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Calculating reactions with use of no-core shell-model states
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A scheme to compute reactions is described that uses the Slater determinants constructed of oscillator orbitals.
Simple linear equations are suggested for this purpose and shown to be efficient in model examples. A universal
method to evaluate the required matrix elements is given.
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I. INTRODUCTION

Since the mid-1990s, much progress has been made in the
ab initio description of p-shell nuclei in the framework of
the no-core shell-model (ncsm) method [1]. As already was
pointed out [2], a challenging task is to extend this method to
describe reactions.

Work in this direction was done in Refs. [3–8]. In Ref. [3]
the resonating-group method has been employed. The bound-
state wave functions of the heavier of reaction partners were
taken in the form of the ncsm expansions over the Slater
determinants. The bound-state wave functions of the lighter
of reaction partners were treated as an expansion over os-
cillator functions in the Jacobi coordinates. The coupled set
of integrodifferential equations describing relative motion of
fragments in a reaction has been obtained. Kernels of the
equations were derived in the fashion of Ref. [2] for the cases
when the mass numbers of the lighter reaction partner are
equal to one [3], two [5], and three [6].

Ncsm pseudostates of fragments were subsequently in-
cluded in the calculations. This resulted in increase of the
number of the integrodifferential equations while convergence
with respect to adding pseudostates proved to be too slow
in certain cases. In this connection, it was suggested [4]
to supplement the resonating group ansatz with a set of
states belonging to the ncsm pseudospectrum of the whole
system. To realize this, the R-matrix approach was used and
the Bloch-Schrödinger equation was solved in conjunction
with the resonating group description. The required addi-
tional matrix elements (ME) were obtained in a way sim-
ilar to that of Ref. [2]. In the latter paper, at calculating
the spectroscopic function of a nucleus the heavier cluster
and the lighter one were treated in the same manner as
mentioned above and formulas for the ME were obtained
separately for the cases of lighter clusters consisting of one,
two, three, and four nucleons. In this sequence, the formulas
become increasingly complicated, and the same refers to
the above-mentioned resonating group ME. The convergence
issue was scrutinized in those investigations and stability of
the reaction observables, at least at the qualitative level, was
established.

Other shell-model approaches to describe reactions such
as the no-core Gamow shell model, e.g., Ref. [7], and the J-
matrix one [8] are also being developed.

Our purpose is to propose a simple and universal extension
of ncsm to calculate reactions. The case of two-fragment reac-
tions is considered. In the next section, simple linear equations
suitable for this purpose are described. Unlike the resonating-
group approach, they do not involve antisymmetrization be-
tween nucleons belonging to different reaction partners. They
prove to lead to rather precise results in model examples.

In Secs. III–V the issue of calculating the ME entering
the equations is addressed. In the difference to the above-
mentioned approach [3–6] we employ the ncsm-type Slater
determinant expansions for both fragments and we do not use
Jacobi coordinates. We provide simple formulas to calculate
the required ME. They are universal, i.e., the same for frag-
ments consisting of different numbers of nucleons.

Below the notation like �nlm(X) refers to the eigenfunc-
tions of the oscillator Hamiltonian −(1/2)�X + (1/2)X 2.
These eigenfunctions are assumed to be normalized to unity,
n denotes the radial quantum number, and l and m denote the
angular-momentum quantum numbers. In the nucleon orbital
case, X = r/r0, where r is the nucleon position vector and r0

denotes the nucleon oscillator radius.

II. SCHEME FOR COMPUTING REACTIONS

A. Formulation

Continuum wave functions we shall deal with are the
following. Assume that only two-fragment reaction channels
are open. Quantities referring to such a reaction channel,
say, i, will be supplied with the corresponding subscript. We
denote the wave number and the orbital momentum of relative
motion of fragments as ki and li. We denote the mass numbers
of fragments pertaining to a reaction channel as A1i and A2i

and the vector connecting their centers of masses prior to
interfragment antisymmetrization as ρi,

ρi = (A1i )
−1

A1i∑
k=1

rk − (A2i )
−1

A1i+A2i∑
k=A1i+1

rk, (1)

2469-9985/2019/99(3)/034620(11) 034620-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.99.034620&domain=pdf&date_stamp=2019-06-14
https://doi.org/10.1103/PhysRevC.99.034620


VICTOR D. EFROS PHYSICAL REVIEW C 99, 034620 (2019)

where rk are nucleon positions. The following radial functions
of relative motion of fragments will be employed,

f (0)
i (ρi ) =

(
A1iA2i

ki

)1/2 G̃li (ki, ρi )

ρi
,

f (1)
i (ρi ) =

(
A1iA2i

ki

)1/2 Fli (ki, ρi )

ρi
, (2)

where Fl is the regular Coulomb function and G̃l is obtained
from the irregular Coulomb function Gl by means of a reg-
ularization at small distances. One may set, for example,
G̃l (k, ρ) = gl (ρ)Gl (k, ρ) with

gl (ρ) = [1 − exp(−ρ/ρcut )]
2l+1, (3)

where ρcut is a parameter.
Define the “surface functions” ϕi,

ϕi =
[[

φ
I1
1 (1, . . . , A1i )φ

I2
2 (A1i + 1, . . . , A1i + A2i )

]
S
Yl (ρ̂i )

]
JM

,

(4)

where φ
I1M1
1 and φ

I2M2
2 are bound-state wave functions of

fragments. They contain, respectively, nucleons with the num-
bers from 1 to A1i and from A1i + 1 to A1i + A2i = A, where
A is the total number of nucleons in a system. These are
internal wave functions depending on Jacobi vectors and
possessing given total momenta and their projections. The
latter quantities are denoted as I1, M1 and I2, M2. These wave
functions possess also given parities and isospins and they are
the eigenfunctions of corresponding internal Hamiltonians.
The brackets [. . .] represent couplings to the spin S of the two
fragments and to the total spin J and its projection M.

We shall deal with the channel functions of two types
denoted as ψ

(0)
i and ψ

(1)
i . They are of the form

ψ
(0),(1)
i = Aiϕi f (0),(1)

i (ρi )�000(R̄c.m.), (5)

where the functions f (0),(1)
i are defined in Eq. (2). Here Ai is

the interfragment antisymmetrizer,

Ai = ν
−1/2
i

∑
P

(−1)π (P)P, (6)

where νi is the number of channels in the configuration space
which are associated with a given reaction channel i. These
channels in the configuration space correspond to different
distributions of nucleons over the fragments so that

νi = A!

A1i!A2i!υ
, (7)

where υ = 2 if the fragments are identical and υ = 1 oth-
erwise. The number of terms in the sum is νi and the per-
mutations P are such that with their help one obtains all
the channels in the configuration space from one of them.
The quantity π (P) is either zero or one depending on the
parity of a permutation. As mentioned above, in Eq. (5) �000

is the ground-state harmonic oscillator function and R̄c.m. =
Rc.m.

√
A/r0, where Rc.m. is the center-of-mass vector of the

whole system.

Define approximate (or trial, or truncated) continuum wave
functions

� j = ψ
(0)
j +

n∑
i=1

a j
i ψ

(1)
i +

N−n∑
k=1

bj
kχk, (8)

1 � j � n. The functions ψ (0),(1)
m are defined in Eq. (5) and

they correspond to open reaction channels whose number is
denoted as n.1 The functions χk are short ranged. They are
linear combinations of the Slater determinants constructed of
the oscillator orbitals. Their choice is discussed below.

The expansion coefficients a j
i and bj

k are to be found. One
has a j

i = −Ki j , where Ki j is the K matrix. The S matrix sought
for is

S = (iK + I )(iK − I )−1. (9)

For brevity we rewrite the ansatz (8) as

� j = ζ
j

0 +
N∑

i=1

ciζi, 1 � j � n, (10)

where ζ
j

0 = ψ
(0)
j , and at 1 � i � n one has ζi = ψ

(1)
i . At

i = n + k one has ζi = χk . To find the coefficients of the
expansions of the type of Eq. (8) simple equations of the form

N∑
i=1

Akici = B( j)
k , k = 1, . . . , N, (11)

will be employed.
In the case of small systems, the Hulthén-Kohn variational

method, see, e.g., Ref. [9], is traditionally applied. It leads to
the equations of the form of Eqs. (11) with Aki = (ζk, [H −
E ]ζi ) and B( j)

k = −(ζk, [H − E ]ζ j
0 ). Here H is an internal

Hamiltonian and E is the energy of the whole system. The
disadvantage of such equations in our case is that they thus
include the “free-free” ME like (ψ (1)

k , [H − E ]ψ (0),(1)
l ) which

represent a class of ME additional to bound-bound and bound-
free ME and which are more involved than the latter ones.

In view of this, in Ref. [10] (subsection 5 of Sec. 1 in
that reference) another set of equations has been suggested.
Formulating them, let us take into account that the quantities
like [H − E ]ψ (0),(1)

i are localized. This is seen when one
interchanges H − E with the Ai operator entering Eq. (5) and
then writes, as usual,

H − E = (H1 − ε1) + (H2 − ε2) + [
Trel + V̄ coul

ext (ρi ) − Erel
]

+ [
V nucl

ext + V coul
ext − V̄ coul

ext (ρi )
]
, (12)

where H1 and H2 are internal Hamiltonians of the fragments,
ε1 and ε2 are fragment eigenenergies, Trel is the operator of
kinetic energy of the fragment relative motion, Erel is the
energy of this relative motion, V̄ coul

ext = Z1Z1e2/ρi is a sub-
sidiary potential that reproduces the large-distance Coulomb

1Terms of the same structure as ψ
(0),(1)
k but describing closed

channels may be included in the expansion (8) to speed up the
convergence at energies lying below the corresponding thresholds
close to them.
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interfragment interaction, and V nucl
ext and V coul

ext are nuclear and
Coulomb interfragment interactions.

The third term in Eq. (12) acts on the relative motion
functions f (0),(1)

i (ρi )Ylm(ρ̂i ) and the corresponding contribu-
tion decreases exponentially as ρi increases. The contribution
of the nuclear interaction V nucl

ext entering the last term also
decreases exponentially as ρi increases while the difference
V coul

ext − V̄ coul
ext of the Coulomb interactions there decreases

as ρ−2
i .

Since in the class of trial � j of Eq. (10) the state [H −
E ]� j is thus localized, to select the best of the � j it is natural
to require [10] that [H − E ]� j is orthogonal to N lowest
localized states χk that are of the type of the N − n states χk

entering Eq. (8). That is, we set (χk, [H − E ]� j ) = 0 with
1 � k � N . These are the equations that have the form of
Eq. (11) with

Aki = (χk, [H − E ]ζi ), B( j)
k = −(

χk, [H − E ]ζ j
0

)
. (13)

These equations include bound-bound and bound-free ME
only. As pointed out in Ref. [10] one more advantage of such
equations is that in ME entering them antisymmetrization
with respect to nucleons belonging to different fragments may
be omitted. These equations were not studied numerically in
Ref. [10] and, to our knowledge, they were not employed
in the literature in practical scattering calculations. The cor-
responding comments in Ref. [10] were general ones and
were not specially intended for applications of the type of the
present paper. However, these equations are very suitable for
our present purpose of extending ncsm to describe reactions.
In the subsequent sections the calculation of bound-free ME
entering them is addressed.

In an independent paper [11] the least-squares type equa-
tions have been suggested to solve the problem. It was pointed
out there that the equations of the form of (11) and (13) are the
limiting case of the least-squares method. In our case, when
the matrix of the H − E operator in the Slater determinant
basis is large and sparce, this general least-squares method
seems to be less efficient than these equations.

The above trial wave functions include regularization pa-
rameters like ρcut in Eq. (3). Let us discuss their choice.
One may suggest that in the case of a sufficiently accurate
calculation there should exist ranges of these parameters
such that reaction amplitudes are nearly independent of their
choice within these ranges. If so, the optimal values of these
parameters are those which belong to these ranges, see the
examples below. This prescription corresponds to the fact that
the convergent values of reaction amplitudes are independent
of such parameters.

Let us discuss the choice of the short-range basis states χk

entering Eqs. (8), (10), and (13). In our case, they are many-
body oscillator states. In the case of projection equations
such as Eqs. (13), the results of a calculation are completely
determined by a linear space the χk states span. If the problem
is considered in the space of all the corresponding oscillator
states with the numbers of many-body oscillator quanta up
to some value, then it may occur that the convergence is not
reached unless the space is very large. But the existing expe-
rience on solving large systems of linear equations, see, e.g.,

Ref. [12], suggests that it may be sufficient to solve the prob-
lem only in a modest size Krylov subspace of that large space.
This subspace is spanned by the states φ, PHφ, . . . , (PH )N0φ,
where P is the projector onto the mentioned space of oscillator
states and φ is a pivot state belonging to this space. The N0

value is expected [12] not to exceed several hundreds to reach
convergence.

The set of (PH )nφ states is “ill posed.” An equivalent basis
set in the above Krylov subspace which is convenient for
performing calculations is the Lanczos basis set that starts
from the φ state; that is, the χk states are the corresponding
Lanczos states at such a choice.

In our case, it is convenient to have the pivot φ state in the
form of a superposition of the Slater determinants. When N0

is sufficiently high, the results of such calculations [12] are
often not sensitive to the choice of the φ state. In the literature
in a number of cases this state is chosen to be an approximate
solution, if known in advance, of the set of linear equations to
be solved. In other cases it is chosen to be the right-hand side
of linear equations to be solved.

The latter choice may be realized approximately in our
problem as follows. One first constructs directly a complete
subset, with not-too-high maximal number of many-body os-
cillator quanta, of basis oscillator functions having the center
of mass of the whole system in the lowest oscillator state
and having given total angular-momentum quantum numbers.
Then, expanding the right-hand side term (H − E )ψ (0)

j ≡
(H − E )ζ j

0 over this subset with the help of the method
described below, one gets a sought-for φ state.

The choice of an approximate solution of our problem
as the φ state may also be realized at use of the mentioned
subset of basis oscillator functions. Then the whole problem
is to be solved directly with the corresponding limited number
of these basis functions. The linear combination

∑N−n
k=1 bj

kχk

from Eq. (8) obtained in the framework of this approximation
may then be employed as the φ state in subsequent more
extensive calculations. [At constructing such a pivot state it
is natural to take all the corresponding states with the total
number of oscillator quanta up to some value as the N − n
states χk entering Eq. (8). Then the question arises how to
choose n extra χk states on which the projecting in Eqs. (13) is
to be done. See the model example below in this connection.]

It is desirable to deal with the χk states for which the
center of mass of the whole system is in the lowest oscillator
state and the total angular momentum and its projection have
given values. Most calculations of the ME below refer to this
case. The M-scheme approach is adopted below so that the
projection of the total angular momentum is given anyway.
As to the two other mentioned properties, the discussed pivot
φ state has these properties and hence the same is valid for all
the other χk states if the exact arithmetic is assumed.

However, in certain cases these properties along with the
nice properties of the Lanczos basis may be destroyed be-
cause of round-off errors even in computations with the
quadrupole precision. Despite this, the χk states provided by
the above procedures still may be employed as basis states.
Of course, this is to be done without relying on the mentioned
properties. The angular momentum and the center-of-mass
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quantum numbers then will be recovered in the total wave
function once convergence of a calculation is reached. In this
version, ME more general than those mentioned above are
required. We want to note that the evaluation of these ME
is discussed in short at the end of Sec. V while the rate of
convergence in this regime is to be investigated.

Another way to diminish the influence of round-off errors
discussed in the literature, e.g., Ref. [13], is the following.
At calculating spectra, the β[Hc.m. − (3/2)h̄ω] operator, Hc.m.

being the oscillator center-of-mass Hamiltonian, with a large
β constant is added to the internal Hamiltonian. This shifts
above the spurious center-of-mass excitations [14]. If one
imagines the influence of round-off errors as an action of a
perturbation added to the Hamiltonian, then it may be con-
cluded that the added operator, indeed, diminishes coupling
due to round-off errors between center-of-mass excited and
unexcited states. If this picture is valid, then it may be rea-
sonable to diagonalize the Hamiltonian in the Lanczos basis,
i.e., to get a number of the standard ncsm solutions for the
whole A-nucleon system, and to use these solutions as χk , cf.
Ref. [4]. The corresponding Lanczos, or Krylov, subspace is,
however, different from such subspaces discussed above and,
unlike those subspases, it is not related to the inhomogenous
equations to be solved.

In fact, in general no reasons are known for convergence
to be faster in the case of the Hulthén-Kohn type equations
than in the case of Eqs. (11) with the coefficients (13). Below
a good convergence is demonstrated in the case of the latter
equations in model examples.

Reaction parameters obtained from various dynamics
equations are sometimes considered to be the first approxima-
tion and presumably improved values of these parameters are
then obtained taking the stationary values of the correspond-
ing Hulthén-Kohn functionals to be final results. However, in
reality these functionals do not exist in the literal sense in the
case when bound-state wave functions of reaction participants
are not exact. The derivations of the Hulthén-Kohn variational
principle for this case we know in the literature [15,16] are
inconclusive. In view of this, only in cases when the accuracy
of a calculated reaction wave function is considerably lower
than the accuracy of fragment wave functions entering it
one could hope that the values of reaction parameters thus
obtained are more accurate than the original ones. Besides,
the Hulthén-Kohn functionals include undesirable free-free
ME. For these reasons, we refrain from this improvement
procedure.

The calculation can also be performed in the incoming and
outgoing wave representation. In such a case the following
radial functions of the relative motion of fragments are em-
ployed instead of functions (2),

f ±
i (ρi ) =

(
A1iA2i

ki

)1/2 H̃ (±)
li

(ki, ρi )

ρi
, (14)

where

H̃ (±)
l (k, ρ) = G̃l (k, ρ) ± iFl (k, ρ).

Correspondingly, the following channel functions are used
instead of functions (5),

ψ±
i = Aiϕi f ±

i (ρi )�000(R̄c.m.). (15)

The representation of the form

� j = ψ−
j +

n∑
i=1

a j
i ψ

+
i +

N−n∑
k=1

bj
kχk, (16)

1 � j � n, similarly to Eq. (8) is used to obtain the approxi-
mate continuum wave functions. The χk terms are the same as
in Eq. (8). One has a j

i = −Si j , where Si j is the S matrix. Let
us rewrite the ansatz of Eq. (16) in the form of Eq. (10), where
now ζ

j
0 = ψ−

j , and at 1 � i � n one has ζi = ψ+
i . As above,

ζi = χk at i = n + k. With this notation, the equations of the
same form as (11) and (13) are applicable in the present case.

In Secs. IV and V bound-free ME entering Eqs. (13) are
calculated. Let us use the notation

Znl
I1I2SJM = [[

φ
I1
1 (1, . . . , A1)φI2

2 (A1 + 1, . . . , A1

+ A2)
]

S�nl (ρ̄)
]

JM�000(R̄c.m.). (17)

These quantities are obtained from those of Eqs. (4) and
(5), or (4) and (15), via disregarding antisymmetrization and
replacing the function of relative motion of fragments with an
oscillator function. The quantity ρ̄ here equals [A1A2/(A1 +
A2)]1/2ρ/r0, where ρ is the interfragment distance of the type
of Eq. (1). The ME we deal with below are of the form(

χk, ÔZnl
I1I2SJM

)
, (18)

where χk are as above and Ô is a scalar operator.

B. Examples

To verify the convergence of the method of calculating
scattering at use of Eqs. (13) consider first the model prob-
lem of the s-wave scattering of a particle by the potential
−V0 exp(−r/R), V0 > 0. It was employed in the literature
[11,17] to study the Hulthén-Kohn and least-squares methods.
The problem allows an analytic solution, see, e.g., Ref. [18].

The precise values of the phase shift δ can be obtained as
follows. Let us use the notation k for the wave number and
denote h̄2/(μR2), μ being the particle mass, as E0. Define

F =
∞∑

n=0

an, an = −2V0/E0

n(n + 2ikR)
an−1, (19)

with a0 = 1. Then tan δ = ImF/ReF .
We want to find out whether Eqs. (11) and (13) lead to

the exact solution of the problem.2 Let us take, for example,

2In Ref. [11] solutions to the equations of the type of Eqs. (11)
and (13) for the present problem were obtained in some cases with
a modest accuracy in the context of the least-squares method. This
was done for the cases when the set of localized states onto which
the Schrödinger equation was projected differed from the set of
localized states entering the expansion of the solution. In our case
these two sets are the same which would be required in the ncsm-type
calculations for technical reasons.
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TABLE I. Dependence of tan δ on the number of the short-range
functions retained in Eq. (20).

N − 1 tan δ

d/R = 0.4
2 − 0.9803861
4 − 0.9810342
6 − 0.9807419
8 − 0.9800367
10 − 0.9798684
20 − 0.9798734
22 − 0.9798735

d/R = 1.0
2 − 0.7998181
8 − 0.9783943
20 − 0.9802085
30 − 0.9798741
48 − 0.9798735

V0 = E0 and kR = 0.1. The number of bound states in the
system is determined solely by a V0/E0 value. At the above
condition, there exists one bound state and its binding energy
Eb is small compared to V0. One has Eb/E0 � 0.013. Once
V0/E0 and kR values are given the phase shift δ is independent
of R and thus it refers to a family of potentials. Let R be,
say, 1.5 f. If, in addition, μ is chosen to be the reduced
mass of the two-nucleon system, then at the chosen V0/E0

and kR values the potential has the depth V0 about 37 MeV
and the center-of-mass scattering energy is about 0.2 MeV.
At the chosen V0/E0 and kR values the value of tan δ equals
−0.9798735 that is exact in all the listed digits.3

In the present case the expansion (8) reads as

ψ (r) = sin kr

kr
+ tan δ

[(
1 − e−r/Rcut

)cos kr

kr

]

+
N−1∑
m=1

bmχm(r), (20)

where Rcut is a parameter similar to ρcut in (3). We choose the
localized functions χm(r) to be the following:

χm(r) = d−3/2[m(m + 1)]−1/2L2
m−1(r/d )e−r/(2d ), (21)

where L2
n (x) are the Laguerre polynomials. The basis set is

orthonormalized. It is equivalent to the rm−1 exp[−r/(2d )]
set but provides a higher stability at solving the equations.
The ME required in the problem are calculated analytically
in Appendix A.

The calculation involves two nonlinear parameters, Rcut/R
and d/R. The Rcut/R quantity is taken to be 1.0 in all the
cases and the results are insensitive to its choice within a wide

3This value is not small in magnitude while kR is small. This is
because the scattering length a is large compared to R due to the
presence of the shallow level. At our choice of V0/E0 one gets, see
Ref. [18], a/R � 8.7. Thus the ka quantity that is relevant here is not
small.

TABLE II. Dependence of tan δ on the choice of χmlast , see the text.

mlast tan δ

N = 11
11 − 0.9798684
12 − 0.9798479
13 − 0.9798180
14 − 0.9797937
15 − 0.9797773
16 − 0.9797675
17 − 0.9797620

N = 21
21 − 0.9798734
22 − 0.9798734
23 − 0.9798734
24 − 0.9798734
25 − 0.9798734
26 − 0.9798735
27 − 0.9798735

range around this value. Equations (11) and (13) correspond
to projecting the Schrödinger equation onto the first N basis
functions from the set (21).

In Table I the values of tan δ obtained are listed for various
numbers N − 1 of the basis functions (21) retained in Eq. (20).
The results are shown for the choice d/R = 0.4 and for a less-
favorabale choice d/R = 1.0. It is seen that in the former case
rather accurate results emerge already at small N values. The
convergence patterns are rather similar in the whole energy
region of interest.

The following feature has been observed in our calcula-
tions. In Eqs. (11) and (13) the last of the functions (21)
corresponded to m = mlast = N . In place of it, now let us use
functions χmlast of the form of Eq. (21) with mlast = N + 1, or
N + 2, etc. It occurs that the results thus obtained are quite
insensitive to the choice of the mlast value. This is illustrated
in Table II at the d/R = 0.4 choice.

This means that, at a sufficiently large number of basis
functions retained in Eq. (20), the emerging scattering phase is
in general insensitive to the space onto which the Schrödinger
equation is projected. At the same time, the projecting onto
higher basis states would be helpful if unphysical zero eigen-
values of the Aki matrix (13) occur in an energy region of
interest.

The choice of both the above potential and the basis (20)
aimed to verify with a high confidence convergence of the
method in general. Now let us clarify features of the corre-
sponding calculations in the case when the oscillator basis is
used and the number of retained basis functions is moderate.
For this purpose, the model of Ref. [19], see also Ref. [20],
is convenient. In this model, the dipole photodisintegration
of the bound state of three particles interacting via a hyper-
central potential is considered. Up to an energy-independent
constant, the model is equivalent to a one-body problem in
which the hypercentral potential is represented as a central
one and nucleon with the “orbital momentum” 3/2 bound
in this potential passes to the continuum state with the “or-
bital momentum” 5/2. The potential is a Gauss one, V (r) =
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FIG. 1. Comparison of the exact phase shift (full line) with those
calculated with use of the oscillator basis. Pluses, circles, dotted
line, stars, and triangles correspond to Eq. (22) with N = 7 and with
Rcut = 2.5 f, 3 f, 4 f, 5 f, and 6 f respectively.

−V0 exp[−(r/R0)2], with V0 = 75 MeV and R0 = 2.5 f. The
initial state binding energy is about 3.5 MeV.

We seek for the final-state continuum wave function in the
form

ψE (r) = Jl+1/2(kr)

(kr)1/2
− tan δ{1 − exp[−(r/Rcut )

2]}l+1/2

× Nl+1/2(kr)

(kr)1/2
+

N∑
n=1

cnRnl (r), (22)

where l = 5/2, Rcut is a parameter, and Rnl are the radial
oscillator functions. All the terms here behave as rl at r → 0.
The oscillator radius has been chosen to roughly optimize the
calculation of the inital state binding energy and it equaled
2 f. We retain the seven lowest oscillator functions in the cal-
culation, N = 7 in Eq. (22). Equations of the same form as in
the preceding example are used to determine the tan δ and cn

coefficients. Exact results to compare with may be obtained,
in particular, within the same approach using sufficiently large
N values in Eq. (22).

In Fig. 1 the phase shifts obtained are plotted along with the
exact phase shift. The calculations were done with the values
of the Rcut parameter in Eq. (22) of 2.5 f, 3 f, 4 f, 5 f, and 6 f. It
is seen that the results pertaining to all the Rcut values except
for 6 f are nearly indistinguishable and are close to the exact
phase shift. This agrees with the above guess that stability
of calculated reaction observables with respect to such type
parameters indicates a sufficient accuracy of a calculation.
The results at Rcut = 6 f are a little less accurate. At Rcut = 2 f
the phase shift exhibits a nonphysical oscillation in the low
energy region. At somewhat higher numbers of the retained
oscillator functions this feature disappears and the phase shift
becomes close to the exact one at any energy also with this
Rcut value.
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FIG. 2. Comparison of the exact response function (full line)
with those calculated with use of the oscillator basis. Notation is as
in Fig. 1.

In Fig. 2 the dipole photodisintegration response function
defined as

R(E ) =
[∫ ∞

0
r2dr ψ̄E (r)rψ0(r)

]2

(23)

is plotted. Here ψ̄E = ψE · (mk/h̄2)1/2 cos δ, where ψE is
given by Eq. (22), and ψ0 is the wave function of the initial
bound state normalized to unity and represented by 30 oscilla-
tor functions. The same comments as above apply to this case.
Thus it is sufficient to retain seven basis oscillator functions to
represent the final continuum state.

The above results suggest that the maximum number of
many-body oscillator quanta required in a many-body calcu-
lation to reach convergence may be moderate.

The Coulomb interaction was disregarded in the above
calculations but its inclusion could not change the picture. ME
of the Coulomb potential itself would not enter a calculation
due to the presence of the Coulomb wave functions in the
corresponding ansatz of Eq. (20) or (22) type. The Coulomb
wave functions in the internal region only are involved and
the difference between their behavior in this region and the
behavior of the spherical Bessel functions is of no importance.

III. SHELL-MODEL WAVE FUNCTIONS OF FRAGMENTS
EXCITED WITH RESPECT TO CENTER OF MASS

The wave functions of fragments entering Eq. (4) are
supposed to be taken from ncsm calculations. In fact, such
calculations give products of these wave functions and the
lowest oscillator functions of the fragment centers of mass.
These products are provided in the form of expansions over
the Slater determinants. Let us denote such products as X 000

I1M1

and X 000
I2M2

,

X 000
I1M1

(1, . . . , A1) = φ
I1M1
1 (1, . . . , A1)�000

(
r̄(1)

c.m.

)
,

X 000
I2M2

(A1 + 1, . . . , A1 + A2) = φ
I2M2
2 (A1 + 1, . . . , A1

+ A2)�000
(
r̄(2)

c.m.

)
, (24)
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where as in Eq. (4) φ
I1M1
1 and φ

I2M2
2 represent the eigenfunc-

tions of internal Hamiltonians having the angular momenta
I1,2 and their projections M1,2. The notation r̄(1),(2)

c.m. denotes
r(1),(2)

c.m.

√
A1,2/r0, where r(1),(2)

c.m. are the center-of-mass vectors
of the fragments.

We shall need also products of the internal wave function
of a fragment and the wave function of its center of mass in a
given excited state.4 Let us denote these products as X nlm

I1M1
,

X nlm
I1M1

(1, . . . , A1) = φ
I1M1
1 (1, . . . , A1)�nlm

(
r̄(1)

c.m.

)
(25)

(A1 > 1). We shall obtain them in the form of linear combina-
tions of the Slater determinants as well. Use of these products
in this form is a key element of the present approach.

They are to be obtained in some N range, 2n + l � N ,
of numbers of the center of mass oscillator quanta. If the
states (24) include components with the numbers of total
many-body oscillator quanta up to some Ntot, then the states
(25) will include the Slater determinants with total many-body
oscillator quanta up to Ntot + N . For heavier fragments and at
higher 2n + l values the amount of these determinants may be
too large. However, the states (25) with large 2n + l will play
only a role of small corrections in what follows. Therefore, in
the expansion of the states (25) over the Slater determinants
it may be acceptable to retain only the determinants with
total many-body oscillator quanta up to some Ntot + N0 value
with N0 < N . Then at 2n + l � N0 the procedure is exact
while at 2n + l > N0 the components of the states (24) only
with total many-body oscillator quanta up to N ′

tot, such that
N ′

tot + 2n + l = Ntot + N0, will contribute to the result.
This truncation does not violate the separation of the

internal and center-of-mass motions. Indeed, from the fact
of the separation of these motions in Eqs. (24) it follows
that the same separation, of course, takes place for separate
components of the states (24) having given numbers of total
many-body oscillator quanta. The procedure then merely ei-
ther allows or forbids contributions of these components to a
resulting center-of-mass excited state. [Obviously, N0 should
be such that at least the minimal configuration of a state like
(24) is not forbidden. This reads as Ntot + N0 � Nmin + N ,
where Nmin is the number of many-body oscillator quanta in
the minimal configuration.]

Let us denote the internal Hamiltonian of a fragment as
h, the oscillator Hamiltonian of its center of mass as hc.m.,
and the operators of the center-of-mass orbital momentum
and its projection as l2

c.m. and (lz )c.m.. The function X nlm
I1M1

may be obtained as an eigenfunction of the operator λ1h +
λ2hc.m. + λ3l2

c.m. + λ4(lz )c.m., where λi constants are not equal
to zero and arbitrary otherwise. At the diagonalization of this
operator in the subspace of the Slater determinants with the

4After the present manuscript was submitted I learned about
Ref. [21], where the states of Eq. (25) form were constructed numeri-
cally using the center-of-mass creation and annihilation operators. In
the present paper this is done analytically proceeding from Eq. (26)
below. The oscillator cluster model (with no explicit antisymmetriza-
tion) in the frame of which these states are used in Ref. [21] is quite
different from the present scheme to calculate reactions.

number of quanta up to Ntot + N0 the eigenvalue pertaining to
this eigenfunction is λ1ε0 + λ2(2n + l + 3/2) + λ3l (l + 1) +
λ4m, where ε0 is an approximate bound-state energy of the
fragment.

It seems simpler to compute the X nlm
I1M1

states in another way.
Let us write �nlm in terms of �000, see, e.g., Ref. [22],

�nlm
(
r̄(1)

c.m.

) = αnl

√
4π (η · η)nYlm(η)�000

(
r̄(1)

c.m.

)
, (26)

where αnl = (−1)n[(2n + 2l + 1)!!(2n)!!]−1/2, η are the os-
cillator creation operators,

η = 1√
2

[
r̄(1)

c.m. −
d

d r̄(1)
c.m.

]
, (27)

and Ylm are the solid harmonics. The X nlm
I1M1

states are expressed
in terms of the X 000

I1M1
states in the same way as in Eq. (26).

Then, using Eq. (26), one may obtain X nlm
I1M1

from X 000
I1M1

via
recurrence relations. First, one may employ the relation fol-
lowing from Eq. (26)

X 0l+1,l+1
I1M1

= (l + 1)−1/2η+X 0ll
I1M1

. (28)

Here spherical components of vectors like η± = ∓2−1/2(ηx ±
iηy) and η0 = ηz are used. Once X 0ll

I1M1
is constructed in

the form of a linear combination of the Slater determi-
nants, Eq. (28) makes possible to construct in this form also
X 0l+1,l+1

I1M1
using the relation

η = 1√
A1

A1∑
i=1

ηi, (29)

where ηi are the oscillator creation operators for separate
nucleons,

ηi = 1√
2

(
r̄i − d

d r̄i

)
, r̄i = ri/r0. (30)

In what follows only the states (25) with l values of the same
parity will be required. In this connection, the relation, similar
to Eq. (28),

X 0l+2,l+2
I1M1

= [(l + 1)(l + 2)]−1/2η2
+X 0ll

I1M1
(31)

may also be useful in conjunction with Eq. (29). One- and
two-body matrix elements are then to be calculated.

Next, one obtains the X nll
I1M1

states with n 	= 0 as a combina-
tion of the Slater determinants applying the relation following
from Eq. (26),

X n+1,ll
I1M1

= −[(2n + 2l + 3)(2n + 2)]−1/2η · ηX nll
I1M1

. (32)

One needs to calculate one- and two-body matrix elements
also in this case.

If the above discussed approximation is adopted and the
Ntot + N0 maximal number of the total many-body oscillator
quanta is reached, then at performing each further step of
the procedure the Slater determinants that have this maximal
number of quanta are to be dropped in the right-hand sides of
the corresponding recursion relations, Eqs. (32), (28), or (31).

In a certain case below the X nlm
I1M1

states with m < l are
also required. They can be constructed with the help of the
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lowering operators. Writing l = −iη × η+, where

η+ = 1√
2

[
r̄(1)

c.m. +
d

d r̄(1)
c.m.

]
,

one gets

X nl,m−1
I1M1

= 21/2[(l + m)(l − m + 1)]−1/2

× (η−η+
0 − η0η

+
− )X nlm

I1M1
. (33)

Along with Eq. (29) one uses the relations

η+ = 1√
A1

A1∑
i=1

η+
i , η+

i = 1√
2

(
r̄i + d

d r̄i

)
(34)

to calculate these states in the required form. One-body con-
tributions to the operator from Eq. (33) are the single-particle
orbital momenta l (i)

− .

IV. RELATION BETWEEN CLUSTER
AND SHELL-MODEL ME

In this section we address the ME (18) for the case when
the χk functions discussed in Sec. II possess given J values
and correspond to the center of mass in the lowest oscillator
state. To signify these properties, these functions will be
denoted as χ JM,0

k in such a case. The corresponding ME (18)
do not depend on M. We want to express them in terms of the
ME,

[
χ JM,0

k , ÔX nlm
I1M1

(1, . . . , A1)X 000
I2M2

(A1 + 1, . . . , A1 + A2)
]

≡ M(I1M1I2M2, nlm, J ), (35)

where M1 + M2 + m = M. The states X nlm
I1M1

and X 000
I2M2

are of
the form of Eqs. (24) and (25) of the preceding section.
The X 000

I2M2
state is directly provided by a bound-state ncsm

calculation. At A1 > 1 the X nlm
I1M1

states are obtained from a
ncsm bound state by means of the center-of-mass excitation
as described in the preceding section. Both X nlm

I1M1
and X 000

I2M2
are

sums of the Slater determinants as well as χ JM,0
k .

At A1 = 1, i.e., in the case when the first fragment is a
nucleon, the function φ

I1M1
1 in Eqs. (24) and (25) is to be

replaced with the corresponding spin-isospin function of the
nucleon. The X nlm

I1M1
wave function is then merely the product

of this spin-isospin function (I1 = 1/2) and �nlm(r̄(1)
c.m.).

Consider the quantities
∑

M1+M2=M−m

CS,M−m
I1M1I2M2

M(I1M1I2M2, nlm, J ). (36)

Since in the ME (35) χ JM,0
k is a state with a given total

momentum and its projection, it is clear that these quantities
are proportional to the corresponding ME in which X nlm

I1M1

and X 000
I2M2

are coupled to the total momentum according to
the ((I1I2)Sl )J scheme and the proportionality coefficient
is the Clebsh-Gordan coefficient CJM

S,M−m,lm. Furthermore, in
Eq. (35) the wave function pertaining to X nlm

I1M1
includes

�nlm(r̄(1)
c.m.) as a factor and that pertaining to X 000

I2M2
includes

�000(r̄(2)
c.m.) as a factor. One may write

�nlm
(
r̄(1)

c.m.

)
�000

(
r̄(2)

c.m.

) =
∑

n′l ′NL

〈n′l ′NL|nl00〉ϕl

× [�n′l ′ (ρ̄)�NL(R̄c.m.)]lm, (37)

where 〈n′lNL|nl00〉ϕl are the oscillator brackets correspond-
ing to the orthogonal transformation

r̄(1)
c.m. = ρ̄ cos ϕ + R̄c.m. sin ϕ,

r̄(2)
c.m. = −ρ̄ sin ϕ + R̄c.m. cos ϕ (38)

with cos ϕ = (A2/A)1/2 and sin ϕ = (A1/A)1/2. Since in
the ME (35) the χ JM,0

k wave function is proportional to
�000(R̄c.m.), only the term from the sum in the right-hand side
with N = L = 0 and hence with l ′ = l and n′ = n contributes
to the result. Therefore, one has the relation∑

M1+M2=M−m

CS,M−m
I1M1I2M2

M(I1M1I2M2, nlm, J )

= CJM
S,M−m,lm 〈nl00|nl00〉ϕl

(
χ JM,0

k , ÔZnl
I1I2SJM

)
. (39)

The m and M − m values here are arbitrary. This relation
expresses the ME (18) that contain cluster type wave functions
in terms of the ME (35) that involve only oscillator orbitals.
Similar relations have been derived, e.g., in Refs. [2,23–25],
their differences with Eq. (39) refer to dealing with angular
momenta. A more general relation is given in Ref. [26]. [One
has 〈nl00|nl00〉l = (A2/A)(2n+l )/2 in Eq. (39). This known
relation follows, e.g., from Eq. (53).]

One may choose m = l in Eq. (39). With this choice, the
Clebsh-Gordan coefficient in the right-hand side of Eq. (39)
is different from zero at least when M = J is chosen. Indeed
[27],

CJJ
S,J−l,ll = (−1)l+S−J

[
(2l )!(2J + 1)!

(l + S + J + 1)!(l − S + J )!

]1/2

.

(40)

Thus the ME sought for may be computed, e.g., from the
relation(

χ JM,0
k , ÔZnl

I1I2SJM

) = [
CJJ

S,J−l,ll 〈nl00|nl00〉ϕl
]−1

×
∑

M1+M2=J−l

CS,J−l
I1M1I2M2

M(I1M1I2M2, nll, J ). (41)

It is clear that in the above relations it is expedient to choose
the lighter of the two fragments to be the fragment number
one in the notation we use. A similar type relation can be
written also in the case when the χk states do not possess given
momentum J but still correspond to the center of mass of the
whole system in the ground state.

V. MATRIX ELEMENTS INVOLVING
CHANNEL FUNCTIONS

The coefficients of the dynamic equations of Sec. II are
the bound-bound ME and the bound-free ME, i.e., those
which include the localized ncsm functions and nonlocalized
channel functions of Eqs. (5) and (15). Thus, finally, we
need to calculate the bound-free ME using the considerations
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above. These ME are of the form

(χk, [H − E ]Aiϕi fi(ρi )�000(R̄c.m.)), (42)

where Ai is the antisymmetrizer (6), ϕi is the surface function
(4), fi one of the functions f (0),(1)

i from Eq. (2) or functions
f ±
i from Eq. (14), and the notation χk is as above. Using the

fact that χk are antisymmetric with respect to permutations,
one may rewrite the expression (42) as

(A†
i χk, [H − E ]ϕi fi(ρi )�000(R̄c.m.))

= ν
1/2
i (χk, [H − E ]ϕi fi(ρi )�000(R̄c.m.)). (43)

Thus the task of antisymmetrization of the channel functions
is removed. The ME in the right-hand side of Eq. (43) is of
the structure(

χk, [H − E ]
[[

φ
I1
1 (1, . . . , A1)φI2

2 (A1 + 1, . . . , A1

+ A2)
]

S
Yl (ρ̂)

]
JM

f (ρ)�000(R̄c.m.)
)
. (44)

The channel subscript i is omitted here and below. An efficient
way to calculate it is as follows. One uses the H − E operator
in the form of (12) and one treats the fragment wave functions
as being exact. Then the expression (44) becomes(

χk,
[[

φ
I1
1 φ

I2
2

]
SYl (ρ̂)

]
JM f̃ (ρ)�000(R̄c.m.)

)
+(

χ JM,0
k ,

[
V nucl

ext + V coul
ext − V̄ coul

ext (ρ)
][[

φ
I1
1 φ

I2
2

]
SYl (ρ̂)

]
JM

× f (ρ)�000(R̄c.m.)
)
, (45)

where

f̃ (ρ) =
{

− h̄2

2μ

[
d2

dρ2
+ 2

ρ

d

dρ
− l (l + 1)

ρ2

]

+ V̄ coul
ext (ρ) − Erel

}
f (ρ). (46)

The function f̃ (ρ) is localized. Let us approximate it by its
truncated expansion over the oscillator functions. Then the
first of the ME in Eq. (45) turns to a sum of the ME(

χk, Znl
I1I2SJM

)
(47)

of the type of Eq. (18). If f = f (1), then one has f̃ = 0 and
this contribution is absent.

In the second of the ME in Eq. (45) only values of f (ρ)
in a limited ρ range contribute to the result. Therefore, for
computation of this ME one may use an approximation of
Ylm f by a sum of oscillator functions. For this purpose, f (ρ)
is approximated with a linear combination

∑nmax
n=0 cnRnl of the

radial parts Rnl (ρ) of the oscillator functions �nlm(ρ̄) used
above. This can be done via minimization of the quantity

∫ ∞

0
dρ ω(ρ)

∣∣∣ f (ρ) −
nmax∑
n=0

cnRnl (ρ)
∣∣∣2

(48)

with respect to the cn coeficients, ω(ρ) being a localized
positive weight function. As a result, the contribution of the
V n

ext + V c
ext term to the ME turns to a sum of the ME(

χk,
[
V nucl

ext + V coul
ext

]
Znl

I1I2SJM

)
, (49)

again of the type of Eq. (18). To calculate the contribution
of the V̄ coul

ext (ρ) term, one may represent the arising product

V̄ coul
ext (ρ)

∑nmax
n=0 cnRnl (ρ) as a sum of the functions Rnl (ρ)

minimizing the quantity similar to (48) at the same ω(ρ).
As a result, this contribution takes the above form of a sum
of Eq. (47) type ME. (Thus, besides the total number of
basis functions, the parameters of a calculation with respect to
which its stability is to be checked are the nmax type numbers
and possibly the above-defined N0 numbers.)

In what follows, let us first consider the case when the χk

states possess given J values and correspond to the center
of mass of the whole system in the ground state, i.e., χ JM,0

k
states in the above notation. Then applying the relation (39)
or (41) one reduces the ME (47) and (49) to a sum of the
quantities of Eq. (35) type with Ô = I or Ô = V nucl

ext + V coul
ext .

Each of these quantities is the sum of ME that contain the
products of three Slater determinants entering, respectively,
the χ JM,0

k basis function and the X nlm
I1M1

and X 000
I2M2

fragment wave
functions.

In the Ô = I case, consider such an ME in which the first
of the mentioned determinants is constructed of the oscillator
orbitals ψl (i) with 1 � i � A1 + A2 and l = {l1, . . . , lA1+A2},
the second determinant is constructed of the oscillator or-
bitals ψm( j) with 1 � j � A1 and m = {m1, . . . , mA1}, and
the third one is constructed of the oscillator orbitals ψn(k)
with A1 + 1 � k � A1 + A2 and n = {n1, . . . , nA2}. The oscil-
lator orbitals are assumed to be orthonormalized. The ME is
calculated performing the Laplace expansion of the first of
the mentioned determinants over the minors pertaining to the
ψl (i) orbitals with 1 � i � A1. The ME is different from zero
only if the {l} set of orbitals coincides with the {{m}, {n}} set.
(This is only possible if all the orbitals belonging to the {m}
set differ from those belonging to the {n} set.) In this case it is
equal to ±A1!A2! and the sign is governed by the simple rule.

In the Ô = V nucl
ext + V coul

ext case suppose that V nucl
ext + V coul

ext
is the sum of two-nucleon interactions V (i j). This sum may
be replaced with A1A2V (i j), where V (i j) is the interaction
between a nucleon belonging to one of the fragments and a
nucleon belonging to the other fragment. Then, applying the
relation (39) or (41), the contribution (49) is reduced to a sum
of ME between a Slater determinant pertaining to χ JM,0

k and
a product of Slater determinants pertaining to X nlm

I1M1
and X 000

I2M2
.

These ME are calculated with the help of the same Laplace
expansion as above. They are of the form

(det[ψl ′1 (1), . . . , ψl ′A1
(A1)]

× det[ψl ′A1+1
(A1 + 1), . . . , ψl ′A1+A2

(A1 + A2)],

V (i j) det[ψm1 (1), . . . , ψmA1
(A1)]

× det[ψnA1+1 (A1 + 1), . . . , ψnA1+A2
(A1 + A2)]), (50)

where 1 � i � A1 and A1 + 1 � j � A1 + A2 and the sets
{l ′

1, . . . , l ′
A1

} and {l ′
A1+1, . . . , l ′

A1+A2
} are subsets of the

{l1, . . . , lA1+A2} set. These ME may not vanish only if the latter
subsets differ, respectively, from the {m} set and the {n} set
by not more than one orbital. In such cases the set of the
{{m}, {n}} orbitals differs from the {l} set by not more than two
orbitals and these two orbitals cannot belong to the same {m}
or {n} set. (This is only possible if in the {m} set not more than
two orbitals are the same as in the {n} set.) The ME (50) is of
the structure similar to that of one-body operators. Therefore,
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it is reduced in the usual way (depending on whether the
corresponding orbitals are the same or not) to the standard
two-body ME like(

ψl (i)ψl ′ ( j),V (i j)ψm(i)ψn( j)
)
.

ME of three-nucleon interactions that contribute to V nucl
ext are

calculated in a similar way.
If χk is a combination of Slater determinants which does

not possess definite quantum numbers of the center of mass
of the whole system, then the simplification of the preceding
section is not applicable anymore. But then, just as above,
the ME (42) still can be written as the sum of quantities of
the form of Eq. (18), where Ô is either a unit operator or
an operator of two- or three-body interfragment interaction.
While above these quantities were expressed in terms of the
contributions (35), now they may be represented as the sums
of the contributions of the form[

χk, ÔX n1l1m1
I1M1

(1, . . . , A1)X n2l2m2
I2M2

(A1 + 1, . . . , A1 + A2)
]
,

(51)

where X n1l1m1
I1M1

and X n2l2m2
I2M2

are obtained via the center-of-mass
excitation applied to ncsm wave functions of the fragments
as in Sec. III. (In the X n2l2m2

I2M2
case one proceeds in the same

way as described in Sec. III as to X n1l1m1
I1M1

.) To this aim, let us
directly transform the cluster Znl

I1I2SJM state to the form of the

sum of products of X n1l1m1
I1M1

and X n2l2m2
I2M2

. This is achieved via
the transformation

�nlm(ρ̄)�000(R̄c.m.) =
∑

n1l1n2l2

〈n1l1n2l2|nl00〉ϕ′
l

× [
�n1l1 (r̄(1)

c.m.)�n2l2 (r̄(2)
c.m.)

]
lm, (52)

which corresponds to the coordinate transformation reverse
to Eq. (38) so that ϕ′ equals −ϕ from there. [The brackets
〈n1l1n2l2|nl00〉ϕ′

l are as follows:

〈n1l1n2l2|nl00〉ϕ′
l = cos2n1+l1 ϕ′ sin2n2+l2 ϕ′

×(−1)l [(2l1 + 1)(2l2 + 1)]1/2

(
l1 l2 l
0 0 0

)
αn1l1αn2l2

αnl
, (53)

where the α coefficients are defined in Eq. (26). This relation
is obtained in Appendix B.]

It is clear that the quantities (51) are calculated in the same
way as the quantities (35) above. In the case we consider now,
computations are more lengthy.

In conclusion, reaction observables can be computed from
simple linear equations with use of the Slater determinants.
The equations do not include free-free matrix elements. An-
tisymmetrization between nucleons belonging to different
fragments is not required. In model examples, the equations
lead to rather precise results. The required bound-free ME
are calculated in a universal way. Their computation some-
what resembles that of the ncsm bound-state ME. One may
expect that the convergence rates of reaction observables in
the present scheme should in general be at the level of the
convergence rates of typical bound-state observables in ncsm.
A method applicable for reactions at higher energy, when
channels with three or more fragments are open, may be

developed relying on the considerations of the present work
in conjunction with the integral transform approach, see Refs.
[28–30] and references therein.
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APPENDIX A: MATRIX ELEMENTS INVOLVING
THE LAGUERRE-TYPE BASIS

The ME of the H − E operator between the functions en-
tering Eq. (20) are listed below. Subscripts like m refer to the
functions (21). The ME of the radial kinetic energy between
the functions (21) for a state with an orbital momentum l are
as follows:

Tmm′ = h̄2

2μd2

[
(m< + 1)(m< + 2)

(m> + 1)(m> + 2)

]1/2[1

2
− δmm′

4
+ m<

3

+ l (l + 1)(3m> − m< + 3)

6

]
, (A1)

where m> = max(m − 1, m′ − 1) and m< = min(m −
1, m′ − 1). The ME of the exponential potential between
the functions (21) are calculated as finite sums with the help
of the known relation [31], Eq. 7.414 (4).

To calculate the ME of the H − E operator between the
functions χm (21) and the two scattering functions entering
Eq. (20), the following scheme is convenient. All these ME
are readily obtained from the integrals of the form∫ ∞

0
dte−zt tL2

m−1(t ), (A2)

with z = a + ib, a > 0, and b = ∓ikd . These integrals can be
calculated with the help of the following simple relation:∫ ∞

0
dte−zt L1

n (t ) = 1 −
(

z − 1

z

)n+1

. (A3)

We derived it from an expression [31], Eq. 7.414 (5), involving
the general Laguerre polynomial Lα

n (t ). The integrals (A2) are
obtained from Eq. (A3) via the recurrence relation tL2

m−1(t ) =
mL1

m−1(t ) − (m + 1)L1
m(t ).

APPENDIX B: THE OSCILLATOR BRACKET
〈n1l1n2l2|nl00〉ϕ

l .

The definition of the oscillator brackets adopted in the
paper is as follows. Suppose that, as in Eq. (38),

x = x′ cos ϕ + y′ sin ϕ, y = −x′ sin ϕ + y′ cos ϕ. (B1)

Then one has

[�n1l1 (x)�n2l2 (y)]lm

=
∑

n′
1l ′1n′

2l ′2

〈n′
1l ′

1n′
2l ′

2|n1l1n2l2〉ϕl
[
�n′

1l ′1 (x′)�n′
2l ′2 (y′)

]
lm

. (B2)

To get the 〈n1l1n2l2|nl00〉ϕl bracket we shall use the symmetry
relation 〈n1l1n2l2|nl00〉ϕl = 〈nl00|n1l1n2l2〉−ϕ

l and calculate
the bracket in its right-hand side.
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Equation (B2) is a relation between the polynomials of six
variables. It leads to relations between their components of a
given power. Writing at ϕ → −ϕ the relation for the highest
power polynomials one gets

αn1l1αn2l2 x2n1 y2n2 [Yl1 (x)Yl2 (y)]lm

=
∑

n′
1l ′1n′

2l ′2

〈n′
1l ′

1n′
2l ′

2|n1l1n2l2〉−ϕ

l αn′
1l ′1αn′

2l ′2 (x′)2n′
1 (y′)2n′

2

× [Yl ′1 (x′)Yl ′2 (y′)]lm, (B3)

where in Eqs. (B1) the replacement ϕ → −ϕ is implied. Let
us write x and y here in terms of x′ and y′ and then take
the y′ → 0 limit. This gives x = x′ cos ϕ and y = x′ sin ϕ. In
Eq. (B3) only the term with n′

2 = l ′
2 = 0 and hence l ′

1 = l and
n′

1 = n survives in this limit, n being defined via the relation
2n1 + l1 + 2n2 + l2 = 2n + l . Comparing the left- and right-
hand sides of the arising equality (which is convenient to
do at the x′ vector directed along the z axis) one comes to
Eq. (53).
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