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Isolating dynamical net-charge fluctuations
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We modify the usual definitions of cumulants of net-charge fluctuations in a way that isolates dynamical
fluctuations. The new observables, which we call dynamical cumulants, are robust with respect to trivial
correlations induced by volume fluctuations and global charge conservation. We illustrate the potential of
dynamical cumulants by carrying out Monte Carlo simulations where all correlations are trivial. The results
of our simulations agree well with BNL Relativistic Heavy Ion Collider (RHIC) data, and are used to illustrate
that dynamical cumulants consistently isolate dynamical fluctuations.
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I. INTRODUCTION

One of the motivations for studying nucleus-nucleus col-
lisions is to obtain information about the phase diagram of
dense quantum chromodynamics (QCD) [1]. The conjectured
existence of a critical point, although not yet confirmed by
ab initio calculations [2], has triggered experimental studies of
particle number fluctuations [3,4]. Fluctuations of conserved
charges (baryon number, electric charge, strangeness) are in
fact interesting even if there is no critical point, because they
can be computed from first principles in lattice QCD [5,6].
This has motivated detailed analyses of fluctuations of the
net proton number [7], the net electric charge [8–10], and the
net strangeness [11], hereafter generically referred to as net-
charge fluctuations, which have been compared with lattice
QCD results [12–15] (see [16] for a recent review).

The standard observables for net-charge fluctuations are
cumulants, which are measured in experiment up to order 4
[17], and calculated on the lattice [5]. Experimental results for
cumulants of order 3 and 4 deviate from trivial expectations
based on Poisson fluctuations [10]. However, it has been
realized that such deviations are also produced by uninter-
esting fluctuations referred to as nondynamical, which have
two distinct origins: impact parameter fluctuations (also called
volume fluctuations) [18–21], and global charge conservation
[22].

In this paper, we construct new quantities, dubbed dynam-
ical cumulants, which can be measured in any experiment,
and differ from the ordinary cumulants only by trivial self-
correlation terms. Dynamical cumulants generalize factorial
cumulants [22–25] by taking into account the correlation in-
duced by global charge conservation. In Sec. II, we construct
dynamical cumulants in the simple case where there is only
one species of particles [26]. In Sec. III, we generalize to the
realistic case when there are both negatively and positively
charged particles, and we provide explicit expressions for the
dynamical cumulants of net charge fluctuations. In Sec. IV,
we show that dynamical cumulants are remarkably insensitive
to impact parameter fluctuations. In Sec. V, we discuss their

sensitivity to resonance decays in the hadronic phase. In
Sec. VI, we illustrate the advantage of dynamical cumulants
over ordinary cumulants by carrying out Monte Carlo simula-
tions where the correlations are solely due to impact parameter
fluctuations and global charge conservation. We show that
this simulation reproduces the seemingly nontrivial values
of cumulants measured at the BNL Relativistic Heavy Ion
Collider (RHIC), while dynamical cumulants are smaller by
orders of magnitude.

II. CONSTRUCTION OF DYNAMICAL CUMULANTS

We start by discussing the simple case where there is only
one species of particles [26]. We denote by N the number
of particles detected in an event. N fluctuates event to event.
The goal is to construct a set of quantities which isolate the
dynamical information contained in these fluctuations. We
first discuss the simple case of the variance, then generalize
to higher-order cumulants.

A. Variance

Fluctuations can be characterized by the series of cumu-
lants of the distribution of N , whose general definition will be
recalled below. The first two cumulants are simply the mean
and the variance:

κ1 ≡ 〈N〉,
κ2 ≡ 〈N2〉 − 〈N〉2, (1)

where angular brackets denote an average over a large sample
of collision events, typically in a narrow centrality class.

These definitions are general and apply both to integer and
real variables. For an integer variable, alternatively, one may
replace N2 by the number of pairs N (N − 1). The correspond-
ing quantity is the factorial cumulant [24] of order 2, which
we denote by f2:

f2 ≡ 〈N (N − 1)〉 − 〈N〉2. (2)
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The first term is the average number of pairs, and the second
term is the number of uncorrelated pairs. Hence the factorial
cumulant isolates the correlated part of the variance, κ2, by
subtracting the trivial part, 〈N〉, corresponding to Poisson
fluctuations [27,28].

Global conservation laws (conservation of momentum,
energy, charge) give rise to correlations among particles. If
particles were emitted independently, the sum of charges
would not be exactly the same in every event. Correlations
induced by global conservation laws are to some extent trivial
and must also be subtracted in order to isolate the dynamical
correlations [29,30]. In this simple case where there is only
one species of particles, we mimic the effect of the conserva-
tion law by assuming that the total number of particles for the
whole event is fixed to some value N tot . If there is no other
correlation, then the distribution of the number of particles
seen in the detector, N , follows a binomial distribution:

P(N ) =
(

N tot

N

)
αN (1 − α)N tot−N , (3)

where α denotes the probability of an emitted particle being
seen by the detector [19], which depends on its acceptance
[31] and efficiency. Throughout this paper, we assume that α

is known for the detector used. We neglect its variation within
a centrality bin, as well as nonbinomial efficiency corrections
[32,33]. The upper bound on N , N � N tot , reduces the vari-
ance of the distribution, which is (1 − α)〈N〉 for the binomial
distribution, instead of just 〈N〉 for the Poisson distribution.
We define the dynamical cumulant d2 by subtracting this
contribution:

d2 ≡ 〈N (N − 1 + α)〉 − 〈N〉2. (4)

The dynamical cumulant thus defined coincides with the
factorial cumulant f2, Eq. (2), in the limit α → 0, and with the
ordinary cumulant κ2, Eq. (1), in the limit α → 1. In practice,
detectors at RHIC and the CERN Large Hadron Collider
(LHC) cover a small fraction of the total phase space, and
α is significantly smaller than unity. The dynamical cumulant
is typically much closer to the factorial cumulant than to the
ordinary cumulant.

B. Higher-order cumulants

We now explain how this construction can be generalized
to cumulants of arbitrary order. This can be done system-
atically using the formalism of generating functions. The
ordinary cumulant κn is defined by the power series expansion
of a generating function:

ln〈exp (zN )〉 ≡
∞∑

n=1

κn
zn

n!
. (5)

Expanding both sides of the equation to order z2, one recovers
Eq. (1). If one pushes the expansion up to order z4, one
obtains the next cumulants, which are the skewness, κ3, and
the kurtosis, κ4:

κ3 = 〈(N − 〈N〉)3〉,
κ4 = 〈(N − 〈N〉)4〉 − 3κ2

2 . (6)

The factorial cumulants, fn, are defined through a different
generating function:

ln〈(1 + z)N 〉 ≡
∞∑

n=1

fn
zn

n!
. (7)

If one expands (1 + z)N to order zn, the coefficient is the
number of n-plets. The factorial cumulant thus defined isolates
the true n-particle correlation [22] by enumerating the number
of n-plets at every order. By expanding the left-hand side of
Eq. (7) to order z2, one recovers Eq. (2).

Finally, we define the dynamical cumulant dn through the
following generating function:

ln

〈(
1 + eαz − 1

α

)N〉
≡

∞∑
n=1

dn
zn

n!
. (8)

Expanding the left-hand side to order z2, one recovers Eq. (4).
For α = 1, dn coincides with κn defined by Eq. (5). In the
limit α → 0, dn coincides with fn defined by Eq. (7). Thus,
dynamical cumulants interpolate between ordinary cumulants
and factorial cumulants. We now show that dynamical cumu-
lants of order n � 2 vanish for a binomial distribution. If the
distribution of N is given by Eq. (3), one obtains

〈(
1 + eαz − 1

α

)N〉
=

N tot∑
N=0

P(N )

(
1 + eαz − 1

α

)N

= exp(αN totz). (9)

Inserting this equation in Eq. (8), one obtains d1 = αN tot =
〈N〉 and d2 = d3 = · · · = 0. This justifies the definition (8).

Dynamical cumulants can be expressed as a function of
ordinary cumulants using Eqs. (5) and (8), through an appro-
priate change of variables:

∞∑
n=1

dn

n!
zn =

∞∑
n=1

κn

n!
lnn

(
1 + eαz − 1

α

)
. (10)

Expanding the right-hand side up to order z4, one obtains the
following explicit expressions:

d1 = κ1,

d2 = κ2 − (1 − α)κ1,

d3 = κ3 − 3(1 − α)κ2 + (1 − α)(2 − α)κ1, (11)

d4 = κ4 − 6(1 − α)κ3 + (1 − α)(11 − 7α)κ2

− (1 − α)(6 − 6α + α2)κ1.

Thus the dynamical cumulant of order n differs from the
ordinary cumulant κn only by terms which involve lower-
order cumulants. These subtracted terms correspond to self-
correlations [34,35] and to nondynamical correlations induced
by the global conservation law. Note that the expression of d2

in Eq. (11) is equivalent to Eq. (4).

III. GENERALIZATION TO NET-CHARGE
FLUCTUATIONS

The number of positively and negatively charged particles
seen in an event are denoted by N+ and N−. We use the
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notations Q and N for the net charge and charged multiplicity
[8]:

Q ≡ N+ − N−,

N ≡ N+ + N−. (12)

One is typically interested in the fluctuations of the net charge,
Q. Ordinary cumulants of net-charge fluctuations are defined
by an equation similar to (5), where N is replaced with Q:

ln〈exp (zQ)〉 ≡
∞∑

n=1

κn
zn

n!
. (13)

These cumulants get trivial contributions to all orders, gen-
erated by self-correlations. Self-correlations can be removed
systematically by constructing factorial cumulants, through a
simple generalization of Eq. (7):

ln〈(1 + z)N+(1 − z)N−〉 ≡
∞∑

n=1

fn
zn

n!
. (14)

Expressing the left-hand side as a function of N and Q using
Eq. (12) and expanding to order z4, one obtains the explicit
expressions [34–36]:

f1 = κ1,

f2 = κ2 − 〈N〉,
f3 = κ3 − 3(〈NQ〉 − 〈N〉〈Q〉) + 2〈Q〉, (15)

f4 = κ4 − 6(〈NQ2〉 − 〈N〉〈Q2〉 − 2〈NQ〉〈Q〉 + 2〈N〉〈Q〉2)

+ 8(〈Q2〉 − 〈Q〉2) + 3(〈N2〉 − 〈N〉2) − 6〈N〉.
Factorial cumulants remove self-correlations order by order,
so that fn = 0 for n � 2 for independent particles. The price
to pay is that one also needs the value of N in each event,
not just Q. This cost is very modest, since N+ and N−
are both measured in every event. Self-correlations are not
true correlations [22] and subtracting them does not change
the physics one wishes to probe with cumulants. They are
routinely subtracted in analyses of anisotropic flow [34,37].
Our point in this paper is that they should also be subtracted in
analyses of net-charge fluctuations. On the technical side, note
that the subtracted terms in Eq. (6) are themselves cumulants
[34] of the distribution of Q or N (such as 〈N2〉 − 〈N〉2) or
mixed cumulants involving both Q and N . Note also that f3

( f4) is odd (even) in Q.
We now define the dynamical cumulants dn of net charge

fluctuations, which generalize factorial cumulants by taking
into account the effect of the global charge conservation. This
is again done through a simple generalization of Eq. (8):

ln

〈(
1 + eαz − 1

α

)N+(
1 + e−αz − 1

α

)N−〉
≡

∞∑
n=1

dn
zn

n!
.

(16)

The dynamical cumulants thus defined again interpolate be-
tween ordinary cumulants and factorial cumulants: If α = 1,
dn coincides with κn defined by Eq. (13). In the limit α → 0,
dn coincides with fn defined by Eq. (14). Expressing the
left-hand side of Eq. (16) as a function of N and Q using

Eq. (12), and expanding to order z4, one obtains the explicit
expressions

d1 = κ1,

d2 = κ2 − (1 − α)〈N〉,
d3 = κ3 − 3(1 − α)(〈NQ〉 − 〈N〉〈Q〉)

+ (1 − α)(2 − α)〈Q〉,
d4 = κ4 − 6(1 − α)(〈NQ2〉 − 〈N〉〈Q2〉 (17)

− 2〈NQ〉〈Q〉 + 2〈N〉〈Q〉2)

+ 4(1 − α)(2 − α)(〈Q2〉 − 〈Q〉2)

+ 3(1 − α)2(〈N2〉 − 〈N〉2)

− (1 − α)(6 − 6α + α2)〈N〉.
The expression of dn involves the same cumulants of N and Q
as the expression of fn, Eq. (15), but with different coefficients
which depend on α. Note that dn can no longer be expressed
as a function of ordinary cumulants, as in Eq. (11), because it
also involves the charged multiplicity N in every event, while
κn only depends on Q. In the limiting case of one species of
particles (N− = 0, which implies N = Q), Eqs. (17) reduce to
Eqs. (11), as they should.

By construction, dynamical cumulants of order �2 elimi-
nate contributions of binomial fluctuations: If N+ and N− fol-
low independent binomial distributions with the same fraction
α, using Eq. (9), one obtains〈(

1 + eαz − 1

α

)N+(
1 + e−αz − 1

α

)N−〉
= exp(〈Q〉z), (18)

where 〈Q〉 = α(N tot
+ − N tot

− ) is the average net charge Q seen
in the detector. Inserting into Eq. (16), this implies dn = 0 for
n � 2.

By contrast, ordinary cumulants do not vanish. If N+ and
N− follow binomial distributions, a simple calculation gives

ln〈e±zN±〉 = 〈N±〉
α

ln(αe±z + 1 − α). (19)

Expanding in powers of z and using Eq. (13), one obtains the
expressions [38]

κ1 = 〈Q〉,
κ2 = (1 − α)〈N〉,
κ3 = (1 − α)(1 − 2α)〈Q〉,
κ4 = (1 − α)(1 − 6α + 6α2)〈N〉. (20)

Odd-order cumulants are proportional to the mean charge,
while even-order cumulants are proportional to the charged
multiplicity. In the limit α → 0, κ3 = κ1 and κ4 = κ2. A finite
α results in reduced higher-order cumulants, κ3 < κ1 and
κ4 < κ2.

IV. VOLUME FLUCTUATIONS

Dynamical cumulants are by construction insensitive to the
correlation induced by the global conservation law. We now
discuss their sensitivity to impact parameter fluctuations in
a centrality bin, which is another nondynamical fluctuation.

034902-3



ROGLY, GIACALONE, AND OLLITRAULT PHYSICAL REVIEW C 99, 034902 (2019)

More specifically, we assume that the distribution of N+ and
N− are binomial distribution at a fixed impact parameter, but
the centrality bin consists of a range of impact parameters.

One can carry out the average over events in Eq. (16)
in two steps: First, one averages over events with the same
impact parameter. Since the distributions of N+ and N− are
assumed binomial, Eq. (18) holds, where 〈Q〉 is a function of
b which we denote by Q(b). Second, one averages over impact
parameter:

∞∑
n=1

dn
zn

n!
= ln〈exp [zQ(b)]〉, (21)

where angular brackets in the right-hand side now denote
the average over impact parameter, while Q(b) is already
averaged over events at fixed b.

At LHC energies and top RHIC energies, where the system
is nearly charge symmetric [39], Q(b) ≈ 0 for all b, therefore
dynamical cumulants vanish to all orders in the absence of
dynamical fluctuations, even if the analysis is done in a wide
centrality bin.

At lower RHIC energies [9,10], there is a significant charge
asymmetry and Q(b) no longer vanishes. If Q(b) varies with b
and if there is a range of values of b in the centrality bin, dn no
longer vanishes for n � 2. This non-zero value solely results
from the variation of the mean charge Q(b) with b. More
specifically, dn is the cumulant of order n of the distribution
of Q(b) in the centrality bin:

d1 = 〈Q(b)〉,
d2 = 〈(Q(b) − 〈Q(b)〉)2〉, (22)

d3 = 〈(Q(b) − 〈Q(b)〉)3〉.
For instance, d2 is the variance of Q(b) due to impact pa-
rameter fluctuations. Hence, impact parameter fluctuations
generate d2 > 0. However, this effect is numerically small, as
will be shown explicitly in Sec. VI. If δQ denotes the width of
the distribution of Q(b) in the centrality bin, which is typically
proportional to the width of the centrality bin itself, then the
contribution of centrality fluctuations to dn is proportional
to (δQ)n: In practice, dynamical cumulants of order 3 and
higher are essentially insensitive to centrality fluctuations. By
contrast, ordinary cumulants are strongly sensitive to volume
fluctuations, as will be shown in Sec. VI.

The same reasoning can be applied to factorial cumulants
by taking the limit where the acceptance fraction α goes to
0, i.e., replacing the binomial distribution (3) with a Poisson
distribution, and dn [defined by Eq. (16)] with fn [defined by
Eq. (14)]. One concludes that if N+ and N− follow Poisson
distributions at fixed impact parameter, and if the system
is charge symmetric, then factorial cumulants vanish to all
orders, irrespective of the width of the centrality bin. If there
is a charge asymmetry, the sensitivity to volume fluctuations
is still greatly reduced compared to ordinary cumulants, and
the reduction is more important for higher-order cumulants.

V. RESONANCE DECAYS

We now briefly discuss the effect of resonance decays
[40]. Decays do not modify conserved charges by definition.

Hence, if all decay products are recorded in the detector,
the cumulants, which solely depend on the conserved charge
[Eq. (13)], are strictly unchanged after the decay. Factorial
cumulants, however, are in general modified, and so are the
dynamical cumulants. We evaluate this modification on the
example of the decay ρ0 → π+π−. We assume for simplicity
that all charged particles originate from ρ0 decays, and that
the decay products are all detected. We first consider the
case where the number N0 of ρ0 mesons follows a Poisson
distribution, corresponding to uncorrelated emission:

PN0 = 〈N0〉N0

N0!
e−〈N0〉. (23)

Each ρ0 gives one π+ and one π−, hence N+ = N− = N0,
and the total charged multiplicity is N = 2N0. The generating
function of factorial cumulants, given by Eq. (14), can be
easily evaluated:

〈(1 + z)N+(1 − z)N−〉 =
∞∑

N0=0

(1 + z)N0 (1 − z)N0
〈N0〉N0

N0!
e−〈N0〉

= exp(−〈N0〉z2). (24)

Inserting into Eq. (14), one obtains

f1 = 0,

f2 = −2〈N0〉 = −〈N〉, (25)

f3 = f4 = · · · = 0.

Before the decays, there is no charged particle, and all fac-
torial cumulants are 0. Equation (25) shows that the only
factorial cumulant which is modified by the resonance decay
is the cumulant of order 2. The physical explanation of this
result is that a two-body decay contributes to the two-particle
correlation, which is measured by f2, but not to higher-
order correlations. Kitazawa et al. [35] write that “factorial
cumulants would be altered in non-trivial ways” by decay
processes, but our conclusion also applies to the decays of
a doubly charged particle into two singly charged particles
considered in their paper. The calculation above can be easily
generalized: A three-body decay modifies factorial cumulants
up to order 3, etc.

This exact cancellation of higher-order cumulants holds for
factorial cumulants, not for dynamical cumulants. In the ex-
ample above, d3 still vanishes by symmetry, not d4. Repeating
the algebra with Eq. (16) instead of Eq. (14), or using the
explicit expressions Eq. (17) with Q = 0 and N = 2N0, one
finds d4 = α2d2. Since α is typically much smaller than unity,
as will be pointed out in Sec. VI, one sees that the spurious d4

produced by resonance decays is small.

VI. MONTE CARLO SIMULATIONS

We now illustrate effects of non-dynamical fluctuations by
means of realistic simulations. We show that non-dynamical
fluctuations alone are likely to explain results obtained at
RHIC by the STAR [9] and PHENIX [10] Collaborations
for the fluctuations of the net electric charge. We show
that if dynamical cumulants were used instead of ordinary
cumulants, effects of nondynamical fluctuations would be
largely suppressed.
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FIG. 1. Cumulants of the net charge distribution in Au+Au collisions at
√

sNN = 62.4 GeV as a function of centrality percentile. Symbols:
PHENIX data [10] with errors (systematic only). Bands: Results of our Monte Carlo simulations for the usual net-charge cumulants (κn) and
for the factorial cumulants ( fn) defined by Eq. (15). The width of the bands corresponds to the statistical error of our Monte Carlo simulation.
The dynamical cumulants dn coincide with fn since α 	 1. (a) n = 1 (mean); (b) n = 3 (skewness); (c) n = 2 (variance). The inset is a zoom
showing the value of f2; (d) n = 4 (kurtosis).

We assume that the distributions of N+ and N− are binomial
distributions at fixed impact parameter b, so that there are
no dynamical fluctuations. The only other source of fluctua-
tion in our simulation is the fluctuation of impact parameter
within a centrality bin. Experimental analyses of net charge
fluctuations are carried out typically in 5% centrality bins. The
experimental definition of the centrality uses an observable n
(charged multiplicity or energy seen in a specific detector),
whose relation with b is not one to one. The probability
distribution of b in a centrality bin can be reconstructed using
the measured histogram of n under fairly general assump-
tions [41,42]. The distribution of n is rarely made public,
so that we do not have this information for all energies and
experiments. Throughout this article, we use STAR data for
Au+Au collisions at

√
sNN = 130 GeV [43]. We assume that

the distribution of b would not change drastically from STAR
data to PHENIX data, or as one varies the collision energy√

sNN .
The Monte Carlo simulation is done in the following

way. For each event, we draw randomly the true centrality
(defined according to impact parameter, and denoted by cb

[41]) between 0 and 1. We then draw independently the values
of N+, N− and n. We assume that N+ and N− follow binomial
distributions, while n follows a gamma distribution [42]. The
parameters of the gamma distribution are determined by the

mean and the variance of the distribution of n at fixed impact
parameter, which are given by Table II of Ref. [41]. We
assume, for the sake of simplicity, that the mean values of N+
and N− at a given impact parameter are equal to the mean
value of n, up to a global proportionality factor. Thus, the
only free parameters in our calculation are the mean values
of N+ and N− for central collisions (b = 0), which depend on
the detector and on the collision energy, and the fraction of
particles falling in the detector acceptance, α. We generate a
large number of events, and then classify them into centrality
bins according to the value of n, as in experiments. We then
evaluate the cumulants κn and the dynamical cumulants dn,
with n = 1, . . . , 4 as explained in Sec. III.

Figure 1 displays PHENIX data [10] for
√

sNN = 62.4
GeV together with the results of our Monte Carlo simulations.
We generate 2 × 108 events. Since the acceptance of the
PHENIX analysis covers only half of the range in azimuth,
and a small interval in pseudorapidity, the fraction of particles
detected α 	 1. We therefore carry out this simulation in
the limit α → 0. In this limit, N+ and N− follow Poisson
distribution. The other free parameters in our calculation are
the mean values of N+ and N− for central collisions. We
fix them to the values 15.7 and 14.3, respectively, so as to
match the measured values of κ1 and κ2 for central collisions.
As shown in Fig. 1, we then explain the values of κ1 and
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FIG. 2. Same as Fig. 1 for Au+Au collisions at
√

sNN = 19.6 GeV. Data from the PHENIX Collaboration [10].

κ2 for other centralities, as well as the values of κ3 and κ4,
without any additional parameter. In particular, we explain
the observation that κ3 > κ1 and κ4 > κ2, at variance with the
result for the binomial distribution (20). This effect is pro-
duced by the fluctuations of impact parameter in a centrality
bin. Note that κ3 and κ4 are slightly overpredicted in central
collisions, but given the crudeness of our model, we consider
that agreement is satisfactory. Our results imply that even
though experimental results are seemingly nontrivial, they
can be explained without invoking dynamical fluctuations. We
also evaluate the dynamical cumulants, which reduce here to
factorial cumulants, dn = fn, since we take the limit α → 0.
They are essentially compatible with zero, which illustrates
our statement in Sec. IV that volume fluctuations do not
artificially generate dynamical cumulants. Zooming in [inset
in Fig. 1(c)], one sees that f2 is actually positive, as expected
from the discussion in Sec. IV. But it is smaller than the
ordinary cumulant κ2 by a factor 1000. Note that short-range
correlations due to resonance decays can have a sizable effect
on f2, but not on f3 and f4, as discussed in Sec. V.

In Fig. 2, we repeat the exercise at the lower energy√
sNN = 19.6 GeV. The charge asymmetry is larger at lower

energy, hence κ1 is larger than in Fig. 1. The charged mul-
tiplicity, on the other hand, is smaller at the lower energy,
so that κ2 is smaller. In our simulation, we again assume
that α ≈ 0, so that dynamical cumulants reduce to factorial
cumulants. The mean values of N+ and N− in central collisions
are fixed to the values 11.5 and 8.25, respectively. We generate

108 events. As in Fig. 1, we reproduce the data without
dynamical fluctuations. Factorial cumulants are again close
to 0. The factorial moment f2 is slightly larger, which is the
modest consequence of the larger charge asymmetry: More
quantitatively, the charge seen in the detector increases by
a factor 2 [compare panels (a) of Figs. 1 and 2], and f2 is
proportional to the variance of the charge according to the
discussion in Sec. IV, therefore, it increases by a factor ∼4.

We now discuss STAR data at the same energy
√

sNN =
19.6 GeV [9]. The main difference with PHENIX data is the
larger acceptance in pseudorapidity and azimuth: the detector
sees more particles. Using the pseudorapidity distribution
published by STAR at the same energy [44], we estimate
that the acceptance fraction is α ≈ 0.216. The mean values
of N+ and N− in central collisions are chosen to be 155 and
130, respectively,1 in order to reproduce the magnitudes of κ1

and κ2. We generate 2 × 108 events. A technical difference
with the PHENIX analysis is that the STAR analysis is first
carried out in 1% centrality bins, which are then recombined
into 5% or 10% bins. We follow the same procedure in our
simulation, whose results are shown in Fig. 3. The use of
narrower bins reduces the effect of impact parameter fluctu-
ations. However, they still have a significant effect [38]: As in

1Note that the relative charge asymmetry is smaller than that seen
by PHENIX at the same energy. We have not investigated the origin
of this difference.
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FIG. 3. Same as Fig. 2 using STAR data [9] for Au+Au collisions at
√

sNN = 19.6 GeV. Instead of the factorial cumulants fn, we now
evaluate the dynamical cumulants defined by Eqs. (17), with α = 0.216 (see text). As in Fig. 2, the inset in panel (c) is a zoom showing the
value of d2.

the case of PHENIX data, the orderings κ3 > κ1 and κ4 > κ2,
which could naively be attributed to dynamical fluctuations,
are reproduced (and even overpredicted) by our calculation.
Our model reproduces the cumulant ratio κ4/κ2 better than
the model used by the STAR Collaboration [9], where N+
and N− are assumed to be independent and to follow negative
binomial distributions. The reason why we achieve a better de-
scription is that we take into account the correlation between
N+ and N− induced by impact parameter fluctuations within a
centrality bin. As in the case of PHENIX data, the dynamical
cumulant d2 is slightly positive [inset in Fig. 3(c)], but smaller
than the ordinary cumulant κ2 by a factor ∼100. Higher-order
dynamical cumulants d3 and d4 are compatible with zero. Any
effect of resonance decays on these results would be within the
present error bars, according to the estimates in Sec. V. These
results illustrate that dynamical cumulants are insensitive to
nondynamical fluctuations.

VII. CONCLUSIONS

We have shown that existing data on net-charge fluctua-
tions show no clear evidence of dynamical fluctuations. As
long as one uses cumulants to characterize net-charge fluctu-
ations, the observation of dynamical fluctuations will be hin-
dered by the large effects of volume fluctuations. One knows
how to subtract their effects for two-particle correlations [45],

but not for higher-order correlations. If volume fluctuations
are not under control, comparison with lattice data, where the
volume is fixed, is ambiguous.

We have introduced new observables, called dynamical
cumulants, whose expressions are given in Eq. (17). They
generalize factorial cumulants by taking into account the
correlation due to global charge conservation. The dynamical
cumulant of order n contains the same information about the
n-particle correlation as the ordinary cumulant κn. These two
quantities differ only by terms induced by self-correlations
and global charge conservation. Dynamical cumulants offer
the same flexibility and can also be analyzed in various
rapidity windows [46]. We have shown that unlike cumulants,
factorial cumulants and dynamical cumulants are remarkably
insensitive to volume fluctuations. They cannot be directly
compared with lattice data, but can be used to obtain direct
and reliable information on interactions and dynamical cor-
relations among the produced hadrons, which in turn can be
used in comparing with ab initio calculations [47].
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