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Background: There is significant current interest in knowing the value of the proton radius and also its proper
definition.
Purpose: Combine the disparate literatures of hydrogen spectroscopy and diverse modern parton distributions
to understand the meaning of the proton radius in a manner consistent with the separate bodies of work.
Methods: Use perturbation theory, light-front dynamics, and elementary techniques to find relativistically
correct definitions of the proton radius and charge density.
Results: It is found that the very same proton radius is accessed by measurements of hydrogen spectroscopy
and elastic lepton scattering. The derivation of the mean-square radius as a moment of a spherically symmetric
three-dimensional density is shown to be incorrect. A relativistically correct, two-dimensional charge density is
related to the diverse modern literature of various parton distributions. Relativistically invariant moments thereof
are derived in a new relativistic moment expansion, the RME.
Conclusion: The equation r2

p ≡ −6G′
E (0) is the definition of the proton radius.
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I. INTRODUCTION

What is the value of the radius of the proton? This ques-
tion has generated much interest since the publication of
the results of the muon-hydrogen spectroscopy experiment
in 2010 [1] and its confirmation [2]. The proton radius was
measured to be rp = 0.84184(67) fm, which contrasted with
the value obtained from electron-hydrogen spectroscopy rp =
0.8768(69) fm. At that time the large value was consistent
with that obtained (with much larger uncertainties [3]) from
electron scattering. This difference of about 4% has become
known as the proton radius puzzle [4]. The proton radius
puzzle was reviewed in 2013 [5] and 2015 [6]. New exper-
imental results for hydrogen have appeared since that time
[7,8] without resolving the puzzle. More results are planned.
The PRAD experiment [9] seeks to make previous electron
scattering determinations of rp more precise by making mea-
surements at very small values of momentum transfer. A new
measurement of the 2S1/–2 − 2P1/2 transition in hydrogen is
expected to appear (E. A. Hessels, 2016 talk at ECT*). All
possible explanations of the proton radius puzzle will be
addressed in the Muon-Scattering Experiment (MUSE) by
measuring e± − p and μ± − p scattering [10].

One might wonder whether or not a 4% difference really
matters. After all, 4% is pretty small and (at the present time)
the value of rp cannot be calculated to that accuracy. Perhaps
the most interesting issue is whether or not the fundamental
electron-proton interaction is the same as the muon-proton
interaction. To find that this is not the case is to discover a
violation of the principle of lepton-universality, a cornerstone
of the standard model.

But there is another basic question that must be addressed:
what is the radius of the proton? How does one define the
radius of a quantum-field theoretic system made of nearly
massless quarks and gluons? This quantity can be measured

in the hydrogen atom and also in electron-proton scattering.
There is a separate, but clear, literature in the fields of atomic
and nuclear physics. Both fields obtain the same answer that

−6G′
E (0) ≡ r2

p, (1)

where GE (Q2) is the Sachs electric form factor. This form
factor is a specifically defined probability amplitude that an
interaction between a photon of four-momentum qμ (Q2 =
−q2) and a charged constituent of the proton can absorb such a
momentum with the proton remaining in its ground state. The
meaning of Eq. (1) is that the quantity −6G′

E (0) appears in
both hydrogen spectroscopy and lepton-proton elastic scatter-
ing measurements. The quantity r2

p is merely an abbreviation.
The expression Eq. (1) is uniquely used in spectroscopy and
scattering experiments to determine the proton radius from the
slope of GE .

The aims of the present paper are as follows.

(1) Unite the hydrogen spectroscopy literature with that
of lepton-proton scattering and show how Eq. (1)
emerges from the separate bodies of work.

(2) Show that a three-dimensional charge density cannot
be defined, so that r2

p is not a second moment of a
density distribution.

(3) Remind readers how it is that a two-dimensional
charge density which is a matrix element of a den-
sity operator between identical initial and final states,
can be defined and determined by the Dirac form
factor, F1.

(4) Place the two-dimensional charge density in the mod-
ern context of generalized parton distributions and
Wigner functions.

(5) Derive a relativistically correct moment expansion
of F1.
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The second item may be considered controversial by some.
This is because the textbook interpretation [11–18] of GE

is that its Fourier transform is a three-dimensional charge
density. This interpretation is deeply embedded in the thinking
of nuclear and particle physicists and therefore continues to
guide intuition, as it has since the days of the Nobel prize-
winning work of Hofstadter [19–21]. Nevertheless, the rela-
tivistic motion of the nearly massless fermionic constituents
of the proton causes the textbook interpretation to be incorrect
because relativistic invariance is ignored in defining the three-
dimensional density.

The modern day literature regarding the measurable as-
pects of the proton, which is consistent with relativity, is much
deeper than the understanding from 1956. The increasing
availability of high energies and high luminosities at fixed
target and collider experiments [22,23] allows for unprece-
dented access to the internal transverse spatial and momen-
tum distributions of charge distributions inside nucleons and
in nuclei. The standard framework [24] is that of Wigner
distributions [25] that allow simultaneous knowledge of both
spatial and momentum aspects of the nucleon wave function.
Knowledge of the Wigner distributions allows the construc-
tion of generalized parton distributions (GPDs) [26–38] and
transverse momentum distributions (TMDs) [40–45] that are
generalizations of the usual collinear parton distributions. The
variables of the widely used relativistic formalism involve
three dimensions—one is the longitudinal momentum of a
parton and the other two involve either the transverse positions
(GPD) or momenta (TMD). The longitudinal and transverse
degrees of freedom are treated separately. This is necessary
to maintain symmetries and sum rules provided by relativistic
invariance. Electromagnetic form factors may be obtained by
doing integrals over the longitudinal momentum coordinate
of GPDs. These form factors must be described using the
same variables as the other observables. Thus, only a two-
dimensional charge density may be defined.

Let us outline the remainder of this paper. The appear-
ance of the proton radius, rp, in hydrogen spectroscopy is
discussed in Sec. II. It explains how the key points related to
extracting the value of the proton radius were already clearly
explained in Refs. [46–48]. It is nevertheless worthwhile to
repeat, publicize this earlier discussion, try to reemphasize
the key points, and strengthen the connection with treatments
of lepton-proton scattering. Section III shows that the only
existing derivation of a three-dimensional, spherically sym-
metric charge density is faulty. A properly defined relativistic
three-dimensional charge density with modern formulations
is discussed in Sec. IV. This quantity is intimately connected
with modern formulations of the diverse set of possible parton
distributions. The ensuing phenomenology is discussed in
Sec. V in which a correctly defined moment expansion RME
is derived. Some details are placed in Appendixes.

II. HYDROGEN ATOM

This section is concerned with understanding the role of
the proton radius in hydrogen spectroscopy. The starting point
is to understand the leading relativistic corrections to the
basic Dirac energy levels. The standard procedure is well

documented in Refs. [46,47], and their discussion is used here.
In the center-of-mass system the nonrelativistic Hamiltonian
for a system of a proton (of mass M) and a lepton (of mass m)
with a Coulomb interaction is given by

H0 = �p2

2m
+ �p2

2M
− α

r
. (2)

In a nonrelativistic loosely bound system an expansion in
powers of α2 corresponds to an expansion in powers of v2/c2.
To proceed one needs an effective Hamiltonian including
terms of order v2/c2. Breit [49,50] considered such a Hamil-
tonian, realizing that all corrections to the nonrelativistic
Hamiltonian of order v2/c2 may be obtained from the sum of
the free relativistic Hamiltonians of each of the particles along
with relativistic one-photon exchange between the fermions.
An explicit expression for the resulting Breit potential was
derived [51] from the one-photon exchange amplitude using
the Foldy-Wouthhuysen transformation. If hyperfine effects
are ignored, the result to order v2/c2 is given by

VBreit = πα

2

(
1

m2
+ 1

M2

)
δ(�r) − α

2mMr

(
�p2 + �r(�r · �p) · �p

r2

)
+ α

r3

(
1

4m2
+ 1

2mM

)
[�r × �p] · �σ . (3)

All contributions to the energy levels up to order α4 may
be calculated from the total Hamiltonian H0 + VBreit. The
corrections of order α4 are the first-order matrix elements
of the Breit interaction between the Coulomb-Schroedinger
eigenfunctions of H0. The result is

En j = m+M−mrα
2

2n2
− mrα

4

2n3

(
1

j + 1
2

− 3

4n
+ mr

4n(m + M )

)

+ α4m3
r

2n3M2

(
1

j + 1
2

− 1

l + 1
2

)
(1 − δl0), (4)

where the reduced mass mr = mM/(m + M ) and j in the
total angular momentum quantum number of the lepton. Note
the presence of the last term of Eq. (4), which removes the
degeneracy of the Dirac spectrum between levels with the
same j and l = j ± 1

2 .
The expressions Eq. (3) and Eq. (4) are obtained assuming

the proton is a point-like proton. Electromagnetic form factors
are introduced to include the effects of its nonzero spatial
extent. The photon-proton vertex operator �μ is given by

�μ = γ μF1(Q2) + i
σμν

2M
κF2(Q2), (5)

where Q2 > 0 is the negative of the square of the virtual
space-like photon momentum, F1 is the Dirac form factor,
F2 is the Pauli form factor, and κ is the proton anomalous
magnetic moment. It is useful to define the Sachs form factors
as follows:

GE (Q2) = F1(Q2)−τκF2, GM (Q2) = F1(Q2)+κF2(Q2),

(6)

where τ ≡ Q2

4M2 . With this notation F1,2(0) = 1.
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The photon-electron vertex function in a hydrogen-like
atom is given [46,47] as the matrix element: ū(�p′, s′)�μu(�p, s)
with spinors normalized as u†u = 1. The calculation, see, e.g.,
Refs. [46,47,52], to order 1/M2 (and ignoring a spin-orbit
term) reveals that

ū(�p′, s′)�0u(�p, s) =
(

1 − �q2

8M2

)
GE (�q2). (7)

This key equation is derived in Appendix A. The left-hand
side of Eq. (7) is the time component of a four-vector. The
right-hand side does not depend on �p; it is frame-independent,
and may be used to identify the leading proton-radius effect.

One uses the lowest order Taylor expansion, keeping only
the spin-independent term, to extract the proton radius from
the measured energy levels. Thus one writes

GE (�q2) = 1 + �q2G′
E (0). (8)

The difference between Q2 and �q2, −q2
0, is of order α2m2/M2

and is a higher-order correction, and any correction arising
from a G′′

E (0) term is completely negligible [53]. One then
finds (to order �q2) that

ū(�p′, s′)�0u(�p, s) → 1 − �q2

8M2
+ �q2G′

E (0). (9)

The term �q2

8M2 leads to the Darwin term in the lepton-proton
interaction [51] that provides the term proportional to δl0 in
Eq. (4), so it is already included. The net result is that the
effect of the proton size is given simply by including the term
�q2G′

E (0) in the lepton-proton vertex function. This procedure
avoids defining a radius as a moment of a spherically symmet-
ric, three-dimensional charge density.

Keeping the nonzero size of the proton leads to the mo-
mentum space version of the Coulomb potential:

VC (�q2) = −4πα

�q2
(1 + �q2G′

E (0)) = −4πα

(
1

�q2
+ G′

E (0)

)
.

(10)

The coordinate space potential VC (r) is given by the three-
dimensional Fourier transform

VC (r) = −
∫

d3q

(2π )3
e−i�q·�r4πα

(
1

�q2
+ G′

E (0)

)
= −α

r
− 4παG′

E (0)δ(�r). (11)

Since GE falls with increasing �q2 one finds a repulsive correc-
tion to the Coulomb potential, �VC , given by

�VC (�r) = −4παG′
E (0)δ(�r). (12)

The typical value of �q2 is of the order of the square of the
inverse of the Bohr radius of the atom. The muonic hydrogen
atom Bohr radius is about 200 times smaller than that for
the electronic one. This huge difference does not influence
the potential �VC because of the cancellation of the factor
�q2 by its inverse that arises from the photon propagator.
The net result is the delta function appearing in Eq. (12).
The difference between Bohr radii would enter if one included
the �q4 term in the Taylor expansion of GE , but such terms are
smaller by the ratio of the proton size to the Bohr radius [53].

The shift in the energy �E is given by the matrix element

�E = 〈ψnl |�VC |ψnl〉 = −4παG′
E (0)|ψn0(0)|2δl0. (13)

The net result is that the energy shift in the hydrogen atom
is determined by the slope of GE at its origin. The effect,
Eq. (13), is of order α4 because |ψn0(0)|2 is of order α3, so
that this term should be included with the others of order
α4 displayed in Eq. (4). Effects of higher order in α are not
considered here.

For historical reasons, to be discussed in the next section,
the slope is redefined as

G′
E (0) = − r2

p

6
, (14)

with

GE (Q2) = 1 − r2
p

6
�q2 (15)

for sufficiently small values of �q2. This means that one may
also write

�E = 4πα
r2

p

6
|ψn0(0)|2δl0, (16)

as is often done.
The reader may wonder why the three-dimensional Fourier

transform is allowed in proceeding from Eq. (10) to Eq. (11),
but not in proceeding from GE to a spherically symmetric,
three-dimensional charge density. Eq. (10) and Eq. (11), are
used when the degrees of freedom are leptons and protons. For
that case, the situation is basically nonrelativistic and there
is a well-defined scheme [46,47] to compute the relativistic
corrections. The nonzero proton size is a correction on the
order of the terms in the Breit interaction, Eq. (4). On the
other hand GE involves photons that hit the light up and down
quarks. These always move relativistically. For systems made
of such particles, the internal wave functions of the initial
and final states are different, as discussed in detail in the
next section. No matter how small the nonzero momentum
transfer is, the initial and final proton states differ in a way
that involves an exponential of the full QCD Hamiltonian.

III. LEPTON-PROTON SCATTERING

The electron-proton elastic scattering cross section, ob-
tained under the assumption that the lepton-proton interaction
is mediated by a single photon (and neglecting the electron
mass) is most simply expressed in terms of GE , GM [55]:

dσ

d
=

(
dσ

d

)
M

×
[

G2
E + τ

ε
G2

M

]
1

1 + τ
, (17)

where ( dσ
d

)
M

is the Mott cross-section in which the proton
is treated as point-like (F1,2(Q2) = 1), and ε is a kinematic
factor. Including the nonzero value of the muon mass leads to
a slightly more complicated expression [54].

Elastic electron-proton scattering experiments were first
performed at Stanford by Hofstadter and collaborators, and
summarized in Ref. [20]. This early work, which famously
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[21] discovered that the proton was not a point-particle, as-
sumed that F1 = F2 ≡ F . Their analysis used the equations:

lim
Q2

L→0
F

(
Q2

L

) = 1 − Q2
La2

6
+ · · · , (18)

in which a was associated with the physical extent of the
proton and QL is the laboratory value of the magnitude of
the three-momentum transfer. It is further asserted that

F
(
Q2

L

) =
∫ ∞

0
ρ(r)ei�QL ·rd3r. (19)

The authors are very careful about using this expression. They
state that Eq. (19) “applies in the nonrelativistic limit in which
ρ(r) is the static density distribution.” This definition is frame-
dependent and so violates the principle of relativity.

Expansion of the exponential appearing in Eq. (19) leads
to the well-known moment expansion

F
(
Q2

L

) = 1 − Q2
L

6
〈r2〉 + Q2

L

120
〈r4〉 + · · · (20)

〈rn〉 =
∫

rnρ(r)d3r. (21)

The validity of this expansion depends upon the validity of
the nonrelativistic limit. But there is no reason to believe
that any nonrelativistic treatment is valid for treating the
proton form factor because elastic electron-proton scattering
proceeds mainly via the absorption of a virtual photon by a
nearly massless up or down quark.

Sachs et al. [56,57] introduced the so-called Breit frame in
which q0 = 0 so that here (and in all following equations) Q2

is the Lorentz scalar quantity, Q2 = −q2, and qμ is the four-
momentum of the single-photon mediator. Sachs [57] argued
that in this frame the charge density is given by the Fourier
transform of GE . The resulting nonrelativistic (NR) density as
ρNR(r) is defined by the equation:

ρNR(r) ≡
∫

d3Q

(2π )3
e−iQ·rGE (Q2). (22)

The next step is to show that the definition Eq. (22) (despite
its wide use) has no connection with well-defined matrix
elements of quantum field theory. Equation (22) can be used
to obtain the results that

〈r2〉NR ≡
∫

d3rr2ρNR(r) = −6 G′
E (0), (23)

〈r4〉NR ≡
∫

d3rr4ρNR(r) = 60 G′′
E (0). (24)

Equation (23) has often been used to analyze the charge
distribution of the neutron n. The result is that the mean
square charge radius, 〈r2

n〉NR, is almost completely accounted
for numerically by the anomalous magnetic term 3κn/(2M2),
arising from the F2 contribution to GE [17]. This seems very
strange and looks like a puzzle. The puzzle disappears if one
realizes that the slope of GE is not related to the expectation
value of r2 in a spherically symmetric charge density. The
pion form factor is another example of oddity. The three-
dimensional Fourier transform of the monopole form factor
(that approximates the data) is singular at the origin [58].

P

p

P-p

FIG. 1. Bethe-Salpeter wave function. A hadron of momentum
P fluctuates into a constituent of four-momentum p and another of
momentum P − p.

There is a more technical way of explaining why the
nonrelativistic approach fails. The difficulty comes because
proton wave functions of differing momentum are different.
These functions are related by a boost, which, in general,
contains an exponential of an operator as complicated as the
strong interaction Hamiltonian [59,60]. To see this, consider
a very simple example in which a scalar proton of mass M
is made of a scalar quark (of mass mq and a scalar di-quark
(of mass MS). In this case the Bethe-Salpeter wave function is
given by

ψB.S.(P, p) = 1

p2 − m2
q + iε

1

(P − p)2 − M2
S + iε

= 1

p2 − m2
q + iε

1

M2 − 2P · p + p2 − M2
S + iε

,

(25)

in which various constants have not been displayed. This wave
function is shown in Fig. 1.

Boosting the wave function in this simple model is
achieved merely by changing the value of the four-momentum
P. In lepton-proton elastic scattering the four-momentum of
the initial proton is P and that of the final one is P′ = P + q.
The initial-state wave function depends upon P · p, which in
the laboratory frame is given by M p0. The final-state wave
function depends on P′ · p = (P + q) · p = (M + q0)p0 − q ·
p. Thus electron scattering involves two different wave func-
tions. A density requires the appearance of the square of a
wave function, which does not appear here.

Breit frame falibility

The Breit frame (introduced in Ref. [56]) is the one in
which the three-momentum of the initial proton �P is −1/2
that of the incident virtual photon �q, �P = −�q/2. The final
proton momentum �P′ = �P + �q = �q/2 and the initial and final
protons have the same energy. However, the initial and final
wave functions are different because the quantities P · p and
P′ · p must appear in any relativistic wave function and

P · p =
√

M2 + q2/4p0 + q · p/2,
(26)

P′ · p =
√

M2 + q2/4p0 − q · p/2.

These differ, so that again one is not dealing with the square
of a given wave function.
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The authors of Ref. [56] showed that the matrix element
of the time component of �μ, �0 is proportional to GE if
the helicity is changed (spin direction is not changed). This
argument is also given in, e.g., Ref. [15]. In that reference a
quantity ρ is defined as the matrix element of �0:

ρ ≡ ū(�q/2, sz )�0u(−�q/2, sz ) = GE (Q2), (27)

with the normalization again being u†u = 1, and where the
direction of �q defines the z-axis. The equality follows from
evaluating the spinor matrix element. However, no spatial
dependence is implied by this definition of ρ.

To the best of my knowledge the derivation of a relation-
ship between GE and a three-dimensional charge density is
attempted only in Appendix II of Ref. [57]. In that formalism
the initial and final states are “brought to rest” through the
use of narrow wave packets. This is an attempt to avoid the
previously mentioned problem associated with the boosts.

Although the authors of Ref. [57] made a strong attempt
to derive the charge density as a three-dimensional Fourier
transform of GE , the derivation is simply wrong. To show this,
I redo the calculation of Appendix II of that paper, avoiding
an incorrect assumption used there.

Sachs writes the proton wave packet state as

|�〉 =
∫

d3Pg(�P)|P, s〉, (28)

with g(�P) representing a narrow wave packet. The function
g(�P) is sufficiently narrow so that

|g(�P)|2 → δ(�P). (29)

It is worthwhile to use an explicit representation. Using a
Gaussian

g(�P) = R3/2

π3/4
exp [−�P2R2/2], (30)

where R is assumed to be infinite, as a first choice is conve-
nient. The meaning of the expression Eq. (30) is the standard
one of a distribution in which the first step is to do all of the
relevant integrals, keeping R finite. Then, with the values of
the integrals in hand, take R to infinity [61,62].

Sachs proceeded by computing moments of the putative
charge distribution. Only the time-component and a quadratic
moment are relevant to display the so-called charge density.
In this case:

M (2) ≡
∫

d3q
∫

d3 p g∗(�p + �q/2)g(�p − �q/2)

×
∫

d3x x2〈P′, λ| j0(x)|�P, λ〉, (31)

with the integration variables chosen as �p and�q with �P′ = �p +
�q/2, �P = �p − �q/2, and x2 ≡ ∑

i x2
i with xi as the Cartesian

component of the three vector �x.
The matrix element of the time-component of the current

is given by

〈P′| j0(x)|P〉 = (2π )−3eiq·xū(�P′, λ)�0u(�P, λ), (32)

which (after replacing x2 by −∇2
q , integration over �x, and

integration by parts) leads to the expression

M (2) = −
∫

d3qδ(�q)∇q
2
∫

d3 p g∗(�p + �q/2)g(�p − �q/2)ū(�p + �q/2, λ)�0u(�p − �q/2, λ)eiq0t . (33)

At this stage Sachs made the replacement g∗(�p + �q/2)g(�p − �q/2) → |g(p)|2. The justification is that “terms resulting from the
shape of the wave packet are not of interest here and are therefore dropped.” However, this is not a correct justification for the
replacement because (as a δ function) the quantity |g(P)|2 must vary rapidly. One needs to be careful about the derivatives. To
see this, use the specific form of Eq. (30) in Eq. (33). Then

M (2) = − lim
R→∞

∫
d3qδ(�q)∇2

q

∫
d3 p

R3

π3/2
exp (−�p2R2 − �q2R2/4)ū(�p + �q/2, λ)�0u(�p − �q/2, λ)eiq0t . (34)

The term R3

π3/2 exp (−�p2R2) leads to a delta function setting
�p = 0, so that q0 = 0 and the Breit-frame result, Eq. (27), for
the matrix element of �0 may be used. Then

M (2) = − lim
R→∞

∫
d3qδ(�q)∇2

q e−�q2R2/4GE (�q2) (35)

= − lim
R→∞

∫
d3qδ(�q)

( − R2/2GE (�q2) + ∇2
q GE (�q2)

)
(36)

= lim
R→∞

(
R2/2 − ∇q

2GE (�q2)
)∣∣
�q2=0 = ∞. (37)

This means that the quadratic moment is actually infinite.
This moment expansion fails. The underlying reason is that
∇2

q must involve the square of some distance and the infinite
parameter R2 must appear in addition to any length scales in
the proton.

If one asserts that GE (�q2) = ∫
d3xe−i�q·�xρNR|(|�x)|, then one

finds

−∇q
2GE (�q2)|�q2=0 =

∫
d3x x2ρNR(|�x|), (38)

which looks like the expressions of the usual literature. How-
ever, this term [which does appear in Eq. (37)] is overwhelmed
by the infinite term that also appears. Note that the infinite
result does not rely on using the specific Gaussian form of
Eq. (30). It would occur with any specific representation of a
delta function, as shown in Appendix B. Thus the derivation
of Sachs is fatally flawed.1

1The evaluation of Eq. (34) proceeded by first obtaining δ(�p) and
then handling the dependence of �q. The same result, Eq. (37), is
obtained if one first differentiates with respect to �q.
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One may understand the failure of the Sachs procedure in
simple terms. The wave function |�〉 is meant to represent
a proton of 0 three-momentum, so that (via the uncertainty
principle) its position is totally undetermined. This is the
origin of the infinite result. Another procedure would be to use
Eq. (30) in the opposite limit that R is very, very small. This
would lead to a wave packet that is concentrated in a narrow
region of space, taken as the origin. However, the use of such
a wave packet in Eq. (31) would not allow the use of the Breit
frame result for the matrix element of �0 because the integral
over �p would go over all of its values.

The net result of all of this is that the relation between
G′

E (0) and r2
p, Eq. (1), is merely a definition.

IV. TRUE CHARGE DENSITY

A proper determination of a charge density requires the
measurement of a matrix element of a density operator taken
between initial and final states that are the same. The aim
here is to show that the proton form factor, F1 is a specific
integral of the three-dimensional charge density of partons in
the infinite momentum frame, ρ̂∞(x−, b).

It is necessary to provide a brief introduction to light-front
coordinates. Instead of the usual x0 = ct, x3 = z, the light
front approach uses x± = (x− ± x3)/

√
2. By convention the

term x+ corresponds to the time and x− corresponds to the
longitudinal distance coordinate.

In the infinite momentum frame, IMF, the time coordinate
ct = x0/

√
2 is expressed in a frame moving along the negative

z direction with a velocity nearly that of light using the
Lorentz transformation as the variable x+ = (x0 + x3)/

√
2,

with the usual γ factor absorbed by a Jacobean of an integral
over volume [63]. The x+ variable is canonically conjugate to
the minus-component of the momentum operator p− ≡ (p0 −
p3)/

√
2. The longitudinal spatial variable is x− = (x0 −

x3)/
√

2 and its conjugate momentum is p+ = (p0 + p3)/
√

2.
It is this plus-component of momentum that is associated with
the usual Bjkoren variable. The transverse coordinates x, y are
written as b with the conjugate momentum denoted p. Bold-
face is used here to denote the two-dimensional transverse
components of position and momentum vectors to distinguish
these from the three-dimensional vectors (e.g., �q) of previous
sections.

Light-front time-quantization, which sets x+ and the plus-
component of all spatial variables to zero, is used. This
means that x− can be thought of as the longitudinal variable
−√

2x3. One extremely useful aspect of using these vari-
ables is that Lorentz transformations to frames moving with
different transverse velocities do not depend on interactions.
These transformations form the kinematic subgroup of the
Poincaré group, so that boosts in the transverse direction are

accomplished as in the nonrelativistic theory; the dependence
on the total transverse momentum of any system appears only
as an overall phase factor.

This language may seem a bit abstract. All it means the
wave function of a proton with a given (p+, p) is related to
the one of momentum (p+, 0) by a factor that is independent
of the relative momenta of the partons that make up the
wave function. The necessary integrations to compute form
factors (in a frame in which Q2 = q2) only involve the relative
variables that appear in light-front wave functions. Examples
can be found in Refs. [64–66].

The density that is relevant here has been known for a long
time [67] and often been exploited [58,64,68]. In the IMF, the
electromagnetic charge density J0 operator becomes J+ and

ρ̂∞(x−, b) = J+(x−, b) =
∑

q

eqq(x−, b)γ +q(x−, b)

=
∑

q

eq

√
2q†

+(x−, b)q+(x−, b), (39)

where q+(xμ) = γ 0γ +/
√

2q(xμ), the independent part of the
quark-field operator q(xμ). The time variable, x+ is set to zero.
Note the appearance of the absolute square of quark field-
operators, which is the signature of a true density operator. An
analogous expression is widely used to describe color charge
densities [69,70].

The purpose of this section is to show how matrix ele-
ments of ρ̂∞(x−, b) (which are true densities) emerge from
modern quantum field theory treatments of nucleon structure.
The vast literature concerning the diverse set of functions
that are used to describe nucleon structure includes gener-
alized parton distributions GPDs [26,27,30–37,71,72] trans-
verse momentum distributions (TMDs) [40,41,73–77] and,
more recently, generalized transverse momentum distributions
(GTMDs) [78,79].

Generalized parton distributions are of high current interest
because they can be related to the total angular momentum
carried by quarks in the nucleon and can be determined us-
ing deeply virtual Compton scattering experiments [27]. The
opportunity of determining all of these is greatly enhanced by
the possible creation of an electron-ion collider [80].

These distributions are specific matrix elements of quark-
field operators, between nucleon states, which in contrast
to the usual quark distribution functions, do not necessarily
have the same momenta. The specific case in which the
longitudinal momentum transfer vanishes, and the initial and
final states have the same helicity λ′ = λ is relevant in the
present context. Then, in the light-cone gauge, A+ = 0, the
matrix element defining the GPD, Hq for a quark of flavor q is

Hq(x, t ) =
∫

dx−

4π
〈p+, p′, λ|q̄

(
−x−

2
, 0

)
γ +q

(
x−

2
, 0

)
|p+, p, λ〉eixp+x−

, (40)

where the normalization is 〈p′+, p′, λ|p+, p, λ〉 =
2p+(2π )3δ(p′+ − p+)δ(2)(p′ − p). The variable λ denotes

the helicity, and only the helicity nonflip term needed
to compute F1 appear here. The four-momentum transfer
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qα = p′
α − pα is space-like, with the square of the

space-like four-momentum transfer q2 = −Q2 and use
the Drell-Yan (DY) frame with (q+ = 0, Q2 = q2). No
longitudinal momentum is transferred, so that initial and
final states are related only by kinematic transformations.
Moreover, the current operator links Fock-state components
with the same number of constituents. The abbreviation
−t = −(p′ − p)2 = (p′ − p)2 = −q2 = Q2 is used. The
presence of the operator γ + insures that independent field
operators appear in the matrix element.

GPDs allow for a unified description of a number of
hadronic properties [28]. Notice that if t = 0 they reduce to
conventional PDFs Hq(x, 0) = q(x), and, of most relevance
here, that the integration of Hq over x yields the nucleon
electromagnetic form factor

F1(t ) =
∑

q

eq

∫
dxHq(x, t ), (41)

with the defining equation

F1(Q2) = 〈p′+, p′, λ|J+(0)|p+, p, λ〉
2p+ . (42)

The spatial structure of a nucleon can be examined if
one uses the fact that transverse boosts are independent of
interactions in the infinite momentum frame [81,82] to define
[38,39,67] nucleonic states that are transversely localized. The
state with transverse center of mass R set to 0 is formed by
taking a linear superposition of states of transverse momen-
tum. In particular,

|p+, R = 0, λ〉 ≡ N
∫

d2p

(2π )2
√

2p+ |p+, p, λ〉, (43)

where |p+, p, λ〉 are light-cone helicity eigenstates [67] and
N is a normalization factor satisfying |N |2 ∫ d2p⊥

(2π )2 = 1. The

authors of Refs. [83,84] used wave packet treatments that
avoided states normalized to δ functions, but this leads to the
same results as using Eq. (43). Note, however, the relevant
range of integration in Eq. (43) must be restricted to |p| �
p+ to maintain the interpretation of a nucleon moving with
well-defined longitudinal momentum [83]. Thus the infinite
momentum frame, with p+ as the large momentum, is used.
This is a frame in which the interpretation of a nucleon as a
set of a large number of partons is valid.

Using Eq. (43) sets the transverse center of momentum
of a state of total very large momentum p+ to zero, so that
a transverse distance b relative to R can be defined. To use
this feature generalize the quark-field operator appearing in
Eq. (40) by making a translation

Ôq(x, b) ≡
∫

dx−

4π
q†

+

(
−x−

2
, b

)
q+

(
x−

2
, b

)
eixp+x−

. (44)

The impact parameter-dependent PDF is defined [83] as the
matrix element of this operator in the state of Eq. (43):

q(x, b) ≡ 〈p+, R = 0, λ|Ôq(x, b)|p+, R = 0, λ〉. (45)
The use of Eq. (43) in Eq. (45) allows one to show that q(x, b)
is the two-dimensional Fourier transform of the GPD Hq:

q(x, b) =
∫

d2q

(2π )2
e−iq·bHq(x, t = −q2), (46)

with Hq appearing because the initial and final helicities are
each λ. A complete determination of Hq(x, t ) (with t � 0)
would determine q(x, b).

One finds a probability interpretation [67] by integrating
q(x, b) over all values of x. This sets the differences in
longitudinal distances, appearing in Eq. (44), to 0. Then the
use of translational invariance leads to the result

∫
dx q(x, b) = 〈p+, R = 0, λ|q†

+(x−, b)q+(x−, b)|p+, R = 0, λ〉. (47)

This equation shows that the matrix element of a true density
operator (square of a quark-field operator) taken between
identical initial and final states is experimentally accessible.

Furthermore, multiplying Eq. (47) by the quark charge eq

(in units of e), sums over quark flavors, uses Eq. (43) with
Ôq(x, b) = e−ip̂·bÔq(x, 0)eip̂·b along with Eq. (41), the result-
ing infinite-momentum-frame IMF parton charge density in
transverse space is

ρ(b) ≡
∑

q

eq

∫
dx q(x, b) =

∫
d2q

(2π )2
F1(Q2 = q2)e−i q·b.

(48)

This relation shows that a properly defined charge density,
the transverse charge density, is obtained using the same
formulations that is used to define generalized densities.

Wigner distributions

There is now a broader perspective involving a diverse
set of distributions that can be used to characterize nucleon
structure [79]. This subsection is intended to place the trans-
verse density in the context of Wigner distributions. Wigner
distributions in QCD were first explored by the authors of
Refs. [24,85]. Neglecting relativistic effects, those authors
used the standard three-dimensional Fourier transform in the
Breit frame and introduced six-dimensional Wigner distribu-
tions (three position and three momentum coordinates). The
modern perspective involves instead five-dimensional Wigner
distributions (two position and three separate momentum
variables coordinates) as seen from the infinite momentum
frame (IMF). These three-momentum variables of a quark are
k+, k, so there is no spherically symmetric charge density.
These light-front variables were exploited [79] to arrive at a
definition of Wigner distributions that is completely consistent
with relativity.
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The first step is to use Wigner operators for quarks of flavor q at a fixed light-cone time y+ = 0:

Ŵq(b, k, x) ≡ 1

2

∫
dz− d2z

(2π )3
ei(xp+z−−k·z) q

(
y − z

2

)
γ +W q

(
y + z

2

)
|z+=0, (49)

with yμ = [0, 0, b], p+ is the average of the initial and final nucleon longitudinal momentum and x = k+/p+ is the average
fraction of nucleon longitudinal momentum carried by the struck quark. The above equation is a specific Wigner operator
that involves γ + that is relevant here. More generally, one could use any twist-two Dirac operator � = γ +, γ +γ5, iσ j+γ5 with
j = 1, 2. A Wilson line, W , ensures the color gauge invariance of the Wigner operator by connecting the points (y − z

2 ) and
(y + z

2 ) see, e.g., Ref. [86].
Wigner distributions are defined as matrix elements of the Wigner operators sandwiched between nucleon states with

polarization �S:

ρq(b, k, x,�S) ≡
∫

d2�

(2π )2

〈
p+,

�

2
,�S

∣∣∣∣Ŵq(b, k, x)

∣∣∣∣p+,−�

2
,�S

〉
.

(50)

The authors of Ref. [79] showed how four different three-dimensional densities can be defined. The task here is to connect
the transverse density, ρ(b), of Eq. (48) with the Wigner distribution defined above. This is done by integrating the quantity
ρq(b, k, x, λ) over all values of x and k. This sets z− and z to 0, so that the Wilson line becomes unity, and the result is∫

dx d2k

〈
p+,

�

2
, λ

∣∣∣∣Ŵq(b, k, x)

∣∣∣∣p+,−�

2
, λ

〉
= 1

2p+

〈
p+,

�

2
, λ

∣∣∣∣q(x− = 0, b) γ + q(x− = 0, b)

∣∣∣∣p+,−�

2
, λ

〉
, (51)

where the polarization vector �S has been set to the light-front helicity λ. Using translational invariance in the transverse direction
and Eq. (50) shows that ∫

dx d2kρq(b, k, x, λ) =
∫

d2�

(2π )2

e−i�·b

2p+

〈
p+,

�

2
, λ

∣∣∣∣q(0) γ + q(0)

∣∣∣∣p+,−�

2
, λ

〉
, (52)

so that the charge density operator appears. Multiplying this
expression by eq, summing over quark flavors q and using
Eq. (42) and Eq. (48) shows that∑

q

eq

∫
dx d2kρq(b, k, x, λ) = ρ(b). (53)

This means that the transverse charge density exhibits a spe-
cific aspect of quark Wigner distributions. Observe that proton
electromagnetic form factors occupy a small, but important,
corner of a vast field.

V. TRUE VERSUS NONRELATIVISTIC DENSITY

The quantity ρ(b) of Eq. (48) is a true density. It is properly
defined as the matrix element of a density operator between
identical initial and final states. It depends only on the two-
dimensional transverse variable b because boosts in the lon-
gitudinal momentum depend on interactions. Furthermore, it
depends only on the magnitude b because of its independence
of λ.

The purpose of this section is to understand the differences
between ρ(b) and ρNR(r) even though these are inherently
different. The former is well defined in quantum field theory,
and the latter is defined as a three-dimensional Fourier trans-
form of GE . However, it is useful to compare ρ(b) to a two-
dimensional version of ρNR(r). A transverse nonrelativistic
density can be defined in analogy with the transverse densities
that are used in relativistic heavy ion physics, and which
generally appear in Glauber theory (eikonal approximation)

calculations of scattering processes. To this end, one writes
�r = z k̂ + b and then integrates ρNR(r) over all values of z.
Then one obtains a nonrelativistic transverse density

ρNR,T(b) =
∫ ∞

−∞
dz ρNR(

√
b2 + z2). (54)

The use of Eq. (22) in this equation followed by integration
over angles yields the result

ρNR,T(b) = 1

2π

∫ ∞

0
dQQJ0(bQ)GE (Q2), (55)

where J0 is a cylindrical Bessel function. The nonrelativistic
transverse density ρNR,T(b) may be compared to a more
detailed version of the true transverse density of Eq. (48):

ρ(b) = 1

2π

∫ ∞

0
dQQJ0(bQ)F1(Q2). (56)

The difference is simple: to obtain a relativistic transverse
charge density one need only replace GE by F1.

Next specific values of F1 and GE are used to obtain
an explicit comparison. The form factors GE ,M have been
measured [87,88]. Thus the quantity F1 is readily available
from the relation

F1(Q2) = GE (Q2) + Q2

4M2 GM (Q2)

1 + Q2

4M2

. (57)

Then the functions GE and F1, obtained from a recent
parametrization [89], are used to obtain the densities shown in
Fig. 2. The nonrelativistic transverse density is seen to be very
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( )

FIG. 2. True (solid) vs nonrelativistic (dashed) density.

different from the correct transverse density. In particular, the
nonrelativistic version has a larger spatial extent.

The spatial extent can be understood by computing the
average value of b2:

〈b2〉NR =
∫

d2b b2ρNR(b) = −4G′
E (0) = 2

3
r2

p = 2

3
〈r2〉NR

(58)

〈b2〉 =
∫

d2b b2ρ(b) = −4F ′
1 (0). (59)

The use of the relation Eq. (6) leads to the result:

〈b2〉NR = 〈b2〉 + κ

4M2
= 〈b2〉 + 0.02 fm2. (60)

The difference between the true value and the non-relativistic
one is very significant on the scale of distances relevant to the
proton radius puzzle. But to be clear: hydrogen spectroscopy
measures the slope of GE at its origin and relates that quantity
to r2

p.

Relativistic moment expansion

A moment expansion analogous to Eq. (20) can be derived
from the relation between F1(Q2) and the true density ρ(b).
Invert Eq. (48) to obtain

F1(Q2) =
∫

d2bρ(b)eiQ·b. (61)

Then expand the exponential in a power series in iQ · b
and also expand F1(Q2) in powers of Q2. Equating the two
expansions gives the result

F1(Q2) =
∞∑

n=0

(−1)n In

(2n)!
〈b2n〉Q2nF (n)

1 (0) (62)

In ≡ 1

2π

∫ 2π

0
dφ cos2n φ = (2n − 1)!!

2n n!
(63)

〈b2n〉 ≡
∫

d2bρ(b)b2n, (64)

where the notation F (n)
1 (0) denotes taking the nth

derivative of F1 with respect to Q2 at Q2 = 0 The first

terms are given by

F1(Q2) ≈ 1 − Q2

4
〈b2〉F (1)(0) + Q4

64
〈b4〉F (2)

1 (0) + · · · . (65)

Each of the moments 〈b2n〉 is invariant under Lorentz transfor-
mations.

Hydrogen spectroscopy depends on the moments 〈r2,4〉NR.
The RME of Eq. (62) can be used to determine the true
moments 〈b2n〉 in terms of the nonrelativistic ones. The use
of Eq. (60) leads to the result

〈b2〉 = 2

3
〈r2〉NR − κ

4M2
, (66)

and

〈b4〉 = 8

15
〈r4〉NR + 8

3M2
〈r2〉NR − 4μ

3M2
〈r2

M〉NR − 4κ

M4
, (67)

where μ = 1 + κ, 〈r2
M〉NR ≡ −6G′

M (0).
The moments of b are closely tied to GPDs, which are

accessible experimentally and through lattice calculations.

VI. SUMMARY

This paper unites the hydrogen spectroscopy literature with
that of lepton-proton scattering to show how Eq. (1) emerges
from the separate literatures.

The appearance of the proton radius rp in hydrogen spec-
troscopy is discussed in Sec. II, which shows that the energy
shift caused by the nonzero extent of the proton [Eq. (13)] is
proportional to the slope of GE (Q2) at its origin. An explicit
three-dimensional charge density does not appear. There is no
need to define r2

p as a moment of such a density.
Section III begins with a brief historical review of how

a nonrelativistic, frame-dependent spherically symmetric,
three-dimensional charge density was postulated in the early
work of Hofstadter et al. There is only one attempted deriva-
tion of this density in the literature [57]. This derivation
is shown to be faulty because it used states of completely
uncertain position, which leads to an infinite contribution,
Eq. (37).

A properly defined relativistic three-dimensional charge
density is discussed in Sec. IV. This quantity is intimately
connected with modern formulations of the diverse set of
possible parton distributions. It depends on longitudinal and
transverse momentum or longitudinal and transverse position.
The two-dimensional transverse density (ρ(b)), obtained as an
integral over the longitudinal coordinate, is a two-dimensional
Fourier transform of the Dirac form factor F1, Eq. (48). The
transverse density is shown to be related to specific integrals
of a Wigner distribution, Eq. (53).

The phenomenology of ρ(b) is discussed in Sec. V. The
nonrelativistic version is shown to be significantly different
from the correct density, and a correctly defined moment
expansion RME is derived, Eq. (62). These moments are
related to the nonrelativistic ones.
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APPENDIX A: DERIVATION OF Eq. (7)

The expression ū(p′, s′)�0u(p, s) [Eq. (5) with �p′ = �p + �q]
is evaluated here. The spinor is given to order 1/M2 by

u†(p, s) =
[

1
�σ · �p
2m

]/
(1 + �p2/(8M2)), (A1)

in which the spin-dependent term is neglected. Then first
evaluate

ū(p′, s′)γ 0u(p, s)F1 =
(

1+�σ · �p ′

2M

�σ · �p
2M

)(
1 − �p′2 + �p2

8M2

)
F1

(A2)

=
(

1 − �q2

8M2

)
F1. (A3)

Next evaluate the term proportional to F2. Use iσ 0νqn =
ii 1

2 [γ 0,−�σ · �q] = γ 0�γ · �q, so that

ū(p′, s′)
iσ 0νqν

2M
u(p, s)F2 = [�σ · �q�σ · �p

−�σ · (�p + �q)�σ · �q]F2/(4M2) = − �q2

4M2
F2, (A4)

in which a spin-dependent term is omitted. Combining the
results Eq. (A3) and Eq. (A4) and recalling the definition
Eq. (5) leads immediately to Eq. (7).

APPENDIX B: GENERAL WAVE PACKET

Section III showed that the derivation of the relation
between GE and a three-dimensional charge density was
incorrect because it ignores an infinite term. A specific
representation, Eq. (30), of the delta function was used to
demonstrate this flaw. The aim here is to show that an in-

finite term appears for any representation of the delta func-
tion. The evaluation of Eq. (33) involves the combination
∇2

q

∫
d3 p g(�p + �q/2)g∗(�p − �q/2). Other terms in which �∇q

acts on the product of the gR factors times the matrix element
of �0 or only on �0 are not infinite. But this term is actually
infinite. To see this introduce the Fourier transform:

g(�p) =
∫

d3xg̃(�x)ei�p·�x. (B1)

The function g(�p) is very narrow in momentum space, so
g̃(�x) must be very broad in coordinate space. Using Fourier
transforms one finds

∇2
q

∫
d3 p g(�p + �q/2)g∗(�p − �q/2) = −(2π )3

∫
d3r r2|g̃(�r)|2.

(B2)

Thus it is immediately plausible that this quantity is infinite
for any representation of the delta function.

The infinite result can proved. Let the general form, dic-
tated by dimensional analysis, of g(�p) be given by

gR(�p) = R3/2F (pR), (B3)

where F is a dimensionless, real-valued function and it is
well-understand that the limit R → ∞ is to be taken after
doing the relevant integrals. Then

g̃R(�r) =
∫

d3 p

(2π )3
ei�p·�rgR(�p) = 1

2π2R3/2

R

r

×
∫ ∞

0
du u sin(ur/R) F (u) ≡ 1

R3/2
G(r/R), (B4)

and ∫
d3r r2|g̃R(�r)|2 = 1

R3

∫
d3rr2|G(r/R)|2

= R2
∫

d3zz2|G(z)|2, (B5)

where z is a dimensionless variable. The function G is nor-
malizable, and its z2-weighted integral is finite because it is
a Fourier transform of a normalizable function. However, the
entire expression is proportional to R2 which is infinite.

The net result is that the wave packet treatment of Sachs is
not feasible, no matter how a delta function is represented.
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