
PHYSICAL REVIEW C 99, 035206 (2019)

Basis light front quantization for the charged light mesons with color singlet
Nambu–Jona-Lasinio interactions
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We apply the basis light front quantization (BLFQ) approach to describe the valence structures of the charged
light meson ground states. Specifically, the light front wave functions of π±, ρ±, K±, and K∗± are obtained as
the eigenvectors of the light front effective Hamiltonians with confinement potentials supplemented by the color
singlet Nambu–Jona-Lasinio (NJL) interactions. We adjust our model such that the spectrum of these ground
states and the charge radii of the pseudoscalar states agree with experimental results. We present the elastic form
factors and parton distribution amplitudes (PDAs) as illustrations of the internal structures of the pseudoscalar
pions and kaons in terms of valence quarks.
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I. INTRODUCTION

Light mesons provide testing grounds for nonperturbative
approaches to quantum chromodynamics (QCD), as explain-
ing their structures in terms of quarks and gluons requires
formulating the strong interaction beyond the perturbative
expansions. While the underlying symmetry of QCD is the
SU(3) local color gauge symmetry, in the limit of vanish-
ing quark mass there exist global chiral symmetries in the
Lagrangian. However, these chiral symmetries are broken
by nonzero quark masses and by the dynamics of QCD.
With only quarks as the effective degrees of freedom, the
Nambu–Jona-Lasinio (NJL) model maintains the local chiral
symmetry in the Lagrangian while allowing for the dynamical
breaking of such symmetry [1–4]. Therefore, the NJL inter-
actions are natural candidates for the effective dynamics of
quarks inside the light mesons. With equal time quantization,
light meson structures have been solved using the NJL model
within the framework of Bethe-Salpeter equations (BSEs) in
Refs. [5–7]. With the NJL interactions, one could also solve
for the baryon systems [8–10]. While with QCD interactions,
various approaches have been applied to solve for the struc-
tures of meson systems, including BSE [11–31], lattice QCD
[32–39], and other approaches [40–43].

In the light front quantization framework, quantization
conditions for fields are specified at equal light front time
x+ = x0 + x3. Within this framework, the basis light front
quantization (BLFQ) is a Hamiltonian approach for solving
bound-state problems. Specifically, the light front wave func-
tions, expanded in terms of orthonormal basis functions, are
obtained as eigenfunctions of the light front Hamiltonian. The
Hamiltonian of the system under investigation then takes the
form of a matrix in the representation of these orthonormal
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functions. A significant advantage of the light front Hamilto-
nian approach is the facility for evaluating observables using
the resulting light front wave functions, as we illustrate for the
charged light mesons in the present work.

Earlier applications of the BLFQ were developed for the
positronium system with a discretized longitudinal momen-
tum basis and the two-dimensional (2D) harmonic oscillator
basis for the transverse momenta [44–49]. The addition of
a longitudinal confinement potential to the effective Hamil-
tonian allowed the expansion of the longitudinal momentum
dependence of the light front wave function in terms of
square-integrable functions. Combining the transverse and
longitudinal confinements with the one-gluon exchange inter-
action was subsequently applied to the valence structures of
heavy quarkonium [50–56]. Meanwhile, further developments
within the BLFQ approach are being made for a number of
applications in hadron physics [57–59].

In this work, we describe the structure of charged light
mesons in terms of the light front wave functions for the
valence quarks. By subsuming self-energy contributions to the
meson structure from sea quarks and gluons, these valence
quarks resemble the constituent quarks. The parameter space
of our BLFQ-NJL model is spanned by the quark masses, the
confining strengths, and the coupling constants of the NJL
interactions. This parameter space is constrained to reproduce
the mass spectrum for the π±, ρ±, K±, and K∗± ground
states summarized by the Particle Data Group (PDG) [60].
Aside from the mass spectrum, we also consider the com-
parison of π+ and K+ elastic form factors with available
experimental data. The charge radii extracted from these form
factors are then used to fix the remaining scales of our model.
We also present decay constants and parton distribution am-
plitudes (PDAs) of π+, ρ+, K+, and K∗+.

Experimental results on the elastic form factor for the pion
are available in Refs. [61–65]. Measurements of the elastic
form factor for the kaon can be found in Refs. [66–68],
with data from the JLab 12 GeV experiment expected [69].
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References [70,71] and references therein provide additional
discussions on these elastic form factors. For the pion PDA,
Refs. [72,73] provide experimental results. A selection of
theoretical calculations of the pion and the kaon PDAs can
be found in Refs. [19,74–78].

This article is organized as follows. Section I gives the
introduction. Section II briefly introduces the Lagrangian of
the color singlet NJL model. Section III describes the BLFQ
framework and how to evaluate the matrix elements of the
NJL interactions within this framework. We present our re-
sults for decay constants, charge radii, elastic form factors,
and parton distribution amplitudes in Sec. IV. The summary
and concluding remarks are given in Sec. V.

II. COLOR SINGLET NAMBU–JONA-LASINIO
INTERACTIONS

With only quarks as the explicit degrees of freedom, the
Nambu–Jona-Lasinio model is constructed through a La-
grangian that preserves global chiral symmetries. Therefore,
within this model of low-energy QCD, dynamics due to gluon-
quark coupling and gluon self-couplings are absorbed into
local fermion self-interactions. The Lagrangian of color sin-
glet four-fermion interactions in the three-flavor NJL model is
given by Ref. [1] as

L(4)
NJL,SU(3) = ψ (i/∂ − m)ψ+Gπ

8∑
i=0

[(ψλiψ )2 + (ψ iγ5λ
iψ )2]

− Gρ

8∑
i=0

[(ψγμλiψ )2 + (ψγμγ5λ
iψ )2]

− GV(ψγμψ )2 − GA(ψγμγ5ψ )2. (1)

Here ψ = (u, d, s)T with u, d, and s representing the up,
down and strange quark Dirac spinor fields respectively. The
letter “T” on the superscript stands for the matrix transpose.
The λi are the Gell-Mann matrices in the flavor space. The
coefficients Gπ , Gρ , GV, and GA are independent coupling
constants of the theory. In this article, we consider color
singlet NJL interactions in the form of Eq. (1) only, although
color octet interactions are also available in Ref. [1].

Within the NJL Lagrangian given by Eq. (1), local chiral
symmetries are explicitly broken only by the nonvanishing
quark mass, while dynamical chiral symmetry breaking hap-
pens at the level of Green’s functions. The global U(1) axial
symmetry is still preserved by the interactions in Eq. (1).
However, this axial symmetry is broken in QCD by field the-
ory effects. Determinant terms can be introduced to account
for such effects in the NJL model [1]. Explicitly, we have the
following term in additional to Eq. (1):

Ldet = GD[det ψ (1 + γ5)ψ + det ψ (1 − γ5)ψ], (2)

where the determinants are taken in the flavor space, resulting
in six-fermion interactions. Notice that aside from the kine-
matic term, interactions in Eqs. (1) and (2) are all local contact
interactions.

In the scenario where only the up quarks and the down
quarks are active, determinant terms in Eq. (2) are reduced

to four-fermion interactions. Explicitly, we have

Ldet = 2GD{uu dd + uγ5udγ5d − ud du − uγ5d dγ5u}. (3)

In this case of only two light quarks, one version of the
Lagrangian for the NJL model is given by

LNJL,SU(2) = ψ (i/∂ − m)ψ + Gπ

2
[(ψψ )2 − (ψγ5

−→τ ψ )2]

− Gρ

2
[(ψγμ

−→τ ψ )2 − (ψγμγ5
−→τ ψ )2]

− GV(ψγμψ )2 − GA(ψγμγ5ψ )2, (4)

where τ i are the Pauli matrices. Equation (4) is consistent with
the three-flavor Lagrangian in Eq. (1) when determinant terms
defined by Eq. (2) are added. After setting GA = 0, Eq. (4) is
reduced to the NJL Lagrangian in Ref. [5].

III. BASIS LIGHT FRONT QUANTIZATION IN THE
MESON VALENCE QUARK FOCK SECTOR

A. Basis representation for the meson valence quark Fock sector

Within the framework of light front quantization, structures
of bound states are embedded in the light front wave functions
|	〉. The light front wave function is solved from the light
front Schrödinger equation

Heff |	〉 = M2|	〉, (5)

where Heff is the effective Hamiltonian of the system. For
simplicity, our model only concerns the valence quark Fock
sector of the mesons, leaving contributions to the hadron
structures from sea quarks and gluons implicit. We only need
to construct the valence Fock sector wave functions for the
positively charged mesons, leaving properties of negatively
charge mesons obtainable through the charge conjugation.

Explicitly, when the Fock space of the hadron wave func-
tion is truncated to the valence quark and antiquark, the light
front eigenstate for the positively charged meson is given by

|	meson(P+,
−→
P ⊥, J, mJ )〉

=
∑
r,s

∫ +∞

0

dk+

4πk+

∫
d
−→
k ⊥

(2π )2

∫ +∞

0

d p+

4π p+

∫
d−→p ⊥

(2π )2

× 4πP+δ(k+ + p+ − P+)(2π )2δ(
−→
k ⊥ + −→p ⊥ − −→

P ⊥)

×	rs(k, p; P, J, mJ )b†
r (k)d†

s (p)|0〉 (6)

=
∑
r,s

∫ 1

0

dx

4πx(1 − x)

∫
d−→κ ⊥

(2π )2
ψrs(x,

−→κ ⊥)

× b†
r (xP+,−→κ ⊥ + x

−→
P ⊥)

× d†
s ((1 − x)P+,−−→κ ⊥ + (1 − x)

−→
P ⊥)|0〉, (7)

where P = k + p is the total momentum of the meson,
x = k+/P+ is the longitudinal momentum fraction carried

by the valence quark, and −→κ ⊥ = −→
k ⊥ − x

−→
P ⊥ is the relative

transverse momentum. In this limited Fock space, the meson
has fixed total angular momentum projection mJ . The total
angular momentum J is dynamical in light front quantization,
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the conservation of which is expected if one does not trun-
cate the Fock space expansion. We find it is approximately
conserved in our previous BLFQ works for low-lying states
[46–48,50–58] as well as in this work so we include it as a
label for our solutions. In Eq. (6), the creation operator d†

s (p)
creates an antiquark with spin s and light front 3-momentum
p from the vacuum, while the operator b†

r (k) creates a quark
with spin r and momentum k. In Eq. (7), momenta are
written in terms of longitudinal momentum fractions and the
relative transverse momentum, such that the conservation of
the total light front 3-momentum P is ensured. The function
ψrs(x,

−→κ ⊥) is recognized as the valence Fock sector light
front wave function in momentum space for the meson, with
its normalization defined by

∑
r,s

∫ 1

0

dx

4πx(1 − x)

∫
d−→κ ⊥

(2π )2
ψ∗

rs(x,
−→κ ⊥)ψrs(x,

−→κ ⊥) = 1.

(8)

In order to solve the light front wave function ψrs(x,
−→κ ⊥)

from Eq. (5), we formally decompose the effective Hamilto-
nian into a two-body term and an interaction term. Explicitly,
we write down

Heff = H0 + H eff
int , (9)

where H0 contains the kinematic terms and the two-body
confinement potentials, leaving H eff

int with the remaining in-
teraction terms. Following Refs. [50,52], in the valence Fock
sector H0 is given by

H0 =
−→κ 2

⊥ + m2

x
+

−→κ 2
⊥ + m2

1 − x
+ κ4x(1 − x)−→r 2

⊥

− κ4

(m + m)2
∂xx(1 − x)∂x, (10)

where the first two terms are the kinematic energy of the quark
and the antiquark, the third term is the transverse confinement
potential, and the last term is the longitudinal confinement
potential. Here m and m are the quark mass and the antiquark
mass respectively. Notice that the vector −→κ ⊥ stands for the
relative transverse momentum of the valence quarks while−→r ⊥ is the conjugate variable of −→κ ⊥. The scalar κ is the
confining strength, which is unrelated to the modulus of −→κ ⊥.

Following Refs. [50,52], we then choose the expansion of
the light front wave function for the valence quarks,

ψrs(x,
−→κ ⊥) =

∑
nml

ψ (n, m, l, r, s) φnm

( −→κ ⊥
√

x(1 − x)

)
χl (x),

(11)

where φnm is the two-dimensional (2D) harmonic oscillator
function, and χl is the longitudinal basis function. Explicitly,
φnm is defined as

φnm(−→q ⊥; b) = 1

b

√
4πn!

(n + |m|)!
( |−→q ⊥|

b

)|m|
exp

(
−

−→q ⊥2

2b2

)

× L|m|
n

(−→q ⊥2

b2

)
eimϕ, (12)

with tan(ϕ) = q2/q1 and L|m|
n being the associated Laguerre

function. Meanwhile, χl (x) is given by

χl (x; α, β )

=
√

4π (2l + α + β + 1)

√
�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

× xβ/2(1 − x)α/2 P(α,β )
l (2x − 1), (13)

with P(α,β )
l (z) being the Jacobi polynomial and

α = 2m(m + m)/κ2, (14a)

β = 2m(m + m)/κ2. (14b)

Additionally, in terms of the basis expansion defined by
Eq. (11), the normalization condition specified by Eq. (8)
becomes ∑

nmlrs

ψ∗(n, m, l, r, s)ψ (n, m, l, r, s) = 1. (15)

In this article, the default choice of the scale parameter b in
Eq. (12) is identical to the confining strength κ in Eq. (10).
Then, with the definitions of the basis functions given by
Eqs. (12) and (13), the H0 term in Eq. (10) is diagonal with
respect to elements of the basis expansion. Explicitly using
Eq. (6), one can show that

〈	 ′
meson(P′+,

−→
P ′⊥)|H0|	meson(P+,

−→
P ⊥)〉

= 4πP+δ(P′+ − P+)(2π )2δ(
−→
P ′⊥ − −→

P ⊥)

×
∑
r′,s′

∑
r,s

δr′rδs′s

∫ 1

0

dx′

4πx′(1 − x′)

∫
d−→κ ′⊥

(2π )2

×
∫ 1

0

dx

4πx(1 − x)

∫
d−→κ ⊥

(2π )2
ψ ′∗

r′s′ (x′,−→κ ′⊥)

× H0 ψrs(x,
−→κ ⊥). (16)

Here |	 ′〉 and |	〉 are independent kets with the same J
and mJ which have been suppressed to simplify the nota-
tion. Therefore, Eq. (16) allows the matrix element of H0 to
be calculated for arbitrary wave functions ψ ′

r′s′ (x′,−→κ ⊥) and
ψrs(x,

−→κ ⊥). This allows any basis representation, including
Eq. (11), to be applied for the eigenvalue problem of the
effective Hamiltonian.

Specifically, with the basis expansion of ψrs(x,
−→κ ⊥) in the

form of Eq. (11), Eq. (16) becomes

〈	 ′
meson(P′+,

−→
P ′⊥)|H0|	meson(P+,

−→
P ⊥)〉

= 4πP+δ(P′+ − P+)(2π )2δ(
−→
P ′⊥ − −→

P ⊥)

×
∑

n′m′l ′s1′s2′

∑
nmls1s2

δn′nδm′mδl ′lδs1′s1δs2′s2

× �0(n, m, l )ψ ′ ∗(n′, m′, l ′, s′
1, s′

2)ψ (n, m, l, s1, s2).

(17)
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When the light front wave function is given by one basis
function from Eq. (11) such that ψ ′(n′, m′, l ′, s′

1, s′
2) =

δn′N ′δm′M ′δl ′L′δs1′S1′δs2′S2′ and ψ (n, m, l, s1, s2) =
δnNδmMδlLδs1S1δs2S2, Eq. (17) is apparently a diagonal matrix:

〈n′, m′, l ′, s′
1, s′

2|H0|n, m, l, s1, s2〉
= �0(n, m, l )δn′nδm′mδs1′s1δs2′s2, (18)

with its eigenvalue given by

�0(n, m, l; m, m, κ )

= (m + m)2 + 2κ2(2n + |m| + l + 3/2)

+ κ4

(m + m)2
l (l + 1). (19)

B. Matrix elements of the NJL interactions

The light front Hamiltonian P− is obtained by the Leg-
endre transform of the corresponding Lagrangian after we
eliminate the constrained field components, which usually
leads to instantaneous interactions. The effective Hamiltonian
in Eq. (5) is then related to the light front Hamiltonian by
Heff = P+P− − −→

P ⊥2, where P+ and
−→
P ⊥ are the conserved

total momenta. While introducing the NJL dynamics into the
BLFQ effective Hamiltonian, we ignore instantaneous inter-
actions due to the NJL interactions for simplicity. Therefore
we only consider the contribution to the light front effective
Hamiltonian from the NJL interactions directly from the
Legendre transform, which is simply the interaction term in
the NJL Lagrangian multiplied by −P+. We then take the
obtained Hamiltonian term as the interaction term H eff

int in
Eq. (9).

Specifically for the π+ and ρ+ mesons, the flavor structure
of their valence quarks is ud. If the Gπ term in Eq. (4) is kept
as the only nonvanishing NJL interaction, after the Legendre
transform we obtain

H eff
NJL,π =

∫
dx−

∫
d−→x ⊥

(
−GπP+

2

)
[(ψψ )2 + (ψ iγ5

−→τ ψ )2]

(20)

as the H eff
int term in Eq. (9) for the π -ρ system. Here the

fermion field is given by ψ = (u, d)T, and τ i are the Pauli
matrices in the flavor space. We do not use the Gρ term, be-
cause the role of binding ρ mesons is taken by the confinement
potentials in Eq. (10). After expanding in the flavor space,
Eq. (20) then becomes

H eff
NJL,π =

∫
dx−

∫
d−→x ⊥

(
−Gπ P+

2

)
{2 uu dd + 2 uγ5u dγ5d

− 4 uγ5d dγ5u+(uu)2+(dd)2−(uγ5u)2−(dγ5d)2}.
(21)

In terms of creation and annihilation operators, we ex-
plicitly write down the eigenstate for the positively charged

mesons with up and antidown valence quarks as

|	meson+(P+,
−→
P ⊥)〉

=
∑
r,s

∫ 1

0

dx

4πx(1 − x)

∫
d−→κ ⊥

(2π )2
ψrs(x,

−→κ ⊥)

× b†
ur (xP+,−→κ ⊥ + x

−→
P ⊥)

× d†
ds((1 − x)P+, −−→κ ⊥ + (1 − x)

−→
P ⊥)|0〉. (22)

Regarding the subscripts of the creation operators in Eq. (22),
the nonitalic letters represent the flavors while the italic letters
designate the spins. After ignoring the self-energy contribu-
tions, the operator expansion of Eq. (21) relevant to Eq. (22)
is

H eff
NJL,π =

∑
s1s2s3s4

∫
dk1dk2dk3dk4 4πδ(k+

1 + k+
2 − k+

3 − k+
4 )

× (2π )2δ(
−→
k ⊥

1 + −→
k ⊥

2 − −→
k ⊥

3 − −→
k ⊥

4 )GπP+

× {uu1uu4 vd3vd2 + uu1γ5uu4 vd3γ5vd2

+ 2 uu1γ5vd2 vd3γ5uu4}b†
u1d†

d2dd3bu4, (23)

where the number subscripts distinguish different fermion
spins and momenta while the summation indices are only
the spin labels. We use this compact subscripting convention
when explicit integration variables permit. Additionally, the
momentum space integral measure is defined as∫

dk =
∫ +∞

0

dk+

4πk+

∫ +∞

−∞

dk⊥
1

2π

∫ +∞

−∞

dk⊥
2

2π
. (24)

We then evaluate the valence Fock block of the NJL
effective Hamiltonian matrix given by Eq. (23) for the meson
wave function in Eq. (22). Explicitly, we have

〈	 ′
meson+(P′+,

−→
P ′⊥)|H eff

NJL,π |	meson+(P+,
−→
P ⊥)〉

= 4πP+δ(P′+ − P+)(2π )2δ(
−→
P ′⊥ − −→

P ⊥)
∑

s1′s2′s1s2

×
∫ 1

0

dx′

4πx′(1 − x′)

∫
d−→κ ′⊥

(2π )2

∫ 1

0

dx

4πx(1 − x)

∫
d−→κ ⊥

(2π )2

× ψ ′ ∗
s1′s2′ (x′, κ ′⊥)ψs1s2(x, κ⊥)

× Gπ {uus1′ (p′
1)uus1(p1) vds2(p2)vds2′ (p′

2)

+ uus1′ (p′
1)γ5uus1(p1) vds2(p2)γ5vds2′ (p′

2)

+ 2 uus1′ (p′
1)γ5vds2′ (p′

2) vds2(p2)γ5uus1(p1)}, (25)

with the momentum dependence of the spinors given by

p′+
1 = x′P′+, −→p ′⊥

1 = −→κ ′⊥ + x′−→P ′⊥, (26a)

p′+
2 = (1 − x′)P′+, −→p ′⊥

2 = −−→κ ′⊥ + (1 − x′)
−→
P ′⊥, (26b)

p+
1 = xP+, −→p ⊥

1 = −→κ ⊥ + x
−→
P ⊥, (26c)

p+
2 = (1 − x)P+, −→p ⊥

2 = −−→κ ⊥ + (1 − x)
−→
P ⊥. (26d)

Spin decompositions of all terms in Eq. (25) can then
be easily calculated using definitions in Appendix 1. Subse-
quently for any given combination of the basis functions in
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Eq. (11), because the momentum dependence of the wave
function is exactly known, we can calculate the corresponding
matrix element explicitly.

Within the basis representation given by Eq. (11), let us
define the matrix element for the first term in Eq. (25) through

〈n′m′l ′s′
1s′

2|uuuu vdvd|nmls1s2〉

≡
∫ 1

0

dx′

4π

∫ 1

0

dx

4π
χl ′ (x

′)χl (x)
∫

d−→q ′⊥

(2π )2

∫
d−→q ⊥

(2π )2

× φ∗
n′m′ (−→q ′⊥)φnm(−→q ⊥) uus1′ (p′

1)uus1(p1)

× vds2(p2)vds2′ (p′
2), (27)

where the spinor momenta are also given by Eq. (26). Sim-
ilarly one can define 〈n′m′l ′s′

1s′
2|uuγ5uu vdγ5vd|nmls1s2〉 and

〈n′m′l ′s′
1s′

2|uuγ5vd vdγ5uu|nmls1s2〉. Because the interactions
in H eff

int are all local, the matrix elements in our basis rep-
resentation can be calculated exactly without resorting to
quadrature. The expressions of these matrix elements and
details on how to obtain them are given in Appendix.

For the K+-K∗+ systems, we take

H eff
NJL,K =

∫
dx−

∫
d−→x ⊥ (−GK P+)

×
8∑

i=1

[(ψλiψ )2 − (ψλiγ5ψ )2], (28)

as the H eff
int term in Eq. (9). Similar to the case of the ρ

meson, the binding of K∗ meson is addressed by the confining
potentials. Meanwhile, the expansion of the Dirac bilinear in
the flavor space with the up, down, and strange quarks is given
by

8∑
i=1

(ψ λiγ ? ψ )2

= (uγ ?u + dγ ?d)2 + (uγ ?d + dγ ?u)2

+ 2[(sγ ?s)2 + 2 uγ ?s sγ ?u + 2 dγ ?s sγ ?d], (29)

where ( γ ? )2 stands for any contractions of γ matrices. With
the assistance of Eq. (29), Eq. (28) becomes

H eff
NJL,K =

∫
dx−

∫
d−→x ⊥ (−2GK P+){uu dd + ud du + us su

− uγ5u dγ5d − uγ5d dγ5u − uγ5s sγ5u}. (30)

The wave function for positively charged K mesons is
given by Eq. (22) with the flavor subscript of the d†

ds operator
modified into that of d†

ss. After ignoring self-energy contribu-
tions, we expand Eq. (30) in terms of relevant creation and
annihilation operators as

H eff
NJL,K =

∑
s1s2s3s4

∫
dk1dk2dk3dk4 4πδ(k+

1 + k+
2 − k+

3 − k+
4 )

× (2π )2δ(
−→
k ⊥

1 + −→
k ⊥

2 − −→
k ⊥

3 − −→
k ⊥

4 )GK P+

× {−2uu1vs2 vs3uu4 + 2 uu1γ5vs2 vs3γ5uu4}
× b†

u1d†
s2ds3bu4. (31)

Again, the number subscripts distinguish different spins and
momenta while the summation indices are only the spin
labels.

We then evaluate the matrix elements of the NJL effec-
tive Hamiltonian given by Eq. (31) for the K+-meson wave
function. Explicitly, we have

〈	 ′
meson+(P′+,

−→
P ′⊥)|H eff

NJL,K|	meson+(P+,
−→
P ⊥)〉

= 4πP+δ(P′+ − P+)(2π )2δ(
−→
P ′⊥ − −→

P ⊥)

×
∑

s1′s2′s1s2

∫ 1

0

dx′

4πx′(1 − x′)

∫ 1

0

dx

4πx(1 − x)

×
∫

d−→κ ′⊥

(2π )2

∫
d−→κ ⊥

(2π )2
ψ ′ ∗

s1′s2′ (x′, κ ′⊥)ψs1s2(x, κ⊥)

× GK {−2 uus1′ (p′
1)vss2′ (p′

2) vss2(p2)uus1(p1)

+ 2 uus1′ (p′
1)γ5vss2′ (p′

2) vss2(p2)γ5uus1(p1)}, (32)

where the definitions of relative momenta are still given in
Eq. (26).

Similar to the case of the π+-ρ+ systems, within the basis
representation defined by Eq. (11), we need to evaluate the
following matrix elements 〈n′m′l ′s′

1s′
2|uuvs vsuu|nmls1s2〉 and

〈n′m′l ′s′
1s′

2|uuγ5vs vsγ5uu|nmls1s2〉. The explicit expressions
of these matrix elements are also given in Appendix.

IV. RESULTS WITH BASIS TRUNCATIONS

A. Basis truncations and model parameters

With the matrix elements of the effective Hamiltonian
known exactly in our basis representation, the mass spectrum
and the wave functions are to be solved numerically by
diagonalizing the effective Hamiltonian. We truncate the basis
representation by imposing maximums on the allowed basis
modes. Specifically, the infinite summations in Eq. (11) are
replaced by the following finite sums:

∑
nml

→
Nmax∑
n=0

Mmax∑
m=−Mmax

Lmax∑
l=0

, (33)

where Nmax, Mmax, and Lmax are natural numbers specifying
basis cutoffs. The truncations of the basis function given by
Eq. (33) indicate the existence of both infrared and ultraviolet
regulators of our model. Because the off-diagonal matrix
elements given by Tables IX, X, XI do not couple to angular
excitations with |m| � 3, we choose Mmax = 2 as one natural
basis cutoff on the orbital angular momentum. Meanwhile,
we choose Nmax as the cutoff on the transverse momentum.
Doing so fixes the scale of our model. The default choice of
the longitudinal cutoff is Lmax = 8, except when calculating
the meson PDAs.

Roughly speaking, the infrared cutoff of our theory
is �IR = b/

√
2Nmax + 1, while the ultraviolet cutoff is

�UV = √
2Nmax + 1b, with b being the scale parameter in

Eq. (12) [50,52]. Because the low-energy effective descrip-
tions of QCD are expected to change dramatically with model
scales, in this article we do not explore extensively the de-
pendence of our results on the transverse basis cutoffs. Also,
because our model is a low-energy effective description, we
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expect it to be only valid for the ground states of the light
mesons and we therefore restrict our application to these
states.

Within our modeling of the light meson systems, our cal-
culated results show that the masses of the vector mesons ρ+
and K∗+ are not sensitive to the coupling constants of the NJL
interactions in Eqs. (21) and (28). Furthermore, the valence
wave functions for the lowest vector states are almost entirely
given by n = m = l = 0 with spin triplet configurations:

ψrs(x,
−→κ ⊥) � χ0(x) φ00

[ −→κ ⊥
√

x(1 − x)

]

×

⎧⎪⎨
⎪⎩

δr+δs+ (for mJ = +1)
δr+δs−+δr−δs+√

2
(for mJ = 0)

δr−δs− (for mJ = −1),

(34)

where the total angular momentum projection is defined by
mJ = m + r + s. The masses of the lightest vector meson
with different mJ are almost degenerate and can be well
approximated by the corresponding diagonal matrix elements
in Eq. (19), whereas the masses of the lowest pseudoscalar
states are most sensitive to the coupling constants Gπ and GK

in Eqs. (21) and (28).
We work in the limit of the SU(2) flavor symmetry where

the up quark mass and the down quark mass are identical,
while the strange quark is expected to be heavier than the
light quarks. Because we do not have SU(3) flavor symmetry,
scales of the π -ρ system and those of the K-K∗ system
are expected to be different. We therefore assign different
confining strength κ , quark mass, and antiquark mass to these
two systems.

Specifically, we have three free parameters in our model
for the π+-ρ+ system. They are the light quark mass ml, the
light-light confining strength κll, and the pseudoscalar binding
strength Gπ , while for the K+-K∗+ system, we have four free
parameters. They are the light quark mass ml, the strange
quark mass ms, the light-strange confining strength κls, and
the pseudoscalar binding strength GK .

In order to fix these parameters, we use the ρ+ mass and
the K∗+ mass as two constraints for the quark masses and
system confining parameters (using an “l” subscript to label a
light quark) ml, ms, κll, and κls. Specifically, since the vector
states are almost entirely given by the n = m = l = 0 states,
we have from Eq. (10) that for the π+-ρ+ system

4m2
l + 3κ2

ll � m2
ρ, (35)

while the corresponding relation in the K+-K∗+ system is
given by

4m2
l + 3κ2

ls � m2
ρ

(ml + ms)2 + 3κ2
ls � m2

K∗, (36)

with ml in Eq. (36) allowed to be different from the one
in Eq. (35). The mass of the π+ then fixes Gπ . While the
mass of K+ determines GK . We then choose the confining
strength such that the charge radii of the π+ and K+ agree
with experiments. The difference in the sizes of the π+ and
the K+ implies different cutoffs on the dressing of the light
quarks. Such dressing effects are approximated by Eqs. (35)

TABLE I. Input parameters for the π+-ρ+ system of the BLFQ-
NJL model. The corresponding basis cutoff scales are �IR =
55.06 MeV and �UV = 935.9 MeV.

ml κll Gπ Nmax Mmax Lmax

337.01 MeV 227.00 MeV 18.5095 GeV−2 8 2 8

and (36) to reproduce the ρ+ mass. At different confining
strengths, this effective treatment accounts for the constituent
light quarks being heavier in the π+ and the ρ+ than in the
K+ and the K∗+.

The resulting model parameters for the π+-ρ+ system are
given in Table I. Our model reproduces the experimental π+
mass and the ρ+ mass as shown in Table II. The uncertainty
in the ρ+ mass of our model comes from the slight splitting
of the ρ+ states with different angular momentum projections,
while the model parameters for the K+-K∗+ system are given
in Table III. Similarly, we reproduce the K+ mass, with
the uncertainty in the K∗+ mass due to sensitivity to the
total angular momentum projections. Our model for the K+
mesons also finds a scalar state with the mass of 858.35 MeV.
See Table IV for details.

B. Calculations of decay constants, elastic form factors,
and parton distribution amplitudes

1. Elastic form factor and charge radius

To calculate the elastic form factors from the light front
wave functions within the impulse approximation, we apply
the Drell-Yan-West formula [79,80] within the Drell-Yan
frame P′+ = P+:

ImJ ,mJ′ (Q
2) = 〈	(P′, m′

J )|J+(0)

2P+ |	(P, mJ )〉

=
∑

rs

∫
dx

4πx(1 − x)

∫
d2k⊥

(2π )2

× {
eq ψ∗ mJ′

rs (x,
−→
k ⊥ + (1 − x)−→q ⊥)

+ eqψ
∗ mJ′
rs (x,

−→
k ⊥ − x−→q ⊥)

}
ψmJ

rs (x,
−→
k ⊥),

(37)

TABLE II. Mass spectrum, decay constants, and the charge radii
of the π+ and ρ+ ground states. The BLFQ-NJL results are obtained
using parameters in Table I. The small uncertainty in the calculated
vector meson mass is due to splitting among states with different total
angular momentum projections. The uncertainty of the pseudoscalar
state charge radius reflects the error in the numerical evaluation
of Eq. (39). The experimental decay constant for the ρ meson is
extracted by Refs. [13,17]. Other PDG results are from Ref. [60].

Parameter BLFQ-NJL PDG

mπ+ 139.57 MeV 139.57 MeV
mρ+ 775.23 ± 0.04 MeV 775.26 ± 0.25 MeV
fπ 202.10 MeV 130.2 ± 1.7 MeV
fρ 100.12 MeV 221 ± 2 MeV√〈r2

c 〉|π+ 0.68 ± 0.05 fm 0.672 ± 0.008 fm
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TABLE III. Input parameters for the K+-K∗+ system of the BLFQ-NJL model. The corresponding basis cutoff scales are �IR = 66.94 MeV
and �UV = 1138 MeV.

ml ms κls GK Nmax Mmax Lmax

307.66 MeV 445.14 MeV 276.00 MeV 13.6455 GeV−2 8 2 8

with q = P′ − P and Q2 = −q2. Here eq is the charge of the
antiquark, while eq is the charge of the quark. The elastic form
factors of the pseudoscalar states are then given by

FP(Q2) = I0,0(Q2). (38)

The charge radius is then defined through the first Taylor
expansion coefficient of the elastic form factor at the origin:

〈
r2

c

〉 = −6 lim
Q2→0

d

dQ2
FP(Q2). (39)

We then evaluate Eq. (37) numerically using the pseu-
doscalar state wave functions obtained by our model with
parameters given in Tables I and III. The resulting elas-
tic form factors for the π+ meson and for the K+ meson
are illustrated in Figs. 1 and 2 respectively. We calculate
the charge radii of the π+ and K+ mesons by fitting the
behaviors of the elastic form factors as quadratic functions
of Q2 at small Q2 = (0, 1, 4, 9, 16, 25, 36, 49, 64) κ2/16.
The resulting radii are listed in Tables II and IV, with the
95% confidence intervals defining the fitting uncertainties.
By using them as constraints in our parameter fitting, our
results for these charge radii are in close agreement with the
experiments.

The functional form of the dipole elastic form factors in
Figs. 1 and 2 is F (Q2) = (1 + 〈r2

c 〉 Q2/6)−1. For both the π+
and the K+, the elastic form factors based on our model cross
the dipole result twice, once at small Q2 � κ2 and another
time at around 2 GeV2 for the π+ and around 3 GeV2 for
the K+. We expect deviations in the elastic form factors to
occur when Q2 > 6/〈r2

c 〉, because only with small Q2 is the
form factor fixed by the charge radius. For the π+, both our
result and the dipole form agree with available experimental

TABLE IV. Mass spectrum, decay constants, and the charge
radii of the K+ and K∗+ ground states. The BLFQ-NJL results are
obtained using parameters in Table III. The uncertainty of the vector
meson mass is due to splitting among states with different total
angular momentum projections. The uncertainty of the pseudoscalar
state charge radius reflects the error in the numerical evaluation
of Eq. (39). The experimental decay constant for the K∗ meson is
extracted by Refs. [13,17]. Other PDG results are from Ref. [60].

Parameter BLFQ-NJL PDG

mK+ 493.68 MeV 493.68 ± 0.02 MeV
mK∗+ 891.82 ± 0.06 MeV 891.76 ± 0.25 MeV
mK∗+

0
858.35 MeV 824 ± 30 MeV

fK 235.99 MeV 155.6 ± 0.4 MeV
fK∗ 104.57 MeV 224 ± 11 MeV√〈r2

c 〉|K+ 0.54 ± 0.03 fm 0.560 ± 0.031 fm

data. Experimental results for FK (Q2) with Q2 � 1 GeV2 are
available, but are not included in Fig. 2 because of the large
experimental uncertainties [68].

2. Decay constant and parton distribution amplitude

We take the definition of the meson decay constants as the
matrix elements of current operators between the vacuum and
the meson wave functions. Specifically, the decay constants
for scalar mesons, pseudoscalar mesons, vector mesons, and
axial vector mesons are defined by

〈0|ψ γ μ ψ |S(p)〉 = pμ fS, (40a)

〈0|ψ γ μγ5 ψ |P(p)〉 = i pμ fP, (40b)

〈0|ψ γ μ ψ |V(p)〉 = ε
μ
λ (p) mV fV, (40c)

〈0|ψ γ μγ5 ψ |A(p)〉 = ε
μ
λ (p) mA fA, (40d)

respectively. Here the polarization vector for the vector and
axial-vector mesons is defined as

ε
μ
λ (p) =

⎧⎪⎨
⎪⎩

(
p+

mV,A
,

−→p ⊥2−m2
V,A

mV,A p+ ,
−→p ⊥
mV,A

)
for λ = 0(

0,
2−→e ⊥

λ ·−→p ⊥

p+ , −→e ⊥
λ

)
for λ = ±1

, (41)

with −→e ⊥
± = (1,±i)/

√
2.

In terms of the valence sector light front wave functions,
the decay constants are then given by [52,81]

fP,A = 2
√

2Nc

∫ 1

0

dx

4π
√

x(1 − x)

∫
d2κ⊥

(2π )2

× [ψ+−(x,−→κ ⊥) − ψ−+(x,−→κ ⊥)]

∣∣∣∣
mJ=0

, (42a)

fS,V = 2
√

2Nc

∫ 1

0

dx

4π
√

x(1 − x)

∫
d2κ⊥

(2π )2

× [ψ+−(x,−→κ ⊥) + ψ−+(x,−→κ ⊥)]

∣∣∣∣
mJ=0

, (42b)

with the condition mJ = m + s1 + s2 = 0 specifying that only
the states with zero angular momentum projections are used
in the calculation. Based on our model, the decay constants
for the π+ and ρ+ are given in Table II. The decay con-
stants for the K+ and K∗+ are given in Table IV. We note
that the decay constants calculated from our model are de-
pendent upon the transverse basis cutoff. Specifically with
Nmax = 6, we have fπ = 187.93 MeV and fK = 220.36 MeV.
Meanwhile with Nmax = 10, we find fπ = 213.35 MeV and
fK = 248.38 MeV. On the other hand, the decay constants
for the vector states are insensitive to Nmax due to the wave
functions being dominated by the lowest basis state. The
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FIG. 1. The elastic form factor for the π+. The red solid line is the result from the BLFQ-NJL model. The blue dashed line is the dipole
form with a charge radius of 0.672 fm. The orange stars, yellow plus signs, purple crosses, green boxes, and light blue diamonds with error
bars correspond to experimental measurements from Refs. [61–65] respectively. The elastic form factor of the π+ is plotted on the left panel.
On the right panel, the same form factor is multiplied by Q2.

increase of the pseudoscalar ground-state decay constants
with an increase in Nmax is also observed for heavy mesons in
Refs. [50,52,55,59]. Without an explanation of this behavior,
we do not assign importance to our results on the decay con-
stants. However, the ratio of the K+ and π+ decay constants
from our model is fK/ fπ = 1.168(4), which is close to the
experimental value fK/ fπ = 1.1928(26) [60].

The parton distribution amplitudes (PDAs) of the pseu-
doscalar states are defined as [52]

φP(x; μ) = 2
√

2Nc

fP

1

4π
√

x(1 − x)

∫
d2κ⊥

(2π )2

× [ψ+−(x,−→κ ⊥) − ψ−+(x,−→κ ⊥)], (43)

with the fP being the decay constant defined by Eq. (42a) such
that the PDAs are normalized to 1. The PDA for the vector

state is defined using the mJ = 0 state as

φV(x; μ) = 2
√

2Nc

fV

1

4π
√

x(1 − x)

∫
d2κ⊥

(2π )2

× [ψ+−(x,−→κ ⊥) + ψ−+(x,−→κ ⊥)]

∣∣∣∣
mJ=0

. (44)

Within the BLFQ-NJL model, the number of colors we use
is Nc = 3. Our basis truncation provides the ultraviolet cutoff
of μ = √

2Nmax + 1b for the transverse integrals in Eqs. (43)
and (44) [52].

At the corresponding model scales, the PDAs for the π+
and K+ are given by Figs. 3 and 4 respectively. Both PDAs
contain multiple humps, the number of which is dependent
on the longitudinal cutoff parameter Lmax. The pion PDA
is symmetric about x = 0.5, while the kaon PDA is skewed
toward ml/(ml + ms) = 0.4. The results with different Lmax
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FIG. 2. The elastic form factor for the K+. The red solid line is the result from the BLFQ-NJL model. The blue dashed line is the dipole
form with a charge radius of 0.560 fm. The orange plus signs and yellow boxes with error bars correspond to experimental measurements from
Refs. [66,67] respectively. The elastic form factor of the K+ is plotted on the left panel. On the right panel, the same form factor is multiplied
by Q2.
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FIG. 3. Parton distribution amplitude for the π+ at the scale μ = 935.9 MeV. On the left panel, the blue solid line is the fit to the BLFQ-NJL
model using Eq. (45) with a = b = 0.62. The red dot-dashed line corresponds to the same functional form with the a and b parameters
extrapolated to Lmax → +∞. The orange dashed line represents the 6 x(1 − x) from perturbative QCD. On the right panel, PDAs for the π+

with Lmax = 8, 16, 32 are plotted in dashed line, together with the fit to the Lmax = 32 case.

are obtained with the same set of quark mass parameters,
confining strength κ , Nmax, and Mmax specified in Tables I
and III. The NJL coupling constants Gπ and GK are adjusted
such that the masses of the pseudoscalar and vector states
are within 1% of their experimental values. Notice that the
scale μ of the PDAs is independent from the choices of
Lmax, since the transverse cutoff is kept fixed at Nmax = 8.
The scale for the π+-ρ+ system is μ = 935.9 MeV, while
the scale for the K+-K∗+ is μ = 1138 MeV. Therefore,
humps on the right panels of Figs. 3 and 4 are numerical
artifacts.

Based on Figs. 3 and 4, one observes that with an increase
in Lmax, the PDAs for the pseudoscalar states trend toward a
smooth function with decreasing oscillation amplitude about
a single-peaked function. We therefore fit the PDAs for the
π+ and K+ from our model with different Lmax using the

following functional form [76],

φ(x) = xa(1 − x)b

B(a + 1, b + 1)
, (45)

where B(a + 1, b + 1) = �(a + 1)�(b + 1)/�(a + b + 2) is
the Euler β function. With Lmax = 32, we find out that for
the pion PDA the best fitting parameters are a = b = 0.62,
while for the kaon PDA with the same Lmax, the best fit is
specified by a = 0.65 and b = 0.70. Fits are also performed
for other values of Lmax ∈ {8, 12, 16, 20, 24, 28, 32} and
extrapolated to Lmax → +∞ by fitting the resulting a and b
as quadratic functions of L−1

max. We find out the extrapolated
values for the π+ PDA are a = b = 0.60, while for the K+
PDA, the extrapolated values are a = 0.64 and b = 0.69. See
Table V and Fig. 5 for details of these extrapolations. Then
using these extrapolated values, the corresponding PDAs are

FIG. 4. Parton distribution amplitude for the K+ at the scale μ = 1138 MeV. On the left panel, the blue solid line is the fit to the BLFQ-NJL
model using Eq. (45) with a = 0.65 and b = 0.70. The red dot-dashed line corresponds to the same functional form with the a and b parameters
extrapolated to Lmax → +∞. The red dashed line represents the 6 x(1 − x) from perturbative QCD in the SU(3) flavor symmetric limit. On
the right panel, PDAs for the K+ with Lmax = 8, 16, 32 are plotted, together with the fit to the Lmax = 32 case.
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TABLE V. Dependence of the PDA fitting parameters and the decay constants of π+ and K+ on the longitudinal basis cutoff Lmax. The
extrapolations are carried out by fitting to quadratic functions of L−1

max

Lmax 8 12 16 20 24 28 32 Extrapolated to +∞
π+ a = b 0.7897 0.6951 0.6562 0.6380 0.6285 0.6234 0.6204 0.5996
fπ (MeV) 202.10 204.09 204.92 205.32 205.53 205.65 205.72
K+ a 0.7589 0.6969 0.6727 0.6609 0.6575 0.6513 0.6507 0.6398
K+ b 0.8413 0.7594 0.7282 0.7130 0.7089 0.7006 0.7001 0.6874
fK (MeV) 235.98 238.01 238.81 239.20 239.37 239.51 239.56

given as the dot-dashed lines on the left panels of Figs. 3 and
4, which are barely distinguishable from the Lmax = 32 fitting
results. We notice that the decay constants, the charge radii,
and the elastic form factors each depend weakly on Lmax as
shown in Table V.

We also present the PDAs for the ρ+ and K∗+ vector
mesons from the BLFQ-NJL model in Fig. 6. The conver-
gence of the vector meson PDAs with respect to Lmax is much
faster than the case with the pseudoscaler mesons. In Fig. 6,
we also show the PDAs calculated with only the dominant
basis component specified by Eq. (34). The subdominant basis
components of the ρ+ light front wave function makes the
PDA broader by the enhancements near x = 0 and x = 1. For
the K∗+, the enhancement is also observed near x = 0, with
the additional feature that the PDA becomes slightly negative
near x = 1.

V. SUMMARY

We have combined the chiral dynamics in the form of
the Nambu–Jona-Lasinio model with the basis light front
quantization framework. With our basis representation of the
valence Fock sector light front wave function for the mesons,
we calculated the matrix elements of the NJL interactions

analytically. We then solved the ground-state light front wave
functions for the valence quarks of π+, ρ+, K+, and K∗+ by
diagonalizing the effective light front Hamiltonian with con-
finement potentials and the NJL interactions. The parameters
of our model were adjusted to reproduce the experimental
mass spectrum of these mesons.

We found that the vector ground states were almost entirely
given by one momentum space basis with spin triplet configu-
rations, while the pseudoscalar states were complex mixtures
of many basis functions. We calculated decay constants for
π+, ρ+, K+, and K∗+ and found that the ratio fπ/ fK was close
to the experimental value. Specifically for the π+ and K+, we
presented our results for the elastic form factors along with
comparison to available experimental data. We calculated
the charge radii of these two states by analyzing the small
Q2 behaviors of the corresponding elastic form factors. The
choice of the scale parameters of our model were optimized
through adjusting the charge radii of the pseudoscalar states
to agree with experimental data.

We also calculated the parton distribution amplitudes for
π+, ρ+, K+, and K∗+ at our model scales. We illustrated
their good convergence on the longitudinal cutoff parameter
Lmax. For the PDAs of the pseudoscalar states, we fitted their

FIG. 5. Extrapolations of the dependence of fitting parameters on the longitudinal basis cutoff using quadratic functions of L−1
max.

On the left panel, the red stars are the parameters a = b from fitting the BLFQ-NJL PDA for the π+ using the functional form
given by Eq. (45). The blue solid line is the fitted quadratic function of L−1

max. The right panel shows the extrapolation of fitting
parameters for the K+ PDA obtained using the BLFQ-NJL model. The orange stars are the parameters a from fitting BLFQ-NJL
using the functional form given by Eq. (45). The blue solid line is the fitted quadratic function of L−1

max for the parameter a.
The purple stars are the parameters b from fitting the BLFQ-NJL PDA using the functional form given by Eq. (45). The red dashed line
is the fitted quadratic function of L−1

max for the parameter b.
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FIG. 6. Left panel: parton distribution amplitude for the ρ+ at the scale μ = 935.9 MeV. Right panel: parton distribution amplitude for
the K∗+ at the scale μ = 1138 MeV. Legends are identical on both panels and therefore are only shown on the right. The green dashed line
corresponds to 6 x(1 − x) from perturbative QCD in the SU(3) flavor symmetric limit. The blue, red, and orange solid lines are PDAs obtained
at Lmax = 8, 16, 32 respectively. The purple dot-dashed line corresponds to the functional form in Eq. (45) with parameters p = (β + 1)/2 =
4.91, q = (α + 1)/2 = 4.91 for the ρ+, and p = (β + 1)/2 = 3.54, q = (α + 1)/2 = 4.90 for the K∗+. These α and β are calculated by
Eq. (14) with parameters in Tables I and III to indicate the result with only the leading basis state contributing to the PDAs.

PDAs obtained at different Lmax by the functional form in
Eq. (45). We then extrapolated the results to Lmax → +∞.
The PDAs for the ρ+ and K∗+ vector states were also pre-
sented. They showed faster convergence with respect to Lmax,
with differences to the results using the dominant light front
basis functions illustrated.

We expect to generalize our NJL-BLFQ model to describe
the structures of flavor singlet light mesons, including π0,
η, η′, ρ0, ω, and φ. The flavor neutral terms of the NJL
interactions indicate nontrivial flavor wave functions for the
valence quarks of these mesons. With flavor contents of
the wave functions to be determined by the Hamiltonian, the
mixing between K0 and K

0
is another interesting feature to

explore.
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APPENDIX: SPIN DEPENDENCE OF THE
NJL INTERACTIONS IN BLFQ

1. Dirac spinors and bilinears

We adopt the Weyl representation of the Dirac matrices.
They are explicitly given by

γ 0 =
(

0 1
1 0

)
and γ i =

(
0 σ i

−σ i 0

)
, (A1)

with i ∈ {1, 2, 3}. Here σ i are Pauli matrices defined as

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 1 =

(
1 0

0 −1

)
.

(A2)

One can then verify that

σ iσ j = 1δi j + iεi jkσ k, (A3)

where εi jk is the Levi-Civita symbol. Consequently, we
have {γ μ, γ ν} = 2gμν , with g00 = +1 and gii = −1 for
i = 1, 2, 3. Additionally, the light front γ matrices are
defined as γ ± = γ 0 ± γ 3.

The Dirac spinors are then given by

u±1/2(p) = 1

2
√

p+ (/p + m)γ +χ±1/2, (A4a)

v±1/2(p) = 1

2
√

p+ (/p − m)γ +χ∓1/2, (A4b)

with the spin vectors defined as

χ+1/2 = (0, 0, 1, 0)T, χ−1/2 = (0, 1, 0, 0)T. (A5)

We can then calculate the spin decomposition of the
Dirac bilinears. Specifically, we need to calculate the fol-
lowing three combinations: us1′ (p′

1)us1(p1) vs2(p2)vs2′ (p′
2),

us1′ (p′
1)vs2′ (p′

2) vs2(p2)us1(p1), and us1′ (p′
1)γ5vs2′ (p′

2) vs2(p2)
γ5us1(p1). The explicit spin decompositions of these three
terms are given in Tables VI, VII, and VIII. In these tables, m
is the mass of the quark, while m is the mass of the antiquark.
The transverse momenta −→q ⊥ and −→q ′⊥ are defined by

−→κ ′⊥ =
√

x′(1 − x′)−→q ′⊥ and −→κ ⊥ =
√

x(1 − x)−→q ⊥,

(A6)
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TABLE VI. The spin dependence of the scalar bilinear product
uu vv written in terms of momentum fractions and relative momenta.

s′
1s′

2s2s1 uus1′ (p′
1)uus1(p1) vds2(p2)vds2′ (p′

2)

+ + ++ −mm
(√

x′
x + √

x
x′

)(√
1−x′
1−x +

√
1−x
1−x′

)
+ + +− m

(√
x′

1−x′ qL −
√

x
1−x q′L

)
(2 − x′ − x)

+ + −+ m(x′ + x)

(√
1−x

x q′L −
√

1−x′
x′ qL

)

+ + −− −(x′ + x − 2x′x)q′LqL

+√
x′(1 − x′)x(1 − x)(q′L2 + qL2)

+ − ++ m(x′ + x)

(√
1−x′

x′ qR −
√

1−x
x q′R

)

+ − +− (1 − x′)xq′LqR + x′(1 − x)q′RqL

−√
x′(1 − x′)x(1 − x)(q′Lq′R + qLqR )

+ − −+ + + ++
+ − −− + + +−
− + ++ −m

(√
x′

1−x′ qR −
√

x
1−x q′R

)
(2 − x′ − x)

− + +− + + ++
− + −+ x′(1 − x)q′LqR + x(1 − x′)q′RqL

−√
x′(1 − x′)x(1 − x)(q′Lq′R + qLqR )

− + −− + + −+
− − ++ −(x′ + x − 2x′x)q′RqR

+√
x′(1 − x′)x(1 − x)(q′R2 + qR2)

− − +− + − ++
− − −+ − + ++
− − −− + + ++

TABLE VII. The spin dependence of the scalar bilinear product
uv vu written in terms of momentum fractions and relative momenta.

s′
1s′

2s2s1 uus1′ (p′
1)vss2′ (p′

2) vss2(p2)uus1(p1)

+ + ++ q′LqR

+ + +− q′L
(√

1−x
x m −

√
x

1−x m
)

+ + −+ + + +−
+ + −− −q′LqL

+ − ++
(√

1−x′
x′ m −

√
x′

1−x′ m
)

qR

+ − +−
(√

1−x′
x′ m −

√
x′

1−x′ m
)(√

1−x
x m −

√
x

1−x m
)

+ − −+ + − +−
+ − −− −

(√
1−x′

x′ m −
√

x′
1−x′ m

)
qL

− + ++ + − ++
− + +− + − +−
− + −+ + − +−
− + −− + − −−
− − ++ −q′RqR

− − +− −q′R
(√

1−x
x m −

√
x

1−x m
)

− − −+ − − +−
− − −− q′RqL

TABLE VIII. The spin dependence of the pseudoscalar bilinear
product uγ5v vγ5u written in terms of momentum fractions and
relative momenta.

s′
1s′

2s2s1 us1′ (p′
1)γ 5vs2′ (p′

2) vs2(p2)γ 5us1(p1)

+ + ++ −q′LqR

+ + +− −
(√

1−x
x m +

√
x

1−x m
)

q′L

+ + −+ (−1) + + + −
+ + −− −q′LqL

+ − ++
(√

1−x′
x′ m +

√
x′

1−x′ m
)

qR

+ − +− [x′m+(1−x′ )m][xm+(1−x)m]√
x′ (1−x′ )x(1−x)

+ − −+ (−1) + − + −
+ − −−

(√
x′

1−x′ m +
√

1−x′
x′ m

)
qL

− + ++ (−1) + − + +
− + +− (−1) + − + −
− + −+ + − +−
− + −− (−1) + − − −
− − ++ −q′RqR

− − +− −
(√

x
1−x m +

√
1−x

x m
)

q′R

− − −+ (−1) − − + −
− − −− −q′RqL

with −→κ ⊥, −→κ ′⊥, x, and x′ given in Eq. (26). The left and right
transverse momenta are defined as qL = q1 − iq2 and qR =
q1 + iq2.

2. Transverse and longitudinal integrals

With the spin dependence of the Dirac bilinears in Eqs. (25)
and (32) given by Tables VI, VII, and VIII, we proceed to
evaluate the matrix elements of the NJL interactions in our ba-
sis representation. Explicitly, we calculate the corresponding
cases where the matrix elements are defined in agreement with
Eq. (27). Doing so requires the transverse and longitudinal
integrals explicitly calculated with the incoming and outgoing
wave functions given in any configuration of the basis.

Because the interactions defined by Eqs. (21) and (30)
contain no momentum transfer, the transverse integrals in
Eq. (27) are reduced to the first few moments of the harmonic
oscillator functions. Explicitly, the radial moments of φnm are
given exactly as

RM
n (b) ≡

∫ +∞

0

qdq

2πb

√
4πn!

(n + M )!

(q

b

)M
e−q2/(2b2 )LM

n (q2/b2)qM

= 2MbM+1
√

n!√
π (n + M )!

∫ +∞

0
dy yMe−yLM

n (2y)

= 2MbM+1
√

n!√
π (n + M )!

n∑
m=0

�(n + M + 1)(−2)m

�(n − m + 1)�(m + 1)

= 2MbM+1

√
(n + M )!

πn!
(−1)n, (A7)
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TABLE IX. The spin decomposition of the matrix elements defined by Eq. (27). Here L′(a, b) and L(a, b) stand for Ll ′ (a, b; α, β ) and
Ll (a, b; α, β ) respectively. Notice that the dependences on l and l ′ are implicit. The quark mass parameters have been written in boldface to
distinguish them from the angular excitation number m.

s′
1s′

2s2s1 〈n′m′l ′s′
1s′

2|uu vv|nmls1s2〉

+ + ++ (−1)n′+n+1(b2/π )δm′,0δm,0mm{L′(1/2, 1/2)L(−1/2, −1/2)

+L′(−1/2, 1/2)L(1/2,−1/2) + L′(1/2, −1/2)L(−1/2, 1/2) + L′(−1/2, −1/2)L(1/2, 1/2)}

+ + +− (−1)n′+n+1(2b3/π )m{√n′ + 1δm′,−1δm,0[L′(1, 0)L(−1/2, 1/2) + L′(0, 0)L(1/2, 1/2)]

−√
n + 1δm′,0δm,1[L′(1/2, 1/2)L(0, 0) + L′(−1/2, 1/2)L(1, 0)]}

+ + −+ (−1)n′+n(2b3/π )m{√n′ + 1δm′,−1δm,0[L′(0, 1)L(1/2, −1/2) + L′(0, 0)L(1/2, 1/2)]

−√
n + 1δm′,0δm,1[L′(1/2, 1/2)L(0, 0) + L′(1/2, −1/2)L(0, 1)]}

+ + −− (−1)n′+n(4b4/π ){ − √
(n′ + 1)(n + 1)δm′,−1δm,1[L′(0, 1)L(1, 0) + L′(1, 0)L(0, 1)]

+[
√

(n′ + 1)(n′ + 2)δm′,−2δm,0 + √
(n + 1)(n + 2)δm′,0δm,2]L′(1/2, 1/2)L(1/2, 1/2)}

+ − ++ (−1)n′+n+1(2b3/π )m{√n′ + 1δm′,1δm,0[L′(0, 1)L(1/2,−1/2) + L′(0, 0)L(1/2, 1/2)]

−√
n + 1δm′,0δm,−1[L′(1/2, 1/2)L(0, 0) + L′(1/2, −1/2)L(0, 1)]}

+ − +− (−1)n′+n(4b4/π ){√(n′ + 1)(n + 1)[δm′,−1δm,−1L′(1, 0)L(0, 1) + δm′,1δm,1L′(0, 1)L(1, 0)]

−[
√

(n′ + 1)(n′ + 2) + √
(n + 1)(n + 2)]δm′,0δm,0L′(1/2, 1/2)L(1/2, 1/2)}

+ − −+ + + ++
+ − −− + + +−

− + ++ (−1)n′+n(2b3/π )m{√n′ + 1δm′,1δm,0[L′(1, 0)L(−1/2, 1/2) + L′(0, 0)L(1/2, 1/2)]

−√
n + 1δm′,0δm,−1[L′(1/2, 1/2)L(0, 0) + L′(−1/2, 1/2)L(1, 0)]}

− + +− + + ++

− + −+ (−1)n′+n(4b4/π ){√(n′ + 1)(n + 1)[δm′,1δm,1L′(1, 0)L(0, 1) + δm′,−1δm,−1L′(0, 1)L(1, 0)]

−[
√

(n′ + 1)(n′ + 2) + √
(n + 1)(n + 2)]δm′,0δm,0L′(1/2, 1/2)L(1/2, 1/2)}

− + −− + + −+

− − ++ (−1)n′+n+1(4b4/π ){√(n′ + 1)(n + 1)δm′,1δm,−1[L′(0, 1)L(1, 0) + L′(1, 0)L(0, 1)]

−[
√

(n′ + 1)(n′ + 2)δm′,2δm,0 + √
(n + 1)(n + 2)δm′,0δm,−2]L′(1/2, 1/2)L(1/2, 1/2)}

− − +− + − ++
− − −+ − + ++
− − −− + + ++

with M = |m| and q = |−→q ⊥|. For the second step of Eq. (A7), we have applied the variable substitution q2 = 2b2y. Meanwhile,
the angular parts of the transverse integrals are trivial to carry out. The transverse integrals needed are then given by∫

d−→q ⊥

(2π )2
φnm(−→q ⊥) = R0

n(b)δm,0 = b√
π

(−1)nδm,0, (A8a)

∫
d−→q ⊥

(2π )2
qR φnm(−→q ⊥) = R1

n(b)δm,−1 = 2b2

√
n + 1

π
(−1)nδm,−1, (A8b)

∫
d−→q ⊥

(2π )2
qL φnm(−→q ⊥) = R1

n(b)δm,1 = 2b2

√
n + 1

π
(−1)nδm,1, (A8c)

∫
d−→q ⊥

(2π )2
(qR)2 φnm(−→q ⊥) = R2

n(b)δm,−2 = 4b3

√
(n + 1)(n + 2)

π
(−1)nδm,−2, (A8d)

∫
d−→q ⊥

(2π )2
(qL)2 φnm(−→q ⊥) = R2

n(b)δm,2 = 4b3

√
(n + 1)(n + 2)

π
(−1)nδm,2, (A8e)

∫
d−→q ⊥

(2π )2
qLqR φnm(−→q ⊥) = R2

n(b)δm,0 = 4b3

√
(n + 1)(n + 2)

π
(−1)nδm,0, (A8f)

while the integrals of φ∗
nm are given by Eq. (A8) with m → −m for the corresponding Kronecker δ.
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TABLE X. The spin decomposition of the matrix elements 〈n′m′l ′s′
1s′

2|uv vu|nmls1s2〉. Here L′(a, b) and L(a, b) stand for Ll ′ (a, b; α, β )
and Ll (a, b; α, β ) respectively. Notice that the dependences on l and l ′ are implicit. The quark mass parameters have been written in boldface
to distinguish them from the angular excitation number m.

s′
1s′

2s2s1 〈n′m′l ′s′
1s′

2|uv vu|nmls1s2〉
+ + ++ (−1)n′+n(4b4/π )

√
(n′ + 1)(n + 1) δm′,−1δm,−1 L′(0, 0)L(0, 0)

+ + +− (−1)n′+n(2b3/π )
√

n′ + 1 δm′,−1δm,0 L′(0, 0)[m L(1/2, −1/2) − m L(−1/2, 1/2)]

+ + −+ + + +−
+ + −− (−1)n′+n+1(4b4/π )

√
(n′ + 1)(n + 1) δm′,−1δm,1 L′(0, 0)L(0, 0)

+ − ++ (−1)n′+n(2b3/π )
√

n + 1 δm′,0δm,−1 [m L′(1/2, −1/2) − mL′(−1/2, 1/2)]L(0, 0)

+ − +− (−1)n′+n(b2/π ) δm′,0δm,0 {m2 L′(1/2, −1/2)L(1/2, −1/2)

−mm[L′(1/2, −1/2)L(−1/2, 1/2) + L′(−1/2, 1/2)L(1/2, −1/2)] + m2 L′(−1/2, 1/2)L(−1/2, 1/2)}
+ − −+ + − +−
+ − −− (−1)n′+n+1(2b3/π )

√
n + 1 δm′,0δm,1 [m L′(1/2, −1/2) − m L′(−1/2, 1/2)]L(0, 0)

− + ++ + − ++
− + +− + − +−
− + −+ + − +−
− + −− + − −−
− − ++ (−1)n′+n+1(4b4/π )

√
(n′ + 1)(n + 1) δm′,1δm,−1 L′(0, 0)L(0, 0)

− − +− (−1)n′+n+1(2b3/π )
√

n′ + 1 δm′,1δm,0 L′(0, 0)[m L(1/2, −1/2) − m L(−1/2, 1/2)]

− − −+ − − +−
− − −− (−1)n′+n(4b4/π )

√
(n′ + 1)(n + 1) δm′,1δm,1 L′(0, 0)L(0, 0)

With the transverse integrals reduced to Eq. (A8), in order to calculate the matrix elements of the interactions in Eqs. (25) and
(32), the remaining x, x′ dependence in Tables VI, VII, and VIII contributes to the longitudinal integrals. These integrals can be
further reduced to

Ll (a, b; α, β ) ≡
∫ 1

0

dx

4π
xb(1 − x)aχl (x; α, β )

=
√

2l + α + β + 1

4π

√
�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

∫ 1

0
dx xβ/2+b(1 − x)α/2+a P(α,β )

l (2x − 1)

=
√

2l + α + β + 1

4π

√
�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

l∑
m=0

(
l + α

m

)(
l + β

l − m

)
(−1)l−m

× B

(
β

2
+ b + m + 1,

α

2
+ a + l − m + 1

)
, (A9)

where B(s, t ) = �(s)�(t )/�(s + t ) is the Euler β function.
To evaluate Ll (a, b; α, β ) numerically, we first rewrite Eq. (A9) as

Ll (a, b; α, β ) =
√

2l + α + β + 1

4π

l∑
m=0

Cl,m(a, b; α, β ), (A10)

with

Cl,m ≡ (−1)l−m√
�(l + 1)�(l + α + β + 1)

�(m + 1)�(l + α − m + 1)

√
�(l + α + 1)�(l + β + 1)

�(l − m + 1)�(β + m + 1)

�(β/2 + b + m + 1)�(α/2 + a + l − m + 1)

�(β/2 + b + α/2 + a + l + 2)
.

(A11)
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TABLE XI. Spin dependences of the matrix elements 〈n′m′l ′s′
1s′

2|uγ 5v vγ 5u|nmls1s2〉. Here L′(a, b) and L(a, b) stand for Ll ′ (a, b; α, β )
and Ll (a, b; α, β ) defined by Eq. (A9) respectively. Notice that the dependences on l and l ′ are implicit. The quark mass parameters have been
written in the boldface to distinguish them from the angular excitation number m.

s′
1s′

2s2s1 〈n′m′l ′s′
1s′

2|uγ 5v vγ 5u|nmls1s2〉
+ + ++ (−1)n′+n+1(4b4/π )

√
(n′ + 1)(n + 1)δm′,−1δm,−1L′(0, 0)L(0, 0)

+ + +− (−1)n′+n+1(2b3/π )
√

n′ + 1δm′,−1δm,0 L′(0, 0)[mL(1/2,−1/2) + mL(−1/2, 1/2)]

+ + −+ (−1) + + + −
+ + −− (−1)n′+n+1(4b4/π )

√
(n′ + 1)(n + 1)δm′,−1δm,1L(0, 0)L′(0, 0)

+ − ++ (−1)n′+n(2b3/π )
√

n + 1δm′,0δm,−1[mL′(1/2, −1/2) + mL′(−1/2, 1/2)]L(0, 0)

+ − +− (−1)n′+n(b2/π )δm′,0δm,0[mL′(−1/2, 1/2) + mL′(1/2, −1/2)][mL(−1/2, 1/2) + mL(1/2, −1/2)]

+ − −+ (−1) + − + −
+ − −− (−1)n′+n(2b3/π )

√
n + 1δm′,0δm,1[mL′(−1/2, 1/2) + mL′(1/2, −1/2)]L(0, 0)

− + ++ (−1) + − + +
− + +− (−1) + − + −
− + −+ + − +−
− + −− (−1) + − − −
− − ++ (−1)n′+n+1(4b4/π )

√
(n′ + 1)(n + 1)δm′,1δm,−1L′(0, 0)L(0, 0)

− − +− (−1)n′+n+1(2b3/π )
√

n′ + 1δm′,1δm,0L′(0, 0)[mL(−1/2, 1/2) + mL(1/2, −1/2)]

− − −+ (−1) − − + −
− − −− (−1)n′+n+1(4b4/π )

√
(n′ + 1)(n + 1)δm′,1δm,1L′(0, 0)L(0, 0)

We then obtain the following recurrence relations for Cl,m:

C0,0 =
√

�(α + β + 1)

�(α + 1)�(β + 1)

�(β/2 + b + 1)�(α/2 + a + 1)

�(β/2 + b + α/2 + a + 2)
, (A12a)

Cl,0

Cl−1,0
= −

√
(l + β )(l + α + β )

l (l + α)

α/2 + a + l

β/2 + b + α/2 + a + l + 1
for l � 1, (A12b)

Cl,m

Cl,m−1
= − (l + α − m + 1)(l − m + 1)(β/2 + b + m)

m(β + m)(α/2 + a + l − m + 1)
for l � m � 1. (A12c)

The longitudinal integral Ll (a, b; α, β ) can then be calculated by first generating and then summing the following sequences:

C0,0

↓
C1,0 + C1,1

↓
C2,0 + C2,1 + C2,2

↓
C3,0 + C3,1 + C3,2 + C3,3

↓
. . .

,

using Eq. (A12).

3. Matrix elements in the basis representation

With both the longitudinal and transverse integrals known exactly, the explicit matrix elements are defined by Eq. (27), and
similarly the matrix elements 〈n′m′l ′s′

1s′
2|uv vu|nmls1s2〉 and 〈n′m′l ′s′

1s′
2|uγ5v vγ5u|nmls1s2〉 are readily calculated. Results for

these matrix elements are given by Tables IX, X, and XI.
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Colangelo, M. Della Morte, P. Dimopoulos, S. Dürr, H. Fukaya
et al., Eur. Phys. J. C 77, 112 (2017).

[33] S. R. Beane, W. Detmold, P. M. Junnarkar, T. C. Luu, K.
Orginos, A. Parreno, M. J. Savage, A. Torok, and A. Walker-
Loud, Phys. Rev. D 86, 094509 (2012).

[34] C. Hoelbling, PoS LATTICE2010, 011 (2010).

[35] S. Dürr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T.
Kurth, L. Lellouch, T. Lippert, A. Ramos, and K. K. Szabó,
Phys. Rev. D 81, 054507 (2010).

[36] E. E. Scholz, PoS LAT2009, 005 (2009).
[37] C. Bernard, P. Williams, S. Datta, S. Gottlieb, C. DeTar, U. M.

Heller, C. McNeile, K. Orginos, R. Sugar, and D. Toussaint,
Phys. Rev. D 65, 014510 (2001).

[38] C. Bernard, S. Datta, T. DeGrand, C. DeTar, S. Gottlieb, U. M.
Heller, C. McNeile, K. Orginos, R. Sugar, and D. Toussaint
(MILC Collaboration), Phys. Rev. D 66, 094501 (2002).

[39] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage,
Phys. Rev. D 75, 094501 (2007).

[40] G. H. S. Yabusaki, I. Ahmed, M. A. Paracha, J. P. B. C. de Melo,
and B. El-Bennich, Phys. Rev. D 92, 034017 (2015).

[41] J. P. B. C. de Melo, R. Moreira Moita, and K. Tsushima,
arXiv:1610.05669 [hep-ph].

[42] C. S. Mello, J. P. B. C. de Melo, and T. Frederico, Phys. Lett. B
766, 86 (2017).

[43] M. Ahmady, C. Mondal, and R. Sandapen, Phys. Rev. D 98,
034010 (2018).

[44] P. Maris, P. Wiecki, Y. Li, X. Zhao, and J. P. Vary, Acta Phys.
Polon. Suppl. 6, 321 (2013).

[45] Y. Li, P. W. Wiecki, X. Zhao, P. Maris, and J. P. Vary, in
Proceedings, International Conference on Nuclear Theory in
the Supercomputing Era (NTSE-2013): Ames, Iowa, USA, May
13–17, 2013 (Pacific National University, Khabarovsk, 2013),
p. 136.

[46] P. W. Wiecki, Y. Li, X. Zhao, P. Maris, and J. P. Vary, in
Proceedings, International Conference on Nuclear Theory in
the Supercomputing Era (NTSE-2013): Ames, Iowa, USA, May
13–17, 2013 (Pacific National University, Khabarovs, 2013), p.
146.

[47] P. Wiecki, Y. Li, X. Zhao, P. Maris, and J. P. Vary, Phys. Rev. D
91, 105009 (2015).

[48] P. Wiecki, Y. Li, X. Zhao, P. Maris, and J. P. Vary, Few Body
Syst. 56, 489 (2015).

[49] L. Adhikari, Y. Li, X. Zhao, P. Maris, J. P. Vary, and A. A.
El-Hady, Phys. Rev. C 93, 055202 (2016).

[50] Y. Li, P. Maris, X. Zhao, and J. P. Vary, Phys. Lett. B 758, 118
(2016).

[51] Y. Li, Few Body Syst. 58, 109 (2017).
[52] Y. Li, P. Maris, and J. P. Vary, Phys. Rev. D 96, 016022 (2017).
[53] S. Leitão, Y. Li, P. Maris, M. T. Peña, A. Stadler, J. P. Vary, and

E. P. Biernat, Eur. Phys. J. C 77, 696 (2017).
[54] Y. Li, P. Maris, and J. P. Vary, Phys. Rev. D 97, 054034 (2018).
[55] M. Li, Y. Li, P. Maris, and J. P. Vary, Phys. Rev. D 98, 034024

(2018).
[56] L. Adhikari, Y. Li, M. Li, and J. P. Vary, arXiv:1809.06475

[hep-ph].
[57] J. P. Vary, L. Adhikari, G. Chen, M. Li, Y. Li, P. Maris, W. Qian,

J. R. Spence, S. Tang, K. Tuchin, and X. Zhao, Few-Body Syst.
58, 56 (2017).

[58] J. P. Vary, L. Adhikari, G. Chen, Y. Li, P. Maris, and X. Zhao,
Few Body Syst. 57, 695 (2016).

[59] S. Tang, Y. Li, P. Maris, and J. P. Vary, Phys. Rev. D 98, 114038
(2018).

[60] M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y.
Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, C.
Amsler et al. (Particle Data Group), Phys. Rev. D 98, 030001
(2018).

035206-16

https://doi.org/10.1016/0375-9474(90)90123-4
https://doi.org/10.1016/0375-9474(90)90123-4
https://doi.org/10.1016/0375-9474(90)90123-4
https://doi.org/10.1016/0375-9474(90)90123-4
https://doi.org/10.1016/0375-9474(90)90124-5
https://doi.org/10.1016/0375-9474(90)90124-5
https://doi.org/10.1016/0375-9474(90)90124-5
https://doi.org/10.1016/0375-9474(90)90124-5
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/PhysRevC.92.015212
https://doi.org/10.1103/PhysRevC.92.015212
https://doi.org/10.1103/PhysRevC.92.015212
https://doi.org/10.1103/PhysRevC.92.015212
https://doi.org/10.1103/PhysRevC.94.035201
https://doi.org/10.1103/PhysRevC.94.035201
https://doi.org/10.1103/PhysRevC.94.035201
https://doi.org/10.1103/PhysRevC.94.035201
https://doi.org/10.1103/PhysRevC.97.055210
https://doi.org/10.1103/PhysRevC.97.055210
https://doi.org/10.1103/PhysRevC.97.055210
https://doi.org/10.1103/PhysRevC.97.055210
https://doi.org/10.1103/PhysRevC.90.045202
https://doi.org/10.1103/PhysRevC.90.045202
https://doi.org/10.1103/PhysRevC.90.045202
https://doi.org/10.1103/PhysRevC.90.045202
https://doi.org/10.1103/PhysRevC.90.064316
https://doi.org/10.1103/PhysRevC.90.064316
https://doi.org/10.1103/PhysRevC.90.064316
https://doi.org/10.1103/PhysRevC.90.064316
https://doi.org/10.1016/j.physletb.2016.05.065
https://doi.org/10.1016/j.physletb.2016.05.065
https://doi.org/10.1016/j.physletb.2016.05.065
https://doi.org/10.1016/j.physletb.2016.05.065
https://doi.org/10.1103/PhysRevC.61.045202
https://doi.org/10.1103/PhysRevC.61.045202
https://doi.org/10.1103/PhysRevC.61.045202
https://doi.org/10.1103/PhysRevC.61.045202
https://doi.org/10.1016/S0375-9474(99)00627-2
https://doi.org/10.1016/S0375-9474(99)00627-2
https://doi.org/10.1016/S0375-9474(99)00627-2
https://doi.org/10.1016/S0375-9474(99)00627-2
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevC.62.055204
https://doi.org/10.1103/PhysRevC.62.055204
https://doi.org/10.1103/PhysRevC.62.055204
https://doi.org/10.1103/PhysRevC.62.055204
https://doi.org/10.1103/PhysRevC.65.045211
https://doi.org/10.1103/PhysRevC.65.045211
https://doi.org/10.1103/PhysRevC.65.045211
https://doi.org/10.1103/PhysRevC.65.045211
https://doi.org/10.1103/PhysRevC.65.065203
https://doi.org/10.1103/PhysRevC.65.065203
https://doi.org/10.1103/PhysRevC.65.065203
https://doi.org/10.1103/PhysRevC.65.065203
https://doi.org/10.1103/PhysRevC.77.025203
https://doi.org/10.1103/PhysRevC.77.025203
https://doi.org/10.1103/PhysRevC.77.025203
https://doi.org/10.1103/PhysRevC.77.025203
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1103/PhysRevD.92.014035
https://doi.org/10.1103/PhysRevD.92.014035
https://doi.org/10.1103/PhysRevD.92.014035
https://doi.org/10.1103/PhysRevD.92.014035
https://doi.org/10.1103/PhysRevD.93.074021
https://doi.org/10.1103/PhysRevD.93.074021
https://doi.org/10.1103/PhysRevD.93.074021
https://doi.org/10.1103/PhysRevD.93.074021
https://doi.org/10.1103/PhysRevD.98.054029
https://doi.org/10.1103/PhysRevD.98.054029
https://doi.org/10.1103/PhysRevD.98.054029
https://doi.org/10.1103/PhysRevD.98.054029
https://doi.org/10.1103/PhysRevLett.122.082301
https://doi.org/10.1103/PhysRevLett.122.082301
https://doi.org/10.1103/PhysRevLett.122.082301
https://doi.org/10.1103/PhysRevLett.122.082301
https://doi.org/10.1088/1674-1137/34/9/084
https://doi.org/10.1088/1674-1137/34/9/084
https://doi.org/10.1088/1674-1137/34/9/084
https://doi.org/10.1088/1674-1137/34/9/084
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1140/epja/i2014-14126-6
https://doi.org/10.1140/epja/i2014-14126-6
https://doi.org/10.1140/epja/i2014-14126-6
https://doi.org/10.1140/epja/i2014-14126-6
https://doi.org/10.1140/epja/i2014-14085-x
https://doi.org/10.1140/epja/i2014-14085-x
https://doi.org/10.1140/epja/i2014-14085-x
https://doi.org/10.1140/epja/i2014-14085-x
https://doi.org/10.1140/epja/i2015-15010-7
https://doi.org/10.1140/epja/i2015-15010-7
https://doi.org/10.1140/epja/i2015-15010-7
https://doi.org/10.1140/epja/i2015-15010-7
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1103/PhysRevD.96.014021
https://doi.org/10.1103/PhysRevD.96.014021
https://doi.org/10.1103/PhysRevD.96.014021
https://doi.org/10.1103/PhysRevD.96.014021
https://doi.org/10.1007/s00601-018-1455-y
https://doi.org/10.1007/s00601-018-1455-y
https://doi.org/10.1007/s00601-018-1455-y
https://doi.org/10.1007/s00601-018-1455-y
https://doi.org/10.1103/PhysRevD.96.014012
https://doi.org/10.1103/PhysRevD.96.014012
https://doi.org/10.1103/PhysRevD.96.014012
https://doi.org/10.1103/PhysRevD.96.014012
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1103/PhysRevD.86.094509
https://doi.org/10.1103/PhysRevD.86.094509
https://doi.org/10.1103/PhysRevD.86.094509
https://doi.org/10.1103/PhysRevD.86.094509
https://doi.org/10.1103/PhysRevD.81.054507
https://doi.org/10.1103/PhysRevD.81.054507
https://doi.org/10.1103/PhysRevD.81.054507
https://doi.org/10.1103/PhysRevD.81.054507
https://doi.org/10.1103/PhysRevD.65.014510
https://doi.org/10.1103/PhysRevD.65.014510
https://doi.org/10.1103/PhysRevD.65.014510
https://doi.org/10.1103/PhysRevD.65.014510
https://doi.org/10.1103/PhysRevD.66.094501
https://doi.org/10.1103/PhysRevD.66.094501
https://doi.org/10.1103/PhysRevD.66.094501
https://doi.org/10.1103/PhysRevD.66.094501
https://doi.org/10.1103/PhysRevD.75.094501
https://doi.org/10.1103/PhysRevD.75.094501
https://doi.org/10.1103/PhysRevD.75.094501
https://doi.org/10.1103/PhysRevD.75.094501
https://doi.org/10.1103/PhysRevD.92.034017
https://doi.org/10.1103/PhysRevD.92.034017
https://doi.org/10.1103/PhysRevD.92.034017
https://doi.org/10.1103/PhysRevD.92.034017
http://arxiv.org/abs/arXiv:1610.05669
https://doi.org/10.1016/j.physletb.2016.12.058
https://doi.org/10.1016/j.physletb.2016.12.058
https://doi.org/10.1016/j.physletb.2016.12.058
https://doi.org/10.1016/j.physletb.2016.12.058
https://doi.org/10.1103/PhysRevD.98.034010
https://doi.org/10.1103/PhysRevD.98.034010
https://doi.org/10.1103/PhysRevD.98.034010
https://doi.org/10.1103/PhysRevD.98.034010
https://doi.org/10.5506/APhysPolBSupp.6.321
https://doi.org/10.5506/APhysPolBSupp.6.321
https://doi.org/10.5506/APhysPolBSupp.6.321
https://doi.org/10.5506/APhysPolBSupp.6.321
https://doi.org/10.1103/PhysRevD.91.105009
https://doi.org/10.1103/PhysRevD.91.105009
https://doi.org/10.1103/PhysRevD.91.105009
https://doi.org/10.1103/PhysRevD.91.105009
https://doi.org/10.1007/s00601-015-0962-3
https://doi.org/10.1007/s00601-015-0962-3
https://doi.org/10.1007/s00601-015-0962-3
https://doi.org/10.1007/s00601-015-0962-3
https://doi.org/10.1103/PhysRevC.93.055202
https://doi.org/10.1103/PhysRevC.93.055202
https://doi.org/10.1103/PhysRevC.93.055202
https://doi.org/10.1103/PhysRevC.93.055202
https://doi.org/10.1016/j.physletb.2016.04.065
https://doi.org/10.1016/j.physletb.2016.04.065
https://doi.org/10.1016/j.physletb.2016.04.065
https://doi.org/10.1016/j.physletb.2016.04.065
https://doi.org/10.1007/s00601-017-1266-6
https://doi.org/10.1007/s00601-017-1266-6
https://doi.org/10.1007/s00601-017-1266-6
https://doi.org/10.1007/s00601-017-1266-6
https://doi.org/10.1103/PhysRevD.96.016022
https://doi.org/10.1103/PhysRevD.96.016022
https://doi.org/10.1103/PhysRevD.96.016022
https://doi.org/10.1103/PhysRevD.96.016022
https://doi.org/10.1140/epjc/s10052-017-5248-0
https://doi.org/10.1140/epjc/s10052-017-5248-0
https://doi.org/10.1140/epjc/s10052-017-5248-0
https://doi.org/10.1140/epjc/s10052-017-5248-0
https://doi.org/10.1103/PhysRevD.97.054034
https://doi.org/10.1103/PhysRevD.97.054034
https://doi.org/10.1103/PhysRevD.97.054034
https://doi.org/10.1103/PhysRevD.97.054034
https://doi.org/10.1103/PhysRevD.98.034024
https://doi.org/10.1103/PhysRevD.98.034024
https://doi.org/10.1103/PhysRevD.98.034024
https://doi.org/10.1103/PhysRevD.98.034024
http://arxiv.org/abs/arXiv:1809.06475
https://doi.org/10.1007/s00601-016-1210-1
https://doi.org/10.1007/s00601-016-1210-1
https://doi.org/10.1007/s00601-016-1210-1
https://doi.org/10.1007/s00601-016-1210-1
https://doi.org/10.1007/s00601-016-1117-x
https://doi.org/10.1007/s00601-016-1117-x
https://doi.org/10.1007/s00601-016-1117-x
https://doi.org/10.1007/s00601-016-1117-x
https://doi.org/10.1103/PhysRevD.98.114038
https://doi.org/10.1103/PhysRevD.98.114038
https://doi.org/10.1103/PhysRevD.98.114038
https://doi.org/10.1103/PhysRevD.98.114038
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001


BASIS LIGHT FRONT QUANTIZATION FOR THE … PHYSICAL REVIEW C 99, 035206 (2019)

[61] S. R. Amendolia, B. Badelek, G. Batignani, G. A. Beck, F.
Bedeschi, E. H. Bellamy, E. Bertolucci, D. Bettoni, H. Bilokon,
G. Bologna et al., Phys. Lett. B 146, 116 (1984).

[62] S. R. Amendolia, M. Arik, B. Badelek, G. Batignani, G. A.
Beck, F. Bedeschi, E. H. Bellamy, E. Bertolucci, D. Bettoni,
H. Bilokon et al. (NA7 Collaboration), Nucl. Phys. B 277, 168
(1986).

[63] T. Horn, K. Aniol, J. Arrington, B. Barrett, E. J. Beise, H. P.
Blok, W. Boeglin, E. J. Brash, H. Breuer, C. C. Chang et al.
(Jefferson Lab Fπ Collaboration), Phys. Rev. Lett. 97, 192001
(2006).

[64] V. Tadevosyan, H. P. Blok, G. M. Huber, D. Abbott, H. Anklin,
C. Armstrong, J. Arrington, K. Assamagan, S. Avery, O. K.
Baker et al. (Jefferson Lab Fπ Collaboration), Phys. Rev. C 75,
055205 (2007).

[65] G. M. Huber, H. P. Blok, T. Horn, E. J. Beise, D. Gaskell, D.
J. Mack, V. Tadevosyan, J. Volmer, D. Abbott, K. Aniol et al.
(The Jefferson Lab Fπ Collaboration), Phys. Rev. C 78, 045203
(2008).

[66] E. B. Dally, J. M. Hauptman, J. Kubic, D. H. Stork, A. B.
Watson, Z. Guzik, T. S. Nigmanov, V. D. Riabtsov, E. N.
Tsyganov, A. S. Vodopianov, et al., Phys. Rev. Lett. 45, 232
(1980).

[67] S. R. Amendolia, G. Batignani, G. A. Beck, E. H. Bellamy,
E. Bertolucci, G. Bologna, L. Bosisio, C. Bradaschia, M.
Budinich, M. Dell’orso et al., Phys. Lett. B 178, 435
(1986).

[68] M. Carmignotto, S. Ali, K. Aniol, J. Arrington, B. Barrett, E.
J. Beise, H. P. Blok, W. Boeglin, E. J. Brash, H. Breuer et al.
(JLAB FPI-2 and E93-018 Collaboration), Phys. Rev. C 97,
025204 (2018).

[69] T. Horn, PoS INPC2016, 298 (2017).
[70] F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and P. C. Tandy,

Phys. Rev. D 96, 034024 (2017).
[71] T. Horn and C. D. Roberts, J. Phys. G 43, 073001 (2016).
[72] E. M. Aitala, S. Amato, J. C. Anjos, J. A. Appel, D. Ashery, S.

Banerjee, I. Bediaga, G. Blaylock, S. B. Bracker, P. R. Burchat
et al. (Fermilab E791 Collaboration), Phys. Rev. Lett. 86, 4768
(2001).

[73] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Lett.
B 578, 91 (2004).

[74] S. J. Brodsky and G. F. de Téramond, Subnucl. Ser. 45, 139
(2009).

[75] I. C. Cloët, L. Chang, C. D. Roberts, S. M. Schmidt, and P. C.
Tandy, Phys. Rev. Lett. 111, 092001 (2013).

[76] J. Segovia, L. Chang, I. C. Cloët, C. D. Roberts, S. M. Schmidt,
and H.-s. Zong, Phys. Lett. B 731, 13 (2014).

[77] F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and S. M. Schmidt,
Phys. Rev. D 90, 014011 (2014).

[78] C. Shi, L. Chang, C. D. Roberts, S. M. Schmidt, P. C. Tandy,
and H.-S. Zong, Phys. Lett. B 738, 512 (2014).

[79] S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 24, 181 (1970).
[80] G. B. West, Phys. Rev. Lett. 24, 1206 (1970).
[81] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).

035206-17

https://doi.org/10.1016/0370-2693(84)90655-5
https://doi.org/10.1016/0370-2693(84)90655-5
https://doi.org/10.1016/0370-2693(84)90655-5
https://doi.org/10.1016/0370-2693(84)90655-5
https://doi.org/10.1016/0550-3213(86)90437-2
https://doi.org/10.1016/0550-3213(86)90437-2
https://doi.org/10.1016/0550-3213(86)90437-2
https://doi.org/10.1016/0550-3213(86)90437-2
https://doi.org/10.1103/PhysRevLett.97.192001
https://doi.org/10.1103/PhysRevLett.97.192001
https://doi.org/10.1103/PhysRevLett.97.192001
https://doi.org/10.1103/PhysRevLett.97.192001
https://doi.org/10.1103/PhysRevC.75.055205
https://doi.org/10.1103/PhysRevC.75.055205
https://doi.org/10.1103/PhysRevC.75.055205
https://doi.org/10.1103/PhysRevC.75.055205
https://doi.org/10.1103/PhysRevC.78.045203
https://doi.org/10.1103/PhysRevC.78.045203
https://doi.org/10.1103/PhysRevC.78.045203
https://doi.org/10.1103/PhysRevC.78.045203
https://doi.org/10.1103/PhysRevLett.45.232
https://doi.org/10.1103/PhysRevLett.45.232
https://doi.org/10.1103/PhysRevLett.45.232
https://doi.org/10.1103/PhysRevLett.45.232
https://doi.org/10.1016/0370-2693(86)91407-3
https://doi.org/10.1016/0370-2693(86)91407-3
https://doi.org/10.1016/0370-2693(86)91407-3
https://doi.org/10.1016/0370-2693(86)91407-3
https://doi.org/10.1103/PhysRevC.97.025204
https://doi.org/10.1103/PhysRevC.97.025204
https://doi.org/10.1103/PhysRevC.97.025204
https://doi.org/10.1103/PhysRevC.97.025204
https://doi.org/10.22323/1.281.0298
https://doi.org/10.22323/1.281.0298
https://doi.org/10.22323/1.281.0298
https://doi.org/10.22323/1.281.0298
https://doi.org/10.1103/PhysRevD.96.034024
https://doi.org/10.1103/PhysRevD.96.034024
https://doi.org/10.1103/PhysRevD.96.034024
https://doi.org/10.1103/PhysRevD.96.034024
https://doi.org/10.1088/0954-3899/43/7/073001
https://doi.org/10.1088/0954-3899/43/7/073001
https://doi.org/10.1088/0954-3899/43/7/073001
https://doi.org/10.1088/0954-3899/43/7/073001
https://doi.org/10.1103/PhysRevLett.86.4768
https://doi.org/10.1103/PhysRevLett.86.4768
https://doi.org/10.1103/PhysRevLett.86.4768
https://doi.org/10.1103/PhysRevLett.86.4768
https://doi.org/10.1016/j.physletb.2003.10.033
https://doi.org/10.1016/j.physletb.2003.10.033
https://doi.org/10.1016/j.physletb.2003.10.033
https://doi.org/10.1016/j.physletb.2003.10.033
https://doi.org/10.1142/9789814293242_0008
https://doi.org/10.1142/9789814293242_0008
https://doi.org/10.1142/9789814293242_0008
https://doi.org/10.1142/9789814293242_0008
https://doi.org/10.1103/PhysRevLett.111.092001
https://doi.org/10.1103/PhysRevLett.111.092001
https://doi.org/10.1103/PhysRevLett.111.092001
https://doi.org/10.1103/PhysRevLett.111.092001
https://doi.org/10.1016/j.physletb.2014.02.006
https://doi.org/10.1016/j.physletb.2014.02.006
https://doi.org/10.1016/j.physletb.2014.02.006
https://doi.org/10.1016/j.physletb.2014.02.006
https://doi.org/10.1103/PhysRevD.90.014011
https://doi.org/10.1103/PhysRevD.90.014011
https://doi.org/10.1103/PhysRevD.90.014011
https://doi.org/10.1103/PhysRevD.90.014011
https://doi.org/10.1016/j.physletb.2014.07.057
https://doi.org/10.1016/j.physletb.2014.07.057
https://doi.org/10.1016/j.physletb.2014.07.057
https://doi.org/10.1016/j.physletb.2014.07.057
https://doi.org/10.1103/PhysRevLett.24.181
https://doi.org/10.1103/PhysRevLett.24.181
https://doi.org/10.1103/PhysRevLett.24.181
https://doi.org/10.1103/PhysRevLett.24.181
https://doi.org/10.1103/PhysRevLett.24.1206
https://doi.org/10.1103/PhysRevLett.24.1206
https://doi.org/10.1103/PhysRevLett.24.1206
https://doi.org/10.1103/PhysRevLett.24.1206
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157



