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For weakly bound quarkonia, we rederive the next-to-leading order cross sections of quarkonium dissociation
by partons that include the hard thermal loop (HTL) resummation. Our results calculated with an effective vertex
from the Bethe–Salpeter amplitude reduce to those obtained by potential nonrelativistic QCD (pNRQCD) in
the relevant kinematical limit, and they can be used in a wide temperature range applicable to heavy-quark
systems in heavy-ion collisions. Based on the lattice computation of the temperature-dependent binding energy,
our numerical analysis on ϒ(1S) indicates that at high temperature the dominant mechanism for quarkonium
dissociation is inelastic parton scattering as expected in the quasifree approximation, while it is gluo-dissociation
at low temperature. By comparing with the momentum diffusion coefficient of a heavy quark, we discuss possible
O(g) corrections to the next-to-leading-order thermal width.
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I. INTRODUCTION

Quarkonia are an important probe of high-temperature
and -density matter produced in relativistic heavy-ion col-
lisions. The suppression of quarkonia and their sequential
melting provide information about the formation of quark-
gluon plasma, the thermal properties of the matter, and the
heavy-quark potential at finite temperature. Originally, color
screening in deconfined quark-gluon plasma has been thought
to prevent heavy quarks from forming a bound state [1]. Now
quarkonia are believed to dissolve at high temperature not
because the binding energy vanishes but because the thermal
width becomes as large as the reduced binding energy.

Quarkonium suppression has been investigated for a long
time, but their yields still need to be understood quantitatively.
For recent reviews, see Refs. [2,3]. In addition to color-
screening, quarkonia yields are affected by other mechanisms
including Landau damping, feed-down, initial-state condi-
tions, cold nuclear matter effects, and possible regenerations
near the threshold. In this work, we focus on the dissociation
mechanisms of quarkonia. We are especially interested in
the ground state of bottomonium ϒ(1S), since it survives at
high temperature up to ∼600 MeV [3]. Recently, bottomo-
nium suppression has been observed in Pb + Pb collisions
at

√
sNN = 2.76, 5.02 TeV by the CMS collaboration [4,5]

and in U + U collisions at
√

sNN = 193 GeV by the STAR
collaboration [6].

From a partonic picture, there are two main mechanisms
of quarkonium dissociation. The first is gluo-dissociation,
g + ϒ → Q + Q̄, where ϒ is quarkonium and Q(Q̄) a heavy
(anti)quark. Gluo-dissociation, also known as the thermal
breakup of the heavy quark-antiquark color singlet state in
effective-field theory, breaks the bound state by absorbing
a gluon from thermal medium. The dipole interaction of
color charge with a gluon [7,8] has been used to study the
dissolution of quarkonia. The second mechanism is inelastic
parton scattering, p + ϒ → p + Q + Q̄ with p = g, q, q̄. This

is related to the Landau damping phenomenon which results
from scattering of hard particles in a thermal bath exchanging
spacelike gluons. Quarkonium dissociation by inelastic parton
scattering has been investigated in the quasifree approxi-
mation, where the reaction is taken care of by the sum of
p + Q → p + Q and p + Q̄ → p + Q̄ [9]. For a tightly bound
state near the phase transition, gluo-dissociation is an effi-
cient process [7], while inelastic parton scattering is expected
to be dominant when loosely bound quarkonia scatter with
hard particles [2,9]. In an effective-field theory framework,
inelastic parton scattering is also expected to be dominant
at high temperature, but the quasifree approximation might
overestimate the dissociation cross sections [10,11]. For this
reason, we need to calculate inelastic parton scattering exactly
and compare its contribution with that of gluo-dissociation.

Recently, there have been rigorous and formal develop-
ments in the calculations on these issues. The quark-antiquark
static potential has been derived in finite-temperature QCD,
where it has been found that the potential develops an imagi-
nary part that results in the thermal width [12]. The real part of
the potential is a screened Coulomb potential, and the imag-
inary part is induced by the Landau damping. Furthermore,
in an effective-field theory framework another part of the
imaginary potential has been found to arise by the singlet-to-
octet thermal transition [13]. In different temperature regimes
at weak coupling, potential nonrelativistic QCD (pNRQCD)
has been used to study quarkonium dissociation [11,13–15].

While the low-energy effective-field theory is an important
formal development, the various results valid at different
energy and temperature scales are problematic when trying
to continuously use them in realistic estimates for the fate
of quarkonium. This is because the hierarchy of nonrelativis-
tic and thermal scales varies during the time evolution in
relativistic heavy-ion collisions, although the inverse of the
typical distance between a heavy quark and antiquark is as-
sumed to be larger than the binding-energy scale. Even in this
short-distance limit, there is no universal picture with a single

2469-9985/2019/99(3)/034905(9) 034905-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.99.034905&domain=pdf&date_stamp=2019-03-15
https://doi.org/10.1103/PhysRevC.99.034905


JUHEE HONG AND SU HOUNG LEE PHYSICAL REVIEW C 99, 034905 (2019)

interpolating formula that can be used throughout the entire
evolution process. Moreover, since these imaginary parts of
the potential are related to the two mechanisms of quarkonium
dissociation, we might be able to obtain the resulting thermal
width from the perspective of scattering processes (g + ϒ →
Q + Q̄ and p + ϒ → p + Q + Q̄). Therefore, our aim is to
introduce the partonic picture for quarkonium dissociation at
short distance that reduces to the formal limit of the effective-
field theory calculations at the relevant kinematical regime,
but that can also interpolate between different temperature
scales which are applicable to heavy-quark systems in evolv-
ing plasmas.

This work is organized as follows: In Sec. II, we discuss
gluo-dissociation up to next-to-leading order. In Sec. III, we
use an effective vertex derived from the leading order dissoci-
ation to calculate inelastic parton scattering which contributes
to dissolution at next-to-leading order. In Sec. IV, we present
a numerical analysis for weakly coupled ϒ(1S) based on the
lattice data of the temperature-dependent binding energy. In
Sec. V, we discuss possible O(g) corrections to the next-
to-leading order thermal width. Finally, we summarize our
results in Sec. VI.

II. GLUO-DISSOCIATION

In the heavy-quark limit, heavy-quark systems can be
treated by using perturbative QCD with the interquark po-
tential reducing to the Coulomb type. In Ref. [7], Peskin has
calculated the interactions between partons and heavy-quark
bound states by performing the operator product expansion on
gluon insertions in the heavy-quark states. As an application,
the gluo-dissociation cross section of quarkonium has been
obtained at leading order [8], and later the same cross section
has been rederived by using the Bethe–Salpeter amplitude
[16]. In 1/Nc expansion in the large-Nc limit, the heavy-quark–
antiquark pair after dissociation is noninteracting such that the
dissolution is induced by the processes shown in Fig. 1 [and
another similar to Fig. 1(a) but with P1, P2 exchanged].

For q ∼ p1, p2 � k, the sum of the leading processes gives
the following scattering amplitude [16]:

Mμν
LO = −g

√
mϒ

Nc

[
k · ∂ψ (p)

∂ p
δμ0 + k0

∂ψ (p)

∂ pi
δμi

]
δν j ū(P1)

× 1 + γ0

2
γ j 1 − γ 0

2
T av(P2), (1)

where ψ (p) is the normalized wave function for a bound state
with the relative momentum, p = (p1 − p2)/2. The matrix

(a)
K

Q

P1

P2

(b)
K

Q

P1

P2

FIG. 1. The leading order gluon-quarkonium interactions. Thick
solid lines denote quarkonium (Q) or heavy (anti)quarks (P1, P2), and
wiggly lines are gluons.

element squared is

|M|2LO = 8
(
N2

c − 1
)

Nc
g2m2mϒk2

0 |∇ψ (p)|2, (2)

where we have used the transverse polarization (δi j − k̂ik̂ j)
for gluon. Dividing by the quarkonium polarization dϒ and
the gluon degeneracy dg = 2(N2

c − 1), the averaged scattering
cross section is given by

σLO(k) = 1

4
√

(Q · K )2 − m2
ϒm2

k

∫
d3 p1

(2π )32p10

∫
d3 p2

(2π )32p20

× (2π )4δ4(Q + K − P1 − P2)
1

dϒdg
|M|2LO. (3)

In the heavy-quark limit, the heavy-quark–antiquark pair is
assumed to be weakly bound so that the leading order ground-
state wave function of quarkonium can be described by the
Coulombic bound state [7]:

|∇ψ1S (p)| = 25√π
a7/2

0 p
[(a0 p)2 + 1]3

, (4)

where a0 = 16π/(Ncmg2) is the Bohr radius. In the rest frame
of the plasma where quarkonium is approximately at rest, we
obtain [8,16]

σLO(k) = 27g2a2
0

dϒNc

E7/2(k − E )3/2

k5
. (5)

Here E = 2m − mϒ > 0 is the binding energy of quarkonium,
and the relation a2

0 = 1/(mE ) is satisfied for the Coulombic
binding energy.

The thermal width of gluo-dissociation is related to the dis-
continuity, or the imaginary part, of the self-energy diagram
of the quarkonium color singlet (see Fig. 4 without the hard
thermal loop resummation) [17,18],

Im
gluo-diss = − 1

2dϒ

∫
d4K

(2π )4

∫
d4P1

(2π )4

× 2πδ(K2)2πδ
(
P2

1 − m2
)

× 2πδ((Q + K − P1)2 − m2)|M|2LOn(k). (6)

The relevant width is given by [19]

�gluo-diss = 1

2dϒq0

∫
d3k

(2π )32k0

∫
d3 p1

(2π )32p10

∫
d3 p2

(2π )32p20

× (2π )4δ4(Q + K − P1 − P2)|M|2LOn(k), (7)

which, with Eq. (3), can be reexpressed by convoluting the
cross section with a thermal distribution function of an incom-
ing gluon [9]

�gluo-diss = dg

∫
d3k

(2π )3
σ (k)n(k). (8)

Here, to break a bound state, the magnitude of an incoming
gluon momentum is required to be larger than the binding
energy, |k| � E .
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To obtain the cross section and the thermal width at leading
order, we have assumed that the external gluon is massless
and k ∼ k0 � mD. On the other hand, at finite temperature
gluons acquire the thermal self-energy that leads to thermal
mass ∼mD. To accommodate such self-energy effects, we
note that the phase space of the initial gluon involves the
following on-shell condition for the leading-order dispersion
relation:

1 =
∫

dk0δ(k0 − k) =
∫

dk02k0δ
(
k2

0 − k2
)
, (9)

which has been used in the leading-order computation. The
δ function on the right-hand side of Eq. (9) corresponds to
the leading-order spectral function of gluons which appears
naturally when Eq. (8) is expressed in a covariant form. Using
the covariant form, one can conveniently include the thermal
effects at next-to-leading order, as discussed below.

K

Q
P1

P2

FIG. 2. The effective vertex derived from the sum of the leading
processes shown in Fig. 1.

In the case of k � T and k2
0 − k2 ∼ m2

D, the hard thermal
loop (HTL) resummation is needed and the dispersion relation
for transverse gluons is then given by

k2
0 − k2 − Re
T (k0, k) = 0. (10)

In the Coulomb gauge, the HTL self-energies are [20]


L(k0, k) = m2
D

[
1 − k0

2k
ln

(
k0 + k

k0 − k

)]
, 
T (k0, k) = m2

D

2

[
k2

0

k2
−

(
k2

0 − k2
)
k0

2k3
ln

(
k0 + k

k0 − k

)]
, (11)

which do not have imaginary parts for timelike (k2
0 > k2) gluons. Therefore, at next-to-leading order, Eq. (9) is extended as

follows: ∫
dk02k0δ

(
k2

0 − k2 − m2
D

2

[
k2

0

k2
−

(
k2

0 − k2
)
k0

2k3
ln

(
k0 + k

k0 − k

)])
�

{
1 + m2

D

4k2

[
ln

(
8k2

m2
D

)
− 2

]}−1

, (12)

where we have used k0 � k and in the argument of the logarithm k0 − k � m2
D

4k .
Through the definition of the thermal width given in Eq. (8), the next-to-leading order cross section for gluo-dissociation is

derived by involving Eq. (12) in the leading-order result,

σNLO(k) �
{

1 − m2
D

4k2

[
ln

(
8k2

m2
D

)
− 2

]}
σLO(k), (13)

where the effect of the relative velocity between quarkonium
and gluon is included. If we neglect the final-state rescat-
tering effects of the unbound heavy-quark–antiquark pair in
the large-Nc limit, Eq. (13) agrees with the pNRQCD result
[11,15] for the mv � T � E � mD case (in this regime,
gluo-dissociation is the dominant dissociation mechanism in
the effective-field theory framework).

III. INELASTIC PARTON SCATTERING

In this section, we introduce an effective vertex which is
derived from the leading-order scattering processes of Fig. 1.
In terms of the vertex, we calculate inelastic parton scatter-
ings which contribute to quarkonium dissociation at next-to-
leading order.

From the leading-order scattering amplitude of Eq. (1), the
following effective vertex can be derived [21]:

V μν (K ) = −g

√
mϒ

Nc

[
k · ∂ψ (p)

∂ p
δμ0 +

(
p2

m
+ E

)

× ∂ψ (p)

∂ pi
δμi

]
δν j 1 + γ 0

2
γ j 1 − γ 0

2
T a, (14)

and denoted by Fig. 2. With the energy conservation, p2/m +
E � k0 (k0 is the energy transfer), this vertex is similar to the
potential nonrelativistic QCD (pNRQCD) vertex. The differ-
ence is that our approach involves 1 ± γ 0 matrices because
of the nonrelativistic treatment of heavy quarks, while in pN-
RQCD the octet propagator is employed to calculate the imag-
inary part of the potential. As will be shown below, our results
agree with those by pNRQCD in a certain regime where
inelastic parton scattering becomes dominant. The reason is
that the rescattering effects in the octet propagator become

(a) K1 K2

Q
P1

P2

(b)
K1 K2

Q
P1

P2

FIG. 3. The inelastic parton scattering processes which con-
tribute to quarkonium dissociation at next-to-leading order (NLO).
Panel (b) gives O(g) corrections to the NLO thermal width if all the
gluons are soft.
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subleading and the chromoelectric dipole interaction can be
taken into account through the effective vertex of Eq. (14).
This vertex reflects the dipole interaction of color charge
for the leading gluon-quarkonium interaction considered in
Refs. [7,8].

For quarkonium dissolution by inelastic parton scatter-
ing, we consider barely bound quarkonia with near-threshold
energy so that partons in a heat bath separate a heavy-
quark–antiquark pair almost collinearly. In the quarkonium

rest frame, the energy transfer is small (k10 � k20) and
the only contribution is from the longitudinal gluon part
of the effective vertex in Eq. (14). This situation is sim-
ilar to that of the momentum diffusion of a heavy quark
where the internal gluon attached to the Wilson line is
longitudinal [22,23].

Inelastic parton scattering shown in Fig. 3 can be calcu-
lated by using the effective vertex. For k1, k2 � k1 − k2, the
corresponding scattering amplitudes are given by

Mμ(q)
NLO = gū(K2)γνT au(K1)

1

(K1 − K2)2 − 
(K1 − K2)
ū(P1)V νμ(K1 − K2)v(P2),

Mμνλ(g)
NLO = −ig f abcū(P1)V ρμ(K1 − K2)v(P2)

1

(K1 − K2)2 − 
(K1 − K2)

× [
gν

ρ (2K1 − K2)λ − gλ
ρ (K1 − 2K2)ν − gλν (K1 + K2)ρ

]
. (15)

In the Coulomb gauge, the HTL propagator of longitudinal gluons is i/[k2 + 
L(k0, k)] � i/(k2 + m2
D) for small energy transfer.

The matrix elements squared are then

|M|2 (q,q̄)
NLO � 16Nf

(
N2

c − 1
)

Nc
g4m2mϒ |∇ψ (p)|2 (k1 − k2)2k2

10[
(k1 − k2)2 + m2

D

]2

[
1 + k1 · k2

k1k2

]
,

(16)

|M|2(g)
NLO � 16

(
N2

c − 1
)
g4m2mϒ |∇ψ (p)|2 (k1 − k2)2k2

10[
(k1 − k2)2 + m2

D

]2

[
1 + (k1 · k2)2

k2
1k2

2

]
,

where in the gluon-induced reaction we have used transverse polarizations for external gluons.
By integrating over the phase space and dividing by the initial flux, the dissociation cross section is obtained as

σNLO(k1) = 1

4
√

(Q · K1)2 − m2
ϒm2

k1

∫
d3k2

(2π )32k20

∫
d3 p1

(2π )32p10

∫
d3 p2

(2π )32p20

× (2π )4δ4(Q + K1 − K2 − P1 − P2)
1

dϒdp
|M|2NLO, (17)

where dp (p = g, q) is the degeneracy factor of the incoming parton. To perform the phase-space integration, we proceed

as follows [24,25]: First, p2 integration is done by using the three-dimensional δ function, and k2 integration is changed to
k = k1 − k2. For the (anti)quark-quarkonium scattering, we have

σ
(q,q̄)
NLO (k1) � Nf

(
N2

c − 1
)
g4mϒk10

2(2π )5Ncdϒdq|Q · K1|
∫

d3k
∫

d3 p1δ(q0 + k10 − k20 − p10 − p20)|∇ψ (p)|2 k2(
k2 + m2

D

)2

(
2 − k2

2k2
1

)
. (18)

Second, we introduce a dummy variable ω,

δ(q0 + k10 − k20 − p10 − p20) =
∫

dωδ(ω + q0 − p10 − p20)δ(ω − k10 + k20), (19)

and the k-p1 phase space is integrated over k, p1, θkk1 , θkp1 , and φk;k1 p1 , where θkk1 (θkp1 ) is the angle between two vectors k
and k1(p1) and φk;k1 p1 is the angle between the k-k1 plane and the k-p1 plane. For dissolution of weakly bound quarkonia with
q ∼ p1, p2 � k, we use the following relations:

δ(ω + q0 − p10 − p20) � p10

kp1
δ

(
cos θkp1 − ωp10

kp1

)
, δ(ω − k10 + k20) = k2

kk1
δ

(
cos θkk1 − ω

k
− k2 − ω2

2kk1

)
, (20)

to perform the integrations over two polar angles. Then the cross section becomes

σ
(q,q̄)
NLO (k1) � Nf

(
N2

c − 1
)
g4mϒk10

(2π )3Ncdϒdq|Q · K1|
∫ 2k1

0
dk

∫
d p1 p2

1|∇ψ (p)|2 k3(
k2 + m2

D

)2

(
2 − k2

2k2
1

)
, (21)
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FIG. 4. The self-energy diagram of the quarkonium color singlet.
At two-loop order, the cut diagram corresponds to the scattering
processes of Fig. 3.

where ω has been integrated over the range (− kp1

p10
,

kp1

p10
).

Finally, in the quarkonium rest frame (q = 0), p1 integration
is changed to p2 integration for a bound state with |∇ψ (p)|2
as a function of p2. After integrating over p2 and k, we obtain

σ
(q,q̄)
NLO (k1) � 3Nf

(
N2

c − 1
)
g4a2

0

4Ncdϒdqπ

[
ln

(
4k2

1

m2
D

)
− 2

]
. (22)

Here, we have used the Coulombic bound state Eq. (4), but
the relation a2

0 = 1/(mE ) need not be satisfied in general.
Similarly, the gluon-quarkonium scattering cross section is
determined as

σ
(g)
NLO(k1) � 3

(
N2

c − 1
)
g4a2

0

4dϒdgπ

[
ln

(
4k2

1

m2
D

)
− 2

]
. (23)

In comparison with the leading-order result in Eq. (5),
Eqs. (22) and (23) correspond to the dissociation cross sec-
tions at next-to-leading order. After multiplying by dp, they
agree with the pNRQCD results for the mv � T � mD � E
regime where inelastic parton scattering is dominant in the
effective-field theory framework [11]. In pNRQCD, the NLO
results are calculated by the imaginary part of the singlet
potential which is from the self-energy diagram (see Fig. 4)
of the quarkonium color singlet. We note that the cut diagram
at two-loop order corresponds to the scattering processes of
Fig. 3, and the leading contribution to gluo-dissociation of
Fig. 2.

By convoluting the momentum distributions of incoming
and outgoing partons, the thermal width by inelastic parton
scattering is given by [11]

�NLO =
∫

d3k1

(2π )3

{
dqσ

(q,q̄)
NLO (k1)nF (k1)[1 − nF (k1)]

+ dgσ
(g)
NLO(k1)nB(k1)[1 + nB(k1)]

}
, (24)

where nB(k1) and nF (k1) are the Bose–Einstein and Fermi–
Dirac momentum distributions, respectively. For hard (∼T )
momentum, the thermal distribution of an initial parton is
n(k1) with k10 � k1, and the Bose-enhancement or Pauli-
blocking factor of an outgoing parton has been approximated
as 1 ± n(k2) � 1 ± n(k1) for small energy transfer.

IV. NUMERICAL RESULTS FOR ϒ(1S)

In this section, we focus on the weakly bound ϒ(1S) and
present the numerical results of the dissociation cross sections
and thermal widths. Above the phase-transition temperature,

E
 (

M
eV

)

T (MeV)

lattice
fit

T

mD

  0

100

200

300

400

500

600

700

200 250 300 350 400 450 500 550

FIG. 5. The binding energy of ϒ(1S) from lattice computations
[26] and the numerical fit. The black dashed line shows the temper-
ature for reference and the gray band is for the Debye mass as a
function of temperature.

the ground state of bottomonium is expected to survive up
to T ∼ 600 MeV and melts at higher temperature [3]. The
binding energy of a Coulombic state depends on the coupling
constant E ∼ mg4, which increases as temperature decreases.
To study transitional behavior at the temperature regime T ∼
200–500 MeV, we set the effective coupling constant αs =
0.3–0.4 and use the temperature-dependent binding energy
which has been estimated in lattice QCD [26]. The Debye
screening mass given by m2

D = g2T 2

3 (Nc + Nf

2 ) is reduced with
time as the temperature decreases with the evolution of quark-
gluon plasma after heavy-ion collisions. Although our analy-
sis is based on a Coulombic bound state, the binding energy
estimated from nonperturbative lattice computations might
allow potential effects which are compatible with lattice QCD
findings at short distance. By employing the temperature-
dependent binding energy and screening mass, we simulate
the running coupling which results mD � πT (mD ∼ πT ) for
weak (strong) coupling. With Nc = Nf = 3, m = 4.8 GeV and
a0 = 0.14–0.18 fm are used for ϒ(1S).

Figure 5 shows an upper limit of the binding energy of
ϒ(1S) computed in lattice QCD [26] and its numerical fit.
While the Coulombic binding energy is determined as 243–
432 MeV for fixed coupling αs = 0.3–0.4, the binding energy
estimated from the lattice QCD decreases as temperature
increases. The black dashed line represents the temperature
(E = T ) line, and the gray band is for the Debye mass as a
function of T .

Gluo-dissociation is the main mechanism for quarkonium
dissolution at low temperature near the phase transition where
the binding energy is relatively large. When an incoming
gluon carries low momentum, gluo-dissociation contributes
up to next-to-leading order. In Fig. 6, we present the dissocia-
tion cross sections and the thermal widths at leading [Eq. (5)]
and next-to-leading [Eq. (13)] orders. The next-to-leading-
order results are slightly smaller than the leading ones. Since
the difference is relatively insignificant compared with that
from inelastic parton scattering, we consider only leading
order for gluo-dissociation in the following.
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FIG. 6. The leading-order and next-to-leading-order results by gluo-dissociation [g + ϒ(1S) → b + b̄] for αs = 0.4. (a) ϒ(1S) dissociation
cross sections and (b) thermal widths.

Inelastic parton scattering is important at the high-
temperature regime where the binding energy is smaller than
T [2]. At high temperature, the Debye mass is large and the
logarithmic formula in Eqs. (22) and (23) are not appropriate
to study quarkonium dissociation. The cross sections become
negative when an incoming parton has low momentum, which
does not make sense (see the red solid line in Fig. 7). They
are also independent of the binding energy. These are because
many restrictions are required to yield the logarithmic formula
in the previous section. To obtain phenomenologically accept-
able cross sections that can be used throughout a wide tem-
perature region, we integrate the matrix elements of Eq. (16)
over the phase space numerically. Since the matrix elements
squared are functions of k1, k2, and the angle (θk1k2 ) between
k1 and k2, integrating over the energy transfer (k0 = k1 − k2)
and cos θk1k2 yields the cross section as a function of k1,

σNLO(k1) = 1

25(2π )3dϒdpmϒmk1

∫ k1

E
dk0(k1 − k0)

×
∫

d (cos θk1k2 )p|M|2NLO

∣∣∣∣
p2=m(k0−E )

. (25)
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FIG. 7. The comparison of the numerically calculated cross sec-
tion with the asymptotic formula for p + ϒ(1S) → p + b + b̄ with
αs = 0.4.

The numerically calculated cross sections are shown in Fig. 7
and compared with the analytical result. The cross sections
vary from zero at k1 = E and smoothly approach the asymp-
totic formula at high momentum. This method improves the
cross sections in the near-threshold region.

In Fig. 8, we present the cross sections of two mecha-
nisms as a function of incoming parton momentum for two
different temperatures. Gluo-dissociation is dominant at low
momentum, while inelastic parton scattering is important
when an incoming parton is energetic. The maximum of the
gluo-dissociation cross section depends on the binding energy
and shifts to lower momentum as temperature increases. In
inelastic parton scattering, the cross section is smaller for
higher temperature because the Debye screening mass in-
creases with T .

Figure 9(a) shows the temperature dependence of the ther-
mal width for each mechanism. As temperature decreases dur-
ing the time evolution, the cross section of gluo-dissociation
peaks at higher momentum. In the meanwhile, the phase-
space distribution k2nB(k) becomes smaller but peaks at lower
momentum close to the maximum of the cross section. As a
result, the thermal width by gluo-dissociation increases with
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FIG. 8. ϒ(1S) dissociation cross sections by gluo-dissociation
and inelastic parton scattering for T = 300, 400 MeV and αs = 0.4.
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FIG. 9. (a) Temperature dependence of the ϒ(1S) thermal widths by gluo-dissociation and inelastic parton scattering for αs = 0.4. (b) The
total thermal width as the sum of the contributions by two mechanisms for αs = 0.3, 0.4.

time initially but decreases later at low temperature near the
phase transition. This behavior seems to contrast with the
leading result of Ref. [15] in which the thermal width is
proportional to T , but the width in pNRQCD is calculated
with the Coulombic binding energy (much smaller than the
temperature scale) which is different from the binding energy
of Fig. 5. On the other hand, the thermal width by inelastic
parton scattering decreases as a collision system cools down,
as expected in Ref. [12]. The reason is that, although the
cross section at lower temperature is larger, the phase-space
distribution k2

1n(k1)[1 ± n(k1)] becomes much smaller (and
peaks at lower momentum for inelastic quark scattering).

Our numerical results indicate that the dominant mech-
anism of quarkonium dissociation changes from inelastic
parton scattering at high temperature (where E < T ) to gluo-
dissociation near the phase transition (where E > T ). This
transitional behavior depending on temperature is consistent
with earlier analyses performed in the quasifree approxi-
mation [2,9]. The black squares in Fig. 9(a) represent the
width (extracted from Ref. [26]) which is estimated nonper-
turbatively by tunnelling and direct thermal activation to the
continuum in the limit of E � T [27]. They are almost same
as the width by gluo-dissociation near the phase transition
and comparable with the sum of those by two mechanisms
at higher temperature.

Figure 9(b) presents the total thermal width as the sum
of the contributions by gluo-dissociation and inelastic parton
scattering. Because the temperature dependence of inelastic
parton scattering is stronger than that of gluo-dissociation,
the total width increases with T . At high enough temperature
where the thermal width exceeds the binding energy (�tot �
E ), a heavy-quark–antiquark pair is more likely to decay than
to be bound so dissociation is expected [3,26]. The weaker
the coupling, the larger width we obtain because a smaller
screening mass (larger Bohr radius) renders dissociation by
inelastic parton scattering (gluo-dissociation) more probable.
If we fix the screening mass as mD ∼ 600 MeV, the thermal
width of inelastic parton scattering increases more rapidly
with T . We have checked that varying the parameters does
not change significantly the qualitative behavior of the cross
sections and thermal widths. Our results agree fairly well with
the old calculations in Ref. [28].

V. HIGHER-ORDER CORRECTIONS
FOR THERMAL WIDTH

In Sec. III, we obtained the next-to-leading-order contribu-
tions to quarkonium dissociation by using the effective vertex
derived from the leading-order processes. If we ignore correc-
tions to the effective vertex due to the heavy quark-antiquark
interactions, higher-order expansions might be possible. In the
perspective of hard thermal loop (HTL) perturbation theory,
the external partons are hard (K1, K2 ∼ T ) and the exchange
momentum is soft (K ∼ gT ) in inelastic parton scattering.
If all the gluons in Fig. 3(b) are soft, O(g) corrections arise
because of the Bose enhancement effects [29].

Another source of O(g) corrections is the diagram in
Fig. 10 (and the same except P1, P2 exchanged) with soft
gluons. The scattering amplitude is given by [21]

Mμνλ
O(g) = g

gλ0

k20
ū(P1)V νμ

0 (k1)[T a, T b]v(P2), (26)

where V νμ
0 (K1) is same as V νμ(K1) without T a. As in Sec. III,

only the longitudinal gluon part of the effective vertex con-
tributes. By comparing Eqs. (15) and (26), we note that

|MO(g)|2∣∣M(g)
NLO

∣∣2 ∼ k2

k2
1

. (27)

When the external gluons are hard, the process of Fig. 10
is O(g2) suppressed than the inelastic parton scatter-
ing of Fig. 3, which gives the thermal width �NLO ∼∫

d3k1σNLO(k1)n(k1)[1 ± n(k1)] ∼ g4a2
0T 3 [ignoring ln(1/g)]

for k1 ∼ T . However, if the gluons are soft, the two ma-
trix elements yield the same order of magnitude. Because

K1 K2

Q
P1

P2

FIG. 10. With soft gluons, O(g) corrections to the next-to-
leading order thermal width can be obtained.
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nB(k1) � T/k1 ∼ 1/g for k1 ∼ gT , both Fig. 3(b) and Fig. 10
receive the thermal width of order g5a2

0T 3. These O(g) correc-
tions to �NLO have been calculated to obtain the momentum
diffusion coefficient of a heavy quark at next-to-leading order
[22,23].

The momentum diffusion coefficient of a heavy quark is
defined as the mean-squared momentum transfer per unit time.
At leading order, it is given by [25]

3κLO = 1

2m

∫
d3k1

(2π )32k10

∫
d3k2

(2π )32k20

∫
d3 p2

(2π )32p20

× (2π )4δ4(K1 + P1 − K2 − P2)

× (p2 − p1)2|M|2(κ )
LO n(k1)[1 ± n(k1)], (28)

where M(κ )
LO is the matrix element for K1 + P1 → K2 + P2.

The corresponding scattering processes are similar to those of
Fig. 3 with K1, K2 ∼ T . Instead of barely bound quarkonium
breaking into a heavy quark and antiquark, a nonrelativistic
heavy quark scatters with bath particles exchanging soft mo-
mentum. The factor (p2 − p1)2 in Eq. (28) corresponds to the
momentum transfer (k1 − k2)2 in Eq. (16) which comes from
the longitudinal gluon part of the effective vertex. By noting
that the thermal width has one more momentum integration
with a bound state, we obtain the following correspondence
[30]:

�NLO � 〈
r2

〉
κLO, (29)

where 〈r2〉 = ∫ d3 p
(2π )3 |∇ψ (p)|2 = 3a2

0 for the Coulombic wave
function of Eq. (4). If K1, K2 ∼ gT , it is plausible to ex-
tend the correspondence to the next order, and κNLO in
Refs. [22,23] might be useful to obtain O(g) corrections to
the thermal width �NLO [11]. However, because there could
be other corrections such as those induced by the heavy-
quark-antiquark interactions, we do not proceed further in this
work. A recent work Ref. [31] presents a related study on
quarkonium dissociation and diffusion based on the potential
nonrelativistic QCD.

VI. SUMMARY

We have introduced a partonic picture for quarkonium
dissociation that reduces to the formal limit of effective-field

theory calculations at the relevant kinematical regime, but that
can also be employed in a wide temperature range which is
applicable to heavy-quark systems in evolving plasmas. In
particular, we have discussed two mechanisms of quarkonium
dissociation: gluo-dissociation and inelastic parton scattering,
in the limit of small energy transfer which is suitable for
weakly bound quarkonia.

Gluo-dissociation is related to the plasmon pole contribu-
tion, and inelastic parton scattering is induced by the Landau
damping phenomenon. By using hard thermal loop perturba-
tive theory, we have rederived the dissociation cross sections
and calculated the thermal widths. The thermal effects at next-
to-leading order are obtained through the gluon dispersion re-
lation and resummed propagator for gluo-dissociation and in-
elastic parton scattering, respectively. Our results in Eqs. (13),
(22), and (23) agree with those obtained by potential nonrela-
tivistic QCD in which the thermal width is calculated from the
imaginary part of the singlet potential. This might imply that
the imaginary parts of the heavy-quark-antiquark potential
responsible for quarkonium dissociation basically originate
from various scattering processes in thermal medium, at least
for weakly bound quarkonia. By comparing with the momen-
tum diffusion coefficient of a heavy quark, we have discussed
possible O(g) corrections to the next-to-leading order thermal
width.

To study the transitional behavior with the running cou-
pling effects, we have employed the nonperturbative lattice
input of binding energy in the analysis of ϒ(1S) dissolution.
As discussed in the quasifree approximation [2,9], gluo-
dissociation is important at low temperature near the phase
transition while inelastic parton scattering becomes dominant
at high temperature when an incoming parton carries large
momentum. Our numerical approach might be useful for phe-
nomenological studies of quarkonia transport in relativistic
heavy-ion collisions.
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