄ ) = 1

b

∑
n,m,l

〈
n,m, l, λq, λq̄

∣∣ψJ
mJ

〉

×φnm

(
k⊥

b
√

x(1 − x)

)
χl (x), (28)

where 〈n,m, l, λq, λq̄ |ψJ
mJ

〉 are the LFWFs in the BLFQ
basis, obtained by diagonalizing the truncated Hamiltonian
matrix [20]. The following truncation is applied to restrict the
quantum numbers:

2n + |m| + 1 � Nmax, l � Lmax. (29)

It is clear from the truncation that Lmax controls the basis
resolution in the longitudinal direction whereas Nmax controls
the transverse momentum covered by 2D-HO functions. In
the BLFQ approach, the total angular momentum J is only
an approximate quantum number due to the breaking of
the rotational symmetry by the Fock sector truncation and
the basis truncation. However, the total angular momentum
projection (mJ ) for the system is conserved:

mJ = m + λq + λq̄ . (30)

Inserting Eq. (28) in Eqs. (18) and (19) yields the integral
over the product of the two 2D-HO functions with different
arguments, and that is simplified using the TM coefficients
[63] to reduce it to an integral over one 2D-HO function
[43]. Then the integral is calculated numerically. Readers
are referred to Refs. [20,43] for further details of the BLFQ
approach.

B. Single basis limit (SBL)

We investigate a special limiting case of BLFQ for calcu-
lating EM FFs of heavy quarkonia. For this purpose, we select
the leading basis function contribution(s) of the LFWFs and

TABLE I. Summary of the model parameters [20].

meson Nmax(=Lmax) αs μg (GeV) κ (GeV) mq (GeV)

8 0.3595 0.02 0.963 1.49
cc̄ 16 0.3595 0.02 0.950 1.51

24 0.3595 0.02 0.938 1.52
8 0.2500 0.02 1.422 4.77

bb̄ 16 0.2500 0.02 1.423 4.78
24 0.2500 0.02 1.422 4.78

scale them to become the sole normalized LFWF for the state
in question. We refer to this severely limited basis space as the
single basis limit (SBL). The SBL represents an eigenstate of
the Hamiltonian with the omission of the one-gluon exchange
term. Thus, the difference between results with the BLFQ
for the LFWFs and the SBL results provides insights into
the role of configuration mixing induced by the effective
one-gluon exchange interaction. Where the differences in a
given observable are large we surmise that the gluon-exchange
dynamics plays a significant role.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss our results for
FFs, associated static moments and GPDs. The details of
the Hamiltonian’s parameters used in calculations are sum-
marized in Table I. The fixed gluon mass μg = 0.02 GeV is
introduced to regularize the singularity present in Eq. (25)
[20]. The convergence study of mass eigenvalues with differ-
ent μg keeping Nmax = Lmax fixed in Ref. [20] suggested that
the mass eigenvalues are well converged with respect to μg .
Therefore, the gluon mass is kept fixed in these calculations.
Similarly, the HO basis scale b is chosen to be equal to the
confining strength κ at the given Nmax = Lmax value and at the
fixed gluon mass μg . Fixed, but flavor-dependent, coupling
constants αs are used to produce results presented in this work.

Our masses are obtained from the mass eigenvalue equa-
tions for total angular momentum projection mJ = 0 at the
given Nmax = Lmax truncation. An important issue that arises
in a LF Hamiltonian approach, such as BLFQ, concerns the
relative sign between different eigenstates. In particular, since
the relative sign between two states with different mJ is not
fixed by the diagonalization (though the signs of all basis
states are fixed by our basis state conventions), we control the
overall sign of each eigenfunction to have positive derivative
at the origin in coordinate space.

A. The EM FFs and the associated static moments

In this subsection, we present results for the EM FFs
and the associated static moments. We start by presenting
the charge FFs GC (t ) for (pseudo)scalar and (axial) vec-
tor mesons in Fig. 1. Note for the (pseudo)scalar mesons
in Fig. 1(a), ηc, χc0, η′

c, ηb, χb0, and η′
b, Eq. (19) directly

produces the charge FFs as GC (t ) ≡ I0,0(t ), whereas for the
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FIG. 1. −t GC (t ) vs −t for (pseudo)scalar mesons (a) and (axial) vector mesons (b) in the BLFQ approach.

vector mesons in Fig. 1(b), J/ψ, χc1, ψ ′, ϒ, χb1, and ϒ ′, the
GK prescription [Eq. (4)] is used to calculate the charge FFs.
The FFs for the radially excited charmonia, η′

c and ψ ′, exhibit
a tendency to develop a node while the corresponding states in
bottomonium show this tendency only at larger values of −t
(not shown). Nodes in FFs are common features for excited
states in nonrelativistic systems.

We present the charge FF results for four selected mesons,
η′

c, η′
b, J/ψ , and ϒ ′ at a sequence of Nmax = Lmax = 8, 16,

and 24 values to gain a perspective on their convergence. In
Fig. 2(a), we present the convergence of −t GC (t ) for the
pseudoscalar mesons, and in Fig. 2(b) we present the same
observable for the vector mesons. The results show a good
convergence trend over this range of −t as evident by finding
that the Nmax = Lmax = 24 and Nmax = Lmax = 16 results
are nearly coincident with each other in contrast with the
Nmax = Lmax = 8 results presented in Fig. 2. This observed
convergence in the FFs is reassuring since the charmonia and
bottomonia spectroscopy are also reasonably well converged
at Nmax = Lmax = 24 [20]. Therefore, we only present our
FF and GPD results calculated with Nmax = Lmax = 24. The
difference between the Nmax = Lmax = 24 and 8 values are
presented as our uncertainty estimate.

We now turn our attention to the charge mean squared
radii of charmonia and bottomonia calculated both in the
BLFQ and the SBL approaches. We note again that the charge
mean squared radius is an artificial quantity defined with the
neglect of the contribution of the antiquark to the form factor.
Table II lists the charge mean squared radii (in fm2) of selected
(pseudo)scalar mesons, and Table III lists those of selected
(axial) vector mesons. We see from Tables II and III that
the charge radii of the selected charmonia states are larger
than that of their counterparts in bottomonia. This relative
relationship is found for both BLFQ and SBL results as well as
for the available CI results. This observation about the relative
radii can be understood simply from the tendency towards
the nonrelativistic limit with increasing quark mass. It is also
noted from Table II that the charge radius of ηc is smaller than
that of χc0 both in the BLFQ and SBL approaches, and this
relationship is consistent with the lattice results [3].

We note Tables II and III show significant differences
among the results calculated in different formalisms which
is reasonable considering the major distinctions among the
formalisms. For example, in Ref. [4], the DSE results were
calculated describing J/ψ by the solutions of the homo-
geneous Bethe-Salpeter equations (BSE) in rainbow-ladder
truncation. The DSE results also reflect the adoption of an

c: Nmax = Lmax = 8

c: Nmax = Lmax = 16

c: Nmax = Lmax = 24

b: Nmax = Lmax = 8

b: Nmax = Lmax = 16

b: Nmax = Lmax = 24
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FIG. 2. −tGC (t ) vs −t for η′
c and η′

b (a) and J/ψ and ϒ (b) with different Nmax = Lmax in the BLFQ approach.
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TABLE II. The charge mean squared radii 〈r2〉 of (pseudo) scalar charmonia and bottomonia [Eq. (7)] with Nmax = Lmax = 24. The
difference between the Nmax = Lmax = 24 and 8 values are presented as the uncertainty for the BLFQ results. We compare our results with
those of the contact interaction (CI), lattice and Dyson-Schwinger equation (DSE) methods.

(fm2) ηc χc0 η′
c ηb χb0 η′

b

this work (BLFQ) 0.043(5) 0.07(1) 0.149(8) 0.016(1) 0.037(1) 0.056(2)
this work (SBL) 0.073 0.145 0.218 0.0295 0.0591 0.0886
CI [16–18] 0.044 0.012
Lattice [3] 0.063(1) 0.095(6)
DSE [4,5] 0.048(4)

effective running coupling via one-gluon exchange. Among
the many differences with our BLFQ results we note our use
of a fixed coupling. Furthermore, in Refs. [16–18], the CI
results were calculated using contact interactions within the
framework of the DSE and BSE. Despite several differences
between the CI and BLFQ approaches, there is however a
reasonable agreement among the resulting charge radii for
the mesons ηc and ηb. We also observe that for each meson
the radius calculated in the SBL approach is larger than the
radius calculated in the BLFQ approach. This observation can
be understood from the fact that SBL results are produced
by only taking the leading basis function into account, which
means that the radius is controlled by the dominant mode and
by the confining length scale, while the BLFQ includes the
gluon exchange, an attractive interaction.

Next, we present the magnetic FFs GM (t ) and the
quadrupole FFs GQ(t ) of vector mesons calculated with
Nmax = Lmax = 24 in the BLFQ approach. Figure 3 presents
the magnetic FFs GM (t ) [Eq. (5)] and Fig. 4 presents the
quadrupole FFs GQ(t ) [Eq. (6)]. As we presented the conver-
gence of the charge FFs with respect to basis truncation above,
we present the convergence of the −t GM (t ) and GQ(t ) with
respect to Nmax = Lmax in Figs. 5(a) and 5(b), respectively.
The results, again, show a good convergence trend since the
Nmax = Lmax = 24 and Nmax = Lmax = 16 values are in close
agreement over the range of −t presented. On the other hand
these same form factors have visibly larger differences from
the results at Nmax = Lmax = 8.

The magnetic and quadrupole moments associated with
the vector mesons J/ψ, ψ ′, ϒ , and ϒ ′ are calculated and
presented in Tables IV and V, respectively. The magnetic and
quadrupole moments calculated in the SBL approach are 2.0
and −1.0, respectively, the canonical values, as expected. The
SBL results can also be understood by analyzing the helicity
amplitudes I+,0 and I+,− in Eqs. (5), (6), (8), and (9). In

the SBL approach, there is no contribution from either of
these amplitudes to the magnetic and quadrupole moments,
and that is because only the leading basis function contribu-
tion(s) of the LFWFs is (are) taken into account. The BLFQ
magnetic moments for the mesons J/ψ, ϒ , and ϒ ′ are below
2.0 while the results from the cited literature are above 2.0
where available. This led us to make additional checks of
our calculations to confirm the accuracy of our results. It is
interesting to note that theoretical results for the rho meson
are often below 2.0 as well [59–62]. For example, in Ref. [61],
the investigation in the framework of a covariant extension of
the LF formalism has found the rho meson magnetic moment
to be 1.83. Another investigation in the LF quark model [62]
has found it to be 1.92 and an investigation in the framework
of QCD sum rules [60] has found it to be 1.5 ± 0.3.

Inspecting our results in Table IV, we comment that the
magnetic moments of the vector mesons calculated in the
BLFQ approach are closer to corresponding SBL quantities
for the case of bottomonia than for the case of charmonia
suggesting that, for this quantity, the role of the gluon ex-
change interaction is reduced in bottomonium relative to char-
monium. Turning to Table V, we find that that the quadrupole
moment result for J/ψ calculated in the BLFQ approach
is closer to the corresponding CI result than to the DSE
and Lattice results. The magnetic and quadrupole moments
calculated in the BLFQ approach clearly show the deviations
from corresponding SBL results (μ = 2.0 and Q = −1.00)
which simply underscores the fact that deviations from SBL
values point to the gluon exchange dynamics within heavy
quarkonia.

Now, before we close this subsection we present compar-
isons of selected EM FFs calculated in the SBL and BLFQ
approaches. However, we first note that there is likely to be a
dominant effect from the difference in the rms radii between
these two approaches. To reduce the impact of this simple

TABLE III. The charge mean squared radii 〈r2〉 [Eq. (7)] for (axial) vector charmonia and bottomonia. The difference between the Nmax =
Lmax = 24 and 8 values are presented as the uncertainty for the BLFQ results.

(fm2) J/ψ χc1 ψ ′ ϒ χb1 ϒ ′

this work (BLFQ) 0.045(3) 0.075(2) 0.15(1) 0.016(1) 0.0270(4) 0.057(3)
this work (SBL) 0.077 0.081 0.221 0.02996 0.0315 0.08899
CI [18] 0.068 0.038
Lattice [3] 0.066(2)
DSE [4,5] 0.052(3)
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FIG. 3. The magnetic FFs GM (t ) [Eq. (5)] for selected vector charmonia and bottomonia states in the BLFQ approach.

difference, we can scale the momentum transfer variable by
the appropriate ratio of the charge radii. For this comparison,
we select the EM FFs for J/ψ and ϒ . Following the logic
for scaling the momentum transfer for the SBL results, the
−t values of the SBL charge FF of a vector meson has
been scaled so that its slope equals to that of corresponding
quantity calculated in the BLFQ approach while keeping both
quantities at t = 0 fixed. Then, the −t values of the SBL
magnetic and quadrupole FFs are multiplied by the same
factor that sets the slopes of the SBL and BLFQ charge FFs
for the given meson. The scale factor applied to the SBL
results for −t is found to be 1.71 for the case of J/ψ and
1.84 for the case of ϒ . Figures 6(a) and 6(b) present the
resulting comparisons of the J/ψ EM FFs and the ϒ EM
FFs, respectively. The BLFQ magnetic and quadrupole FFs
in Fig. 6 are very similar to the corresponding scaled SBL
quantities with deviations becoming somewhat visible above
approximately −t = 2.4 GeV2 in the case of J/ψ and above
approximately −t = 6 GeV2 in the case of ϒ . This suggests
that the dominant role of gluon exchange dynamics for these
form factors is a rescaling of the size of the system from the
size dictated by the confinement scale.

J/

2 2.5 3

−0.02

−0.04

−0.06
0.5

0

0.02

G
Q

(t)

− t (GeV2)

FIG. 4. The quadrupole FFs GQ(t ) [Eq. (6)] for selected vector
mesons in the BLFQ approach.

B. Generalized parton distributions

In this subsection, we present GPDs for a selection of
heavy quarkonia starting with the (pseudo)scalar GPDs. For
the (pseudo)scalar mesons such as ηc, χc0, η′

c, ηb, χb0, and
η′

b, Eq. (18) directly produces the GPDs, H (x, ξ = 0, t ) ≡
V0,0(x, 0, t ). In the previous paper [43], we have presented
3D plots of (pseudo)scalar GPDs of positronium with the one
photon exchange (where the longitudinal confining term in
the Hamiltonian is absent, of course). We first present the
(pseudo)scalar GPDs at fixed |t | to observe the x-dependence
of the GPDs in the nonzero momentum transfer limit.
Figure 7(a) represents the (pseudo)scalar GPDs of charmonia
and Fig. 7(b) represents corresponding quantities of their
counterpart bottomonia at |t | = 0.765 GeV2 calculated in the
BLFQ approach with Nmax = Lmax = 24. It is interesting to
observe the change in character of the x-dependence of the
GPDs between the ground states and the radially excited
states, where oscillatory structures emerge. With our choice of
−t value, there is similarity in the structures of corresponding
states in charmonium and bottomonium as seen in comparing
both panels of Fig. 7.

Let us turn our attention to vector meson GPDs for the
ground state identified as 13S1 of heavy quarkonia2 in the
BLFQ approach with Nmax = Lmax = 24. Each vector me-
son has five GPDs, but we have seen from Eq. (14) that
only four of them are nonzero on the LF. Figures 8 and 9
show the nonzero GPDs for J/ψ and ϒ , respectively. It is
interesting to note that for both J/ψ and ϒ , the integration
of GPD H5(x, 0, t ) over x does not vanish except at |t | =
0 which contradicts the consequence of Lorentz invariance
[see Eq. (17) and associated text]. As we have pointed out
before, the x integration of GPD H5(x, 0, t ) is the angular
condition, the same term that is widely used in spin-one FF
on the LF. It is not surprising that due to Lorentz symmetry

2We use N 2S+1SJ to identify meson states wherever relevant, where
N is the principal quantum number. According to the conventions of
the Particle Data Group [64], N = L + n, n is the radial quantum
number, L is the total orbital quantum number, S is the total intrinsic
spin, and J is the total angular momentum.
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FIG. 5. The comparison of magnetic FFs GM (t ) (a) and the quadrupole FFs GQ(t ) (b) for 13S1 (J/ψ and ϒ) with different Nmax = Lmax

in the BLFQ approach.

breaking, the angular condition is not satisfied since we obtain
a nonvanishing result for the x integration of GPD H5(x, 0, t )
except at the forward limit (|t | = 0). Repairing this deficiency
requires the inclusion of higher Fock sectors in BLFQ, which
is a subject for future research. The x-dependence of the
ground-state vector meson GPDs is comparable with the
corresponding quantities presented in Ref. [33]. The work in
Ref. [33] presents the GPDs for the charged ρ meson in a
light front constituent quark model. Although the ρ meson is
light compared to the heavy quarkonia, the peak somewhere
between x = 0.4 to x = 0.6 is the feature that both results
have in common.

Next, we present GPDs for the radially excited meson state
identified as 23S1 (ψ ′ and ϒ ′). Figures 10 and 11 show the
nonzero vector meson GPDs for ψ ′ and ϒ ′, respectively. We
again comment that, for both ψ ′ and ϒ ′, the integration of
GPD H5(x, 0, t ) over x does not vanish except at |t | = 0
similar to what we found for the case of ground-state vector
meson. We note that the decaying trend of the vector meson
GPDs (Figs. 10, 11) is more rapid with increasing |t | for the
radially excited state compared to the corresponding GPDs
for the ground state (Figs. 8, 9). This trend is consistent
with the fact that ψ ′ (ϒ ′) has narrower radial extension in
momentum space compared to that of J/ψ (ϒ). Similarly,
these differences correlate with the relative sizes of these
mesons as seen in the results of Table III. That is, larger charge
rms radii correlate with smaller spread in momentum space,
as expected. Furthermore, in the forward limit t = 0, the

TABLE IV. Magnetic moments μ [Eq. (8)] for vector mesons.
The difference between the Nmax = Lmax = 24 and 8 values are
presented as the uncertainty for the BLFQ results.

J/ψ ψ ′ ϒ ϒ ′

this work (BLFQ) 1.952(3) 2.05(2) 1.985(1) 1.992(1)
this work (SBL) 2.00 2.00 2.00 2.00
CI [18] 2.047 2.012
Lattice [3] 2.10(3)
DSE [4,5] 2.13(4)

x-dependence of the vector meson GPDs changes character
significantly for the radially excited states compared to that of
the corresponding ground states. This observation is useful as
the x-dependence of the GPDs in the forward limit is directly
connected to the partonic interpretation of the hadronic spin
[27,31,65].

From the GPDs presented in this work it can be observed
the decaying trend of the vector meson GPDs with x is rapid
for bottomonia compared to the GPDs for their counterparts in
charmonia, and this trend can be understood from considering
the relative proximity to the nonrelativistic limit where we
expect that increasing quark mass leads to a sharper peak in x.
Similarly, the rapid fall-off trend of the GPDs with x for heavy
quarkonia reflects the consequence of the impulse approxima-
tion. This follows the notion that the single quark cannot ac-
count for very large longitudinal momentum fraction for equal
mass quark constituents. This observation is consistent with
properties of the deuteron vector GPDs available in Ref. [36].

Note the vector meson GPDs, investigated in this work,
play important roles in various applications. The second mo-
ment of GPD H2(x, 0, 0) gives the spin-one angular momen-
tum via a sum rule [27,56], and GPD H5(x, 0, 0) is equal to
b1(x), the deep inelastic scattering (DIS) structure function,
for the spin-one target such as the deuteron [27,31,35,66].
There is growing interest in these quantities since the an-
nouncements of the experimental measurements on b1(x)
from HERMES [39,65]. Our GPD results, presented in the

TABLE V. Quadrupole moments (Q × M2) [Eq. (9)] for vector
mesons. The results are presented as unitless, and the difference
between the Nmax = Lmax = 24 and 8 values are presented as the
uncertainty for the BLFQ results.

J/ψ ψ ′ ϒ ϒ ′

this work (BLFQ) − 0.78(2) 0.2(2) − 0.731(9) 0.1(1)
this work(SBL) − 1.000 − 1.000 − 1.000 − 1.000
CI [18] − 0.748 − 0.704
Lattice [3] − 0.23(2)
DSE [4,5] − 0.28(1)
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FIG. 6. The comparisons of the EM FFs for 13S1 [J/ψ (a) and ϒ (b)] in the BLFQ and SBL approaches.

off-forward limit in this work provide insight to further inves-
tigate angular momentum and the structure functions for the
spin-one target within BLFQ.

V. SUMMARY AND OUTLOOK

We have calculated the EM FFs for a selection of heavy
quarkonia. We have compared the charge radii, the magnetic
moments, and quadrupole moments calculated in both BLFQ
and SBL approaches with the results from other approaches
available in the literature. The differences between the BLFQ
and SBL results for selected mesons highlight the dynamics of
the internal structure of heavy quarkonia. We have also studied
the convergence of BLFQ results and find good convergence
at Nmax = Lmax = 24. We presented the GPDs for selected
(pseudo)scalar and vector mesons. We have also pointed out
that our GPD results in specific kinematic regions, can be
linked with DIS structure functions to further investigate the
spin-one hadronic structure. Furthermore, our GPD results in
three dimensions, in the region t �= 0 provide insight into the
nonperturbative structure of the spin-one system and could

facilitate making connections between GPDs and the partonic
interpretation in the off-forward limit.

We foresee a number of extensions such as the adoption
of BLFQ results with running coupling [21]. In addition,
within BLFQ, one can choose the transverse component of
the current operator to calculate the magnetic form factor and
compare the associated results with the corresponding quanti-
ties presented in this work [49]. This proposal is inspired by
the fact that, in nonrelativistic quantum mechanics, the mag-
netic moments are computed from the spatial current density
operator. One can further investigate GPDs in the nonzero
longitudinal momentum transfer frame. Within BLFQ, the
gravitational form factors of the spin-one hadrons can be
studied via the second moment of such GPDs. Such an inves-
tigation within BLFQ can provide insight to the hadronic spin
structure, and in particular the quark’s angular momentum
within the hadron. In addition, within this formalism, one can
calculate the transverse momentum dependent distribution
(TMDs) for spin-one mesons and investigate the meson spin
contribution that is carried by orbital angular momentum of
the quarks. Ultimately, within the BLFQ approach, one can
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FIG. 7. Helicity nonflip (pseudo)scalar GPDs H (x, ξ = 0, t = −�2
⊥) [Eq. (18)] for charmonia (a) and bottomonia (b) at |t | = 0.765 GeV2

in the BLFQ approach. Note t ≡ �2 = −�2
⊥, where �⊥ is the transverse momentum transfer between the initial and final states of the meson

and x is the average momentum fraction carried by the quark in the longitudinal direction.
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FIG. 8. 3D plot of helicity nonflip vector meson GPDs, Hi (x, ξ = 0, t = −�2
⊥), i = 1, 2, 3, 5 [Eqs. (11), (12), (13), and (15)] for

J/ψ (13S1) in the BLFQ approach.

FIG. 9. 3D plot of helicity nonflip vector meson GPDs, Hi (x, ξ = 0, t = −�2
⊥), i = 1, 2, 3, 5 [Eqs. (11), (12), (13), and (15)] for ϒ (13S1)

in the BLFQ approach.
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FIG. 10. 3D plot of helicity nonflip vector GPDs, Hi (x, ξ = 0, t = −�2
⊥), i = 1, 2, 3, 5 [Eqs. (11), (12), (13), and (15)] for ψ ′ (23S1) in

the BLFQ approach.

FIG. 11. 3D plot of helicity non-flip vector GPDs, Hi (x, ξ = 0, t = −�2
⊥), i = 1, 2, 3, 5 [Eqs. (11), (12), (13), (15)] for ϒ ′ (23S1) in the

BLFQ approach.

035208-12



FORM FACTORS AND GENERALIZED PARTON … PHYSICAL REVIEW C 99, 035208 (2019)

investigate proton’s spin structure and reveal the dynamics of
quark and gluon contributions to the proton spin.
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