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Fully microscopic scission-point model to predict fission fragment observables
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We present an upgraded version of the SPY model, called SPY2 for version 2 of the scission point yield, to
estimate mainly the yields and the kinetic energy distributions of fission fragments: The theoretical framework
is similar to our previous version, i.e., a statistical scission point model, but this version is based on fully
microscopic nuclear ingredients describing the fragments properties at the scission point. These include the static
properties of some 7000 nuclei at 120 axial quadrupole deformations, such as binding energies, proton densities,
single-particle level schemes, and states densities, coherently calculated within the constrained Hartree-Fock-
Bogoliubov model on the basis of the Skyrme BSk27 interaction. The use of microscopic ingredients has been
extended to the proton density distribution and the nuclear states densities. Considering realistic proton densities
of fragments allows us to improve the definition of the scission point as well as the prediction of the kinetic
energy distribution and to link the kinetic energy to the diffuseness of the fragments’ proton density. New
microscopic nuclear states densities improve the general coherence of the model, in particular regarding the
inclusion of the odd-even pairing effect. In this updated SPY2 version, the calculation of the fission yields
and kinetic energy distributions is significantly improved and found to be in relatively good agreement with
experiments, at least qualitatively. A detailed study is performed for three well known fissioning systems, namely,
thermal neutron induced fission of 235U and 239Pu and spontaneous fission of 252Cf. A systematic analysis of the
fission mode as well as mean fragments deformation and total kinetic energies has been performed for some
2000 fissioning nuclei with 78 � Z � 110 lying between the proton and neutron drip lines.
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I. INTRODUCTION

Fission yields represent a key physical quantity of interest
in fundamental nuclear physics as well as in many nuclear
applications. While in fundamental physics, fission yields
provide a direct insight into the probability of fragment for-
mation during the fission process, in nuclear energy appli-
cations, they are needed to estimate the accumulation and
inventory of fission products at various stages of the nuclear
fuel cycle. They also play a key role in nucleosynthesis
applications and more specifically in our understanding of
the rapid neutron-capture process, or r-process, to explain the
origin of about half of the elements heavier than iron in the
Universe [1]. The r-process nucleosynthesis in material that
is dynamically ejected by tidal and pressure forces during
the merging of binary neutron stars is known to be largely
insensitive to the detailed astrophysical conditions because
of efficient fission recycling [1–3], but remains sensitive to
the detailed description of the fission process, including the
fission fragment distribution of the heavy neutron-rich nuclei
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[2,4]. In particular, the fission yields represent a fundamental
input in nucleosynthesis simulations since they define the
light species that will be produced by the fission recycling
and have been shown to directly imprint the final abundance
distribution in the ejected material [2,4].

A renewed statistical scission-point model called scission
point yield (SPY) model [5] has been presented in 2015 based
on a Wilkins-like definition of the scission point. The goal
was to extract all the information that could be defined at
the scission point, such as the kinetic energies of the fission
fragments, on the basis of state-of-the art ingredients mainly
extracted from microscopic models. The newly microcanon-
ical description of the system, possible by the calculation of
the absolute available energies for each fissioning partitions
for a given system, allowed us to avoid the use of any free
parameter for the thermodynamical description, as compared
to the Wilkins et al. model. In this first approach, nuclear states
densities have been approximated by Fermi-gas distributions
and the odd-even effect in masses were washed out since they
were not included neither in the individual binding energies
of the fission fragments, nor in their states densities. The SPY
model has proven its capacity to predict new behaviours like
the unexpected asymmetric fission of the light nucleus 180Hg
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found by Andreyev et al. [6]. This discovery is consistent
with the predicted transition between the symmetric fission
of 198Hg and the asymmetric fission of 180Hg [5,7].

We propose to improve here this scission-point model to
come as close as possible to a state-of-the art description for
all the ingredients included in the model. First, the scission
definition is based now on a microscopic description of proton
densities instead of the unrealistic fixed tip-distance used by
Wilkins and in the first version of SPY. Second, we use nuclear
states densities extracted from the same microscopic model
given a global coherence between all the ingredients included
in the model. This allows to use individual binding energies
with odd-even pairing effects since they are taken into account
in all the ingredients. These two major improvements lead
us to use the new name of SPY2 to clearly distinguish both
versions of the model which are in the same spirit but with
different scission definitions and physical ingredients.

For the fission of highly excited nuclei (Q � 100 MeV),
the yields fission are often studied through fusion-fission
reactions. In this case, they do not depend on the fragments
shell structure since it is washed out at high energies, so
that the fissioning nucleus tends to behave as a liquid drop
[8]. Denisov et al. [9] found that the height of the so-called
two-body saddle point is larger than the height of the one-body
saddle point (i.e., the fission barrier) for nuclei with A � 220.
For heavier nuclei, it is the opposite, so that the yields are
expected to be sensitive to the trajectories descending from
the one-body saddle point to the scission point. In the low-
energy case, i.e., for a few MeV above the fission barrier,
fission is better described by an adiabatic process from ground
state to saddle point and a statistical one at scission point
[10]. In this case, the fragmentations are determined at the
last stage of the process with a strong interplay with the
fragments properties. At these low energies, the fission of
actinides is well known to be asymmetric while several fission
modes are found for lighter nuclei. Transition from symmetric
to asymmetric fission is observed between proton-rich to
neutron-nuclei Th and Pa isotopes [11]. Between symmetric
and asymmetric fissioning nuclei, some nuclei (e.g. following
the proton-induced fission of 226Ra) also show a triple-hump
yields distribution at low energy which corresponds to the
superposition of both the symmetric and asymmetric modes
[12]. A triple-hump distribution can also appear transiently
at medium energy between a double humped asymmetric
distribution at low energy and a single humped symmetric
distribution at high energy, as found in the neutron-induced
fission of 232Th [13]. For other nuclei, the transition of the
fission mode with excitation energy goes from asymmetric to
symmetric, like in the neutron-induced fission of 238U [14]. A
new kind of fission mode, namely a doubly asymmetric fission
corresponding to a four humped fission yields distribution,
was also predicted by SPY around 278Cf and shown to be
crucial to shape the r-abundance distribution around the rare
earth peak during the prompt ejecta of neutron star merger [2].
All these complex fission modes need to be understood.

Within the SPY model, fission observables are described
based on the nuclear structure properties of the fragments.
Fission yields are not the only observables calculated by
SPY. Many observables related to fission fragments can be

estimated, such as the kinetic or excitation energies from
which the number of evaporated neutrons can be deduced.
Thereby, SPY offers a simple coherent framework based only
on fragments properties to interpret experimental data and to
understand the links between them.

As mentioned in the first version of the SPY model [5],
hereafter referred to as SPY1, the initial aim of the model
was not to achieve an optimal fit to experimental data for each
fissioning system, contrary to the Brosa et al. model [15] or the
GEF model [16], but rather to describe first qualitatively most
fission observables on the basis of the static fission fragment
properties at scission. For this reason, fragment properties are
described as much as possible on the basis of microscopic
models leaving not much space for parameter adjustments.
Dynamical effects such as those found in the sophisticated
theoretical frameworks of Refs. [17–21] are not taken into
account in the present study.

After a general theoretical reminder, the updated version
of the SPY model is presented in Sec. II together with its
various microscopic ingredients in Sec. III. In Sec. IV, the
results for the three well-known fissioning nuclei 236U, 240Pu,

and 252Cf are discussed in details and compared with available
experimental data, before presenting the SPY2 predictions for
all bound nuclei beyond platinum in Sec. V. Conclusions are
drawn in Sec. VI.

II. SPY MODEL

The SPY model is a static and statistical scission-point
model [22] that assumes a thermodynamic equilibrium at
scission, hence neglecting the evolution between the saddle
and the scission points. The model is based on two pillars,
namely, the absolute available energy balance at the scission
configuration and the statistical description of the phase space
available.

The available energy balance is performed for all ener-
getically possible fragmentations of a fissioning system at
scission (around 1000 for actinide fission) as a function of
the deformation parameter q̃ of both fragments. The available
energy,

Eavail = Eind(Z1, N1, q̃1) + Eind(Z2, N2, q̃2)

+ Ecoul(Z1, N1, q̃1, Z2, N2, q̃2)

+ Enucl(Z1, N1, q̃1, Z2, N2, q̃2) − E∗
CN, (1)

is defined as the difference between the potential energy of the
fissioning system at scission and the energy (E∗

CN = ECN + Q)
of the excited compound nucleus where both nascent frag-
ments are supposed to be at rest. The potential energy of the
fissioning system at scission is obtained as the sum of the
individual binding energies of the two fragments (Eind ) and
the interaction energy between the fragments composed of the
Coulomb repulsion (Ecoul ) and the nuclear attraction (Enucl ). A
fragmentation is energetically possible only if Eavail < 0. For
convenience, the absolute value of the available energy is used
hereafter, i.e., only energetically possible fragmentations are
taken into account.

The system at scission is treated as a microcanonical
ensemble where all available states are equiprobable. In this
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framework, the number of available states of a given fragmen-
tation (π ) is the product of the state densities (ρ) of the two
isolated fragments and can be expressed as

π (Z1, N1, q̃2, Z2, N2, q̃2, x)

= ρ1[xEavail]ρ2[(1 − x)Eavail]δE2, (2)

where a fraction x of the available energy goes to fragment 1
and the remaining fraction (1 − x) goes to fragment 2. For a
given observable O of a fragment (Z, N ), its mean value 〈O〉
is estimated by

〈O〉 =
∫∫

q̃1,q̃2

∫ 1

0
Oπdxdq̃1dq̃2 . (3)

The two main fission observables studied in the present paper
(Sec. IV) are the fission yields (Y) and the kinetic energy
(KE).

III. NUCLEAR INPUTS TO THE SPY MODEL

A. Individual binding energies

One fundamental ingredient in the SPY model is the indi-
vidual binding energy of each fission fragment as a function
of its axial deformation. This quantity is estimated within the
framework of the constrained self-consistent Hartree-Fock-
Bogoliubov (HFB) formalism using the Skyrme BSk27 effec-
tive nucleon-nucleon interaction [23] for about 7000 nuclei
from Z = 20 to Z = 100. The BSk27 Skyrme force has been
shown to predict all the 2353 experimental masses with an un-
precedented root-mean-square deviation of only 0.5 MeV. At
the same time, the BSk27 Skyrme functional yields a realistic
description of infinite homogeneous nuclear matter properties,
as determined by realistic calculations and by experiments;
these include in particular the incompressibility coefficient,
the pressure in charge-symmetric nuclear matter, the neutron-
proton effective mass splitting, the stability against spin
and spin-isospin fluctuations, as well as the neutron-matter
equation of state.

Constrained HFB wave functions |�(Q20)〉 are obtained by
minimizing a Routhian,

E = 〈�|Ĥ − λN N̂ − λZ Ẑ −
∑

i

λiQ̂i0|�〉, (4)

where |�〉 = |�(Q20)〉 and Q20 = 〈�|Q̂20|�〉. In the follow-
ing, the quadrupole moment (Q20) is replaced by the so-called
reduced quadrupole moment (q̃) defined as

q̃ = Q20

AR2
0

, (5)

where A is the nuclear mass and R0 its radius (R0 = 1.2A1/3).
Constrained HFB calculations are performed for some 120
axial quadrupole deformations within the q̃ = −0.4 to q̃ =
1.6 range, which is slightly wider than the one used in our
former version SPY1, the upper deformation being increased
from 1.1 to 1.6 to explore all possible deformations even if the
available energy becomes negligible.

While in SPY1, the odd-even staggering was washed out in
individual binding energies and not included in state densities

FIG. 1. Fit of axial proton density ρπ (r, z = 0) of 104Mo with
q̃ = 0.91.

[5,7], it is now included consistently in both descriptions for
the SPY2 version.

B. New scission-point definition

The scission point is now defined on the basis of the
proton density of the fissioning nucleus using microscopic
proton spatial distribution from HFB calculations. This new
definition does not consider the nucleon density since the
deformation of the fissioning nucleus at the last stage of the
fission process, i.e., just before splitting apart, is essentially
driven by the Coulomb repulsion, the nuclear attraction be-
coming negligible to bind protons together [17]. The Coulomb
repulsion leads to the splitting of the proton distribution of
the fissioning nucleus into two separate distributions. The
proton density at the scission neck is now used as a separation
criterion for the nascent fragments. The spatial proton distri-
bution of a given nucleus at a given deformation is denoted
by ρπ (z, r) and depends only on the axial z and radial r
coordinates due to our assumption of an axial symmetry.

We assume here that the scission occurs when the proton
density at scission is equal to ρneck

π = 0.002 fm−3, so that the
external radius of each fragment Rext is such that its axial
proton density is half the neck density, i.e.,

ρπ (z = Rext, r = 0) = 0.5ρneck
π = 0.001 fm−3 . (6)

This value is kept constant for all nuclei in the present study.
It can be considered as a free parameter playing the same role
as the scission distance d in SPY1 [5]. A sensitivity analysis
with respect to ρneck

π will be performed in Sec. IV D.
To avoid numerical uncertainties, the HFB axial proton

density is fitted by the Fermi function

ρπ (z) = ρ0

1 + e(z−Reff )/a
, (7)

where ρ0 is the central (proton) density, Reff is the effective
(proton) radius, i.e., ρπ (z = Reff , r = 0) = ρ0/2 and a is the
diffuseness corresponding to the distance over which the axial
proton density drops from 0.5ρ0 for z = Reff to ρ0/(1 + e) ≈
0.27ρ0 for z = Reff + a (Fig. 1).
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FIG. 2. (a) Color-coded proton density distribution for the scis-
sion configuration of 236U into 104Mo(q̃ = 0.91) + 132Sn(q̃ = 0.3) in
the (z, r) plane. (b) Axial proton density (dot symbols) and fitted
axial densities (solid line) for the same system as in (a). The scission
distance d is deduced from external and effective radii as shown
on both panel. The red dashed line in the top panel (a) represents
the scission axis and its corresponding proton density (axial proton
density) is displayed in the bottom panel (b).

With a Fermi function, the external radius is well deter-
mined as

Rext = a ln

(
ρ0

0.5ρneck
π

− 1

)
+ Reff . (8)

Fragments are located on the same symmetry axis and the
distance between the centers of each proton distribution is
given by Rext,1 + Rext,2. The resulting proton distributions are
illustrated in Fig. 2 for the 236U fragmentation into 104Mo(q̃ =
0.91) + 132Sn(q̃ = 0.3).

A scission distance can be deduced from the scission
configuration [Fig. 2(b)]. Clearly, such a distance varies with
the fissioning system and therefore differs with respect to
distance used in the SPY1 version where a constant value of
d = 5 fm was imposed. Now, the scission distance

d = Rext,1 − Reff,1 + Rext,2 − Reff,2 (9)

is defined from the external and effective fragment radii. The
scission distance, correlated to the neck density, is generally
smaller than 5 fm irrespective of the fragmentation and varies
significantly with the fragments deformation (q̃1, q̃2). As an
example, for the 236U fragmentation into 104Mo + 132Sn, d
varies from 3 fm for large deformations to 4 fm for medium
deformations, as shown in Fig. 3. This new definition of the
scission point also introduces a diffuseness dependence in the
Coulomb energy, as discussed in Sec. IV C.

C. Coulomb interaction energy

In SPY1, the proton distributions of both fragments were
assumed to be uniform, without diffuseness. The shape was
parametrized by an axial quadrupole deformation using Leg-
end polynomials and the Coulomb interaction energy was

FIG. 3. Scission distance for the 236U fragmentation into
104Mo + 132Sn depending on their deformation parameters q̃1 and q̃2.

computed by numerical folding using a specific integration
mesh [5]. For SPY2, an improved technique has been de-
veloped to compute the Coulomb interaction energy between
the proton distributions of both fragments at scission, as
illustrated in Fig. 2(a). A trivial way to compute the Coulomb
energy is to integrate over x, y, and z coordinates of both
fragments. From a numerical point of view, this procedure
would imply six nested loops which would be extremely time
consuming.

Due to the axial symmetry of the fragments, their proton
distribution corresponds to a set of coaxial hollow cylinders
nested on each other with a variable proton density. The outer
hollow cylinders have a proton density close to zero whereas
the inner ones have a high proton density. The Coulomb
interaction energy is the sum of the interactions between
the two sets of hollow cylinders which is translated from
a computational point of view into four nested loops. Each
configuration of two coaxial hollow cylinders are character-
ized by the shape parameters α and β plus the shape factor
g(β ) which depend on the radius r, thickness 	r and width
	z of the cylinders as well as the distance between them.
The computation time is lowered by precomputing the shape
factor g(β ) for many values of β between 0 and 1. The use
of shape factors is possible thanks to the axial symmetry of
the fissioning system at scission (more details can be found in
Appendix A).

The Coulomb energy surface for a given fragmentation is
less smooth with our new HFB proton densities [Fig. 4(b)]
than they used to be with uniform profiles as in SPY1
[Fig. 4(a)]. This feature is mainly due to the variable scission
distance introduced by the new scission definition (Fig. 3) and
related to the diffuseness of the fragment proton densities.

D. Nuclear interaction energy

The nuclear interaction energy is estimated on the basis of
the Blocki proximity potential [24]

Enucl = 4πγ (I )Rb�(d/b), (10)
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FIG. 4. Coulomb interaction energy for the 236U fragmentation
into 104Mo + 132Sn as a function of their deformation parameters q̃1

and q̃2. Top panel (a) is computed with uniform proton densities and
d = 5 fm (corresponding to SPY1). Bottom panel (b) is computed
with HFB-fitted proton distributions and our new scission-point
definition as detailed in the text.

which depends on the scission distance d , the surface width
b = 1 fm, the isospin asymmetry I = (N − Z )/A of the fis-
sioning system, the reduced radii of curvature R:

1

R
= 1

R1
+ 1

R2
, (11)

which is the geometric mean of the main deformation-
dependent radii of curvature of both fragments Ri(q̃i ) at
their nearest points and the surface energy coefficient γ (I ) =
0.9517(1 − 1.7826I2) [MeV/fm2]. The “cubic-exponential”
pocket formula �(d/b) is used as a dimensionless proximity
potential function. More details can be found in Ref. [24].

Thanks to the analytical expression of the nuclear inter-
action energy Eq. (10) its computation time remains low.
As illustrated in Fig. 5(a) for the 236U fragmentation into
104Mo + 132Sn, the nuclear energy depends on the scission
distance. The highest scission distance is obtained for medium
deformations (0 < q̃ < 0.8) (Fig. 3), which leads to a nuclear
energy close to zero.

FIG. 5. Nuclear interaction energy for the 236U fragmentation
into 104Mo + 132Sn depending on their deformation parameters q̃1

and q̃2. (a) Computed with Blocki proximity potential. (b) Computed
with nucleon distributions.

To validate this approximation, the nuclear interaction
energy is also computed using detailed HFB nucleon distri-
bution [Fig. 5(b)]. The way to calculate it is similar to the
one used for Coulomb interaction energy, although the shape
factors f̃ (β, Rk ) differ in this case; see Appendix B for more
details. The deformation dependence of the nuclear energy
computed using the nucleon distributions is seen in Fig. 5 to be
rather similar to the one computed with the Blocki proximity
potential and both predictions remain rather similar within a
few 0.1 MeV. Because of the low contribution stemming from
the nuclear interaction, the Blocki proximity potential appears
to be a satisfactory approximation that we adopt in the present
study. The nuclear interaction is seen to have no impact on
the fission yields, as illustrated in Fig. 6(a) and 6(b) in the
case of the fission of 240Pu (Q = 6.5 MeV), when the neck
density criteria remains low. The various nuclear interaction
energies differ by less than 1 MeV for a neck density of
0.002 or 0.004 fm−3 [Figs. 6(d) and 6(e)]. This is due to the
large distance between fragments : 〈d〉 = 3.91 fm for ρneck

π =
0.002 fm−3 and 〈d〉 = 3.20 fm for ρneck

π = 0.004 fm−3. How-
ever, choosing higher proton densities at the scission neck,
fragments get closer to each other and a more accurate
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FIG. 6. Left panels (a–c), fission yields of 240Pu (Q = 6.5 MeV) for four different estimates of the nuclear interaction energy and three
proton densities at scission neck, namely ρneck

π = 0.002 (a), 0.004 (b), and 0.008 fm−3 (c). The purple line, denoted as “no,” neglects the
nuclear interaction energy; the yellow solid line corresponds to the Blocki approximation [24]; while the red and green solid lines are obtained
with the Reid-M3Y [25,26] or Paris-M3Y [26] effective nucleon-nucleon interaction, respectively. Right panels (d–f), corresponding nuclear
interaction energies.

calculation of the nuclear interaction may be needed. For such
proton density at scission neck, the Blocki proximity potential
remains valid from the fission yields distribution point of view
and has a negligible impact on the KE distribution. How-
ever for higher densities, like the ρneck

π = 0.008 fm−3 case
[Figs. 6(c) and 6(f)], the fragments get so close to each other,
with a mean distance 〈d〉 around 2.47 fm, that the adopted
model for calculating the nuclear interaction energy impacts
the fission yields [Fig. 6(c)]. The Blocki nuclear energy is
around −2 MeV regardless of the fragmentations, whereas a
value of −4 MeV is obtained with the more complete estimate
based on the HFB nucleon distributions [Fig. 6(f)]. The impact
of ρneck

π on fission yields, KE and mean deformations will be
further discussed in Sec. IV D.

E. Nuclear state density

In SPY1, the Fermi gas state density [27] for a two-fermion
system,

ρ(U ) =
√

π

12

e2
√

ãU

ã1/4U 5/4
, (12)

was considered with the two-components (proton and neu-
tron) level density parameter ã. However, such a simple
formulation does not take any pairing or shell effects into ac-
count. Similarly, deformation effects are included empirically

for ground state deformation by increasing the ã-parameter
from A/13 to A/8, but otherwise Eq. (12) remains deformation
independent.

To take pairing, shell, and deformation effects coherently
into account, the nuclear state density of a given nucleus at
a given deformation is now calculated in the framework of
the statistical model of nuclear level densities [28–31] on the
basis of the discrete single-particle level scheme, consistently
determined within the constrained HFB calculations previ-
ously introduced (Sec. III A). Starting from BSk27 [23] proton
and neutron HFB single-particle level schemes {εk

q} (where
q = n or p refers to proton or neutron, respectively, and k
refers to the k-th level of the scheme), the chemical potential
λq and the pairing gap 	q are calculated by solving BCS
equations within the constant-G approximation [31], namely,

Nq =
∑

k

1 − εk
q − λq

Ek
q

tanh

(
Ek

q

2T

)
, (13)

2

Gq
=

∑
k

1

Ek
q

tanh

(
Ek

q

2T

)
, (14)

where Ek
q =

√
(εk

q − λq)2 + 	q
2 is the quasiparticle energy, T

is the nuclear temperature, and all single-particle states εk
q up

to 40 MeV in the continuum are included in the summation.
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The pairing strength Gq is extracted from the pairing gap
equation at zero temperature [Eq. (14)]. In turn, the pairing
gap at zero temperature 	0

q is estimated by the five-points
approximation [32],

	0,q = 1
8 |M(Nq + 2) − 4M(Nq + 1) + 6M(Nq )

− 4M(Nq − 1) + M(Nq − 2)|, (15)

where M(Nq) is the nuclear mass and Nq = Z or N . The
pairing gap is assumed to be deformation independent; the
choice of such an approximation and its impact on the yields
will be discussed in Sec. IV B.

Using the chemical potential λq and the pairing gap 	q,
the energy E , entropy S, and total excitation energy U are
estimated

E (T ) =
∑

q=n,p

∑
k

εk
q

[
1 − εk

q − λq

Ek
q

tanh

(
Ek

q

2T

)]
− 	q

2

Gq
,

(16)

S(T ) = 2
∑

q=n,p

∑
k

ln
(
1 + e−Ek

q /T
) + Ek

q /T

1 + eEk
q /T

, (17)

U (T ) = E (T ) − E (T = 0). (18)

Finally, the state density is determined by the partition
function method with a correction at asymptotic limit to avoid
the unphysical divergence at zero temperature [31],

1

ω(U )
= (2π )3/2

[√
D(U )

eS(U )
+ 1

ω0(U )

]
, (19)

ω0(U ) = π2e

12

S(U )2

T
√

Sn(U )Sp(U )
eSn(U )Sp(U ), (20)

where S(U ) = Sn(U ) + Sp(U ) is the total entropy of the nu-
cleus and D(U ) is the determinant of the second derivatives of
the grand partition function [28].

This formalism is known to lead to discontinuities in the
state density [29] due to the transition between the supra-
conducting and normal phases of neutrons and protons [Fig.
7(b)]. The level density parameter (a1c) shown in Fig. 7(b)
corresponds to the one-component equivalent a-parameter
deduced from the Fermi gas state density for a one-fermion
system [27],

ρ(U ) = 1√
48

e2
√

a1cU

U
. (21)

Note that the level density parameter is preferred to the
state density to illustrate the nuclear structure evolution with
excitation energy. In the example of the 104Mo state density
at the deformation q̃ = 0.09 [Fig. 7(b)], the level density pa-
rameter tends to an asymptotic value at increasing temperature
corresponding to a total disappearance of the nuclear structure
effects at large excitation energies.

In the BCS theory, the pairing gap fluctuations are ne-
glected which leads to the gap equation [Eq. (14)]. It predicts
the existence of a critical temperature at which the pairing
gap vanishes, hence a discontinuity appears [29] for quanti-
ties depending on the derivative of the pairing gap like the

FIG. 7. (a) Pairing gap and (b) one-component level density
parameter a1c evolution with temperature for 104Mo at the defor-
mation q̃ = 0.09. The insert shows the difference between the BCS
(solid line) and smoothed (dashed line) pairing gap around critical
temperatures.

determinant D(U ) or the heat capacity. The nucleus contains
two types of fermions, neutrons and protons, hence there are
two critical temperatures leading to two discontinuities. Such
discontinuities, characteristic of a second order transition, are
unphysical since fluctuations tend to smooth out such sharp
phase transitions [33]. More specifically, the discontinuities in
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the a parameter stem from the singularity in the determinant
calculation, more precisely from K and KL values in Eq. 20
of Ref. [28], i.e.,

Kq = β	q
∂	q

∂β
, (22)

KqLq = β	q
∂	q

∂μq
, (23)

where β = 1/T and μq = βλq. These discontinuities occur at
the neutron and proton critical temperatures Tq,c, when Kq and
KqLq are equal to zero for T � Tq,c. For 104Mo at the deform-
ation q̃ = 0.09 (Fig. 7), these discontinuities occur at Tc,n =
0.63 MeV and Tc,p = 0.74 MeV which correspond to the
drop of 	q from the supraconducting to the normal phase
[Fig. 7(a), solid lines].

To avoid such discontinuities, pairing gaps are smoothed
around their critical temperatures to lift singularities of Kq

and KqLq at these temperatures [Fig. 7(a), dashed lines). The
prescription to smooth them is inspired from Ref. [33] and
consists in fitting the BCS pairing gaps 	q(T ) by the simple
expression

	fit (T ) = 	m

1 + exp
[ T −Tm

Tm
ln

( 	0
q

	m−	0
q

)] . (24)

Such a prescription suppresses discontinuities in the state
density [Fig. 7(b), dashed line] and has been applied sys-
tematically in the determination of state densities at all
deformations.

IV. RESULTS FOR SOME FISSIONING SYSTEMS

In this section, experimental data are always represented
in black solid line with dots. The preneutron isobaric fission
yields of three well-known fissioning systems are studied.
The first two cases correspond to the thermal neutron-induced
fission of 235U and 239Pu where the experimental data are,
respectively, from Romano et al. [34] and Tsuchiya et al.
[35]. To compare predictions from SPY1 and SPY2 with
experimental data, we take into account an excitation energy
of Q = 6.5 MeV in the 236U and 240Pu compound nucleus.
The last case is the spontaneous fission of 252Cf, where
the experimental data are from Zeynalov et al. [36], which
is compared to SPY data without excitation energy (Q =
0 MeV). The other most experimentally accessible fission
observable, i.e., the total kinetic energy (TKE) and the kinetic
energy per fragment (KE) distributions, are also compared
with SPY1 and SPY2 predictions. The TKE is defined as
the mean value of Coulomb plus nuclear interaction energy
between fragments and the KE is the TKE component carried
by a fragment and is deduced from the TKE using the total
momentum conservation,

KE = ACN − A

ACN
TKE . (25)

The experimental KE distribution for the three fissioning
system are, respectively, from Baba et al. [37], Nishio et al.
[38], and Hambsch et al. [39]. Since this model focuses on
the scission-point description, the neutron evaporation of the

fission fragments is not included in the yields distribution, i.e.,
our predictions are compared with experimental data before
neutron emission.

A. Fission yields and Kinetic energy

We compare in Fig. 8 the experimental yields and KE
distributions of the three fissioning systems 236U, 240Pu, and
252Cf with those predicted by SPY1 and SPY2. With SPY1
[Figs. 8(a)–8(c), blue dashed lines], the yields distribution
are peaked around A1 = 132 and A2 = ACN − 132 (where A2

is the second complementary fragment), particularly for U
and Pu. These peaked distributions can be explained by the
high sensitivity to the fragments shell effect, in particular to
the doubly magic nucleus 132

50 Sn82 which is associated with
the soft fragment 104

42 Mo62 in the 236U case. Compared to
SPY1, the SPY2 yields distributions [Figs. 8(a)–8(c), green
thin lines] are much wider and also closer to experimental
data but present strong staggering patterns. To compare the
overall structure of the yields distribution with experimental
data, the distributions are smoothed by a normalized Gaussian
function,

Ysmooth(Z, N ) =
4∑

i, j=−4

Yraw(Z + i, N + j)C2e
− i2+ j2

2σ2
z,n , (26)

where C is the normalization factor and σz,n = 0.65. The
choice of this value as well as the impact of this smoothing
procedure on the isotopic yields will be discussed in Sec. IV F.
Results after smoothing are shown by red lines in Fig. 8.

In the U case [Fig. 8(a), red line], the symmetric part of
the distribution is overestimated compared to experimental
data. This is partially due to an underestimate of the highly
asymmetric part of the yields distribution, which, in turn,
is due to an overestimate of the KE for asymmetric frag-
ments [Fig. 8(d), red line]. A lower KE of these asymmet-
ric fragments would increase their available energy, hence
their probability, and consequently decrease the symmetric
contribution.

The SPY2 Pu yields distribution [Fig. 8(b), red line]
matches fairly well the experimental one. Like in the U
case, yields of the high asymmetric fragmentations are un-
derestimated due to an overestimate of the KE of the highly
asymmetric fragmentations [Fig. 8(e), red line].

In the Cf case [Fig. 8(c)], the peak around A = 132
completely disappears with respect to SPY1. The slightly
asymmetric yields are underestimated due to an overestimate
of the peaks height, i.e., an underestimate of the KE [Fig. 8(f)]
for these slightly asymmetric fragments.

Concerning the KE distributions [Figs. 8(d)–8(f)], apart
from an overestimate of the KE for the highly asymmetric
fragmentations, the HFB proton distributions improve signif-
icantly the KE distribution with respect to the uniform sharp
proton distributions considered in SPY1. Fission yields and
KE distributions are linked via the available energy balance.
An overestimate of the KE leads to an underestimate of yields.

In this new version of the SPY model, the yields distribu-
tions are more structured due to the inclusion of pairing in
individual binding energies and in state densities. Compared
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FIG. 8. On the left panels, the black dotted lines represent experimental (pre-neutron-emission) fission yields for fission of 236U (Q =
6.5 MeV) (a) [34], 240Pu (Q = 6.5 MeV) (b) [35], and fission of 252Cf (c) (Q = 0 MeV) [36]. The green thin lines are raw fission yields
and the red lines are smooth yields both from SPY2. The blue dashed line are raw yields from SPY1. On the right panels, the black dotted
lines represent experimental KE distribution for fission of 236U (Q = 6.5 MeV) (d) [37] and 240Pu (Q = 6.5 MeV) (e) [38], and fission of
252Cf (Q = 0 MeV) (f) [39]. The red lines are KE distribution from SPY2 and the blue dashed one from SPY1.

to experimental data, the odd-even effect seems slightly too
strong [Figs. 8(a)–8(c), green curves] but it is not detrimental
to the location and width of the peaks in the yields distri-
bution. The width increase in the fission yields is due to the
competition between the shell effects in individual binding
energies and those in state densities; the shell effects have
antagonist effects on available energy and available states.
The pairing correlations reduce the intrinsic energy of the
even-even nuclei, hence increases the available energy for
the corresponding fragmentations. At the same time, these
correlations decrease the state density and the number of
available states. These two effects tend to cancel each other
to some extent. Shell effects have a similar impact, but with
a larger amplitude, especially for closed-shell nuclei. Frag-
mentations with shell closures are not necessarily the most
probable configuration with SPY2, in contrast to SPY1 pre-
dictions. The impact of shell effects will be further detailed in
Sec. V.

B. Impact of the pairing gap on the fission yields

As described in Sec. III E, the pairing strength affecting
nuclear state densities has been determined on the basis of the
five-points mass difference [Eq. (15)]. To test the sensitivity
of our results to this approximation, we also considered the
deformation-dependent pairing strength Gq extracted from the

HFB pairing energy at a given nuclear deformation, i.e.,

EHFB
p,q = −	2

0,q

Gq
= −	2

0,q

2

∑
k

1

Ek
q

. (27)

The HFB pairing energy has been estimated within an energy
range of ε� = 16 MeV around the Fermi energy εF [23]. This
energy cutoff is needed to avoid the divergence of the gap
equation with the zero-range pairing force characterizing the
BSk27 interaction [40,41]. The pairing strength is consistently
estimated from Eq. (27) adopting the energy cutoff used in the
BCS equations [Eqs. (13) and (14)].

The resulting pairing gaps 	q(β, ε) for a deformation β

and an excitation energy ε are found to be lower than those
obtained with the five-points approximation [Eq. (15)]. The
corresponding states densities with lower pairing gaps are
consequently larger leading to a fragmentation dominated by
a heavy fragment in the vicinity of the doubly magic nucleus
50
132Sn82, especially in 236U and 240Pu cases. The corresponding
yields are shown in Fig. 9 (cyan lines) and compared those ob-
tained by the SPY2 version (red lines) where the pairing gaps
are deduced from the five-points mass difference [Eq. (15)].
Yields calculated using the five-points mass difference are
seen to be in better agreement with experimental data than
those calculated with the pairing energy. For this reason, we
have adopted the five-points mass difference for the reference
version of SPY2.
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FIG. 9. On the left panels, the black dotted lines represent experimental (pre-neutron-emission) fission yields for fission of 236U (Q =
6.5 MeV) (a) [34], 240Pu (Q = 6.5 MeV) (b) [35], and fission of 252Cf (Q = 0 MeV) (c) [36]. The cyan lines are smooth yields from SPY2
where 	0

q is deduced from the pairing energy E 0
p . The red lines are smooth yields both from SPY2 where 	0

q is deduced from the five-points
approximation.

C. Kinetic energy and diffuseness

The new definition of the scission point, based on the
proton density at neck, links the KE to the fragments diffuse-
ness which is linked to the external radius [Eq. (8)] and the
effective one defined on the basis of the axial proton density
[Eq. (7)],

d1/2 = Rext − Reff = a ln

(
ρ0

0.5ρneck
π

− 1

)
. (28)

We call d1/2 half the diffuseness because it is defined in the
same way as the diffuseness a and corresponds to the distance
over which the axial proton density drops from 0.5ρ0 to ρneck

π .
Since ρ0 is rather insensitive to the deformation, d1/2 varies
similarly to the diffuseness a with respect to the deformation.

For the thermal neutron-induced fission of 239Pu (Fig. 10),
d1/2 decreases with increasing fragment nucleon numbers.
The lighter the fragments the larger the diffuseness. The

FIG. 10. KE distribution of fission of 240Pu (Q = 6.5 MeV),
from SPY2 model (blue curve) and from experimental (black curve)
[38]. The half the diffuseness d1/2 = Rext − Reff (red dashed line) and
mean deformation q̃ (green dotted line.)

dependence of d1/2 with the fragment nucleon number differs
significantly from the one ruling the mean fragment deforma-
tion q̃ because d1/2 evolves in a nontrivial way with the nuclear
deformation.

The local increase of half the diffuseness d1/2 around A =
100–110 and the complementary fragments A = 130–140
explains the underestimate of the KE (Fig. 10). A comple-
mentary study using evaporated neutron distribution seems
to indicate that the heavy A = 130–140 fragments are too
deformed, but it remains difficult to identify which fragments
cause the underestimate of the KE.

D. TKE, fission yields and proton density at the scission neck

The impact on yields and kinetic energies are presented
for the three fissioning systems for large variations of the
proton density at the scission-neck from −50% to +200%,
Fig. 11. For the highest values of the density, the Blocki
proximity potential and the more precise Reid-M3Y effective
NN interaction are tested. The global trend of the yields
[Figs. 11(a)–11(c)] are unaffected (at least for high fissility
nuclei) by this variations showing that they are rather insensi-
tive to the adopted value of the critical neck density, hence of
the scission criterion. The KE distributions [Figs. 11(d)–11(f)]
are more impacted by the change of the neck density since it
directly affects the distance between the two fission fragments
hence the coulomb repulsion between them. At high neck
density, the KE of fragmentations around (AH = 132, AL =
ACN − 132) increases relatively more than the others. Their
deformation at scission [Figs. 11(g)–11(i)] are also affected,
the increase of the density implying a larger sensitivity to
spherical shell effects.

The mean TKE of actinides follows a linear evolution with
their fissility parameter [42], modeled by the Viola formula
(Fig. 12). SPY1 and SPY2 propose a similar regular evolution.
The shift between the distributions is simply due to the
evolution of the distance between the two nascent fragments
with the different criteria and has no special meaning. More
interesting is the sensitivity to the role of the doubly magic nu-
cleus 132Sn for low-fissility nuclei with a high-density criteria
at the neck. This doubly magic nucleus is responsible for the
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FIG. 11. Left panels (a–c), SPY2 smoothed yields for various neck densities for three fissioning systems. Central panels (d–f), corre-
sponding SPY2 KE distributions. Right panels (g–i), corresponding mean deformations. Calculations are performed with ρneck

π = 0.001 fm−3

(cyan solid lines), ρneck
π = 0.002 fm−3 (red solid lines), ρneck

π = 0.004 fm−3 (green solid lines), and ρneck
π = 0.008 fm−3 (orange solid lines).

The nuclear interaction energy between fragments is computed using the Blocki proximity potential [24], denoted by “Blocki” or alternatively
in the ρneck

π = 0.004 and 0.008 fm−3 cases, numerically using the HFB nucleon distributions and the Reid-M3Y effective nucleon-nucleon
interaction [25], denoted by “Reid” (back dashed curve).

FIG. 12. Mean TKE as a function of the compound nucleus fissil-
ity parameter predicted by SPY with Q = 8 MeV and Viola formula
[42] (black line). Data from SPY2 with ρneck

π = 0.001 fm−3 are in
cyan, with ρneck

π = 0.002 fm−3 are in red, with ρneck
π = 0.004 fm−3 in

green, and with ρneck
π = 0.008 fm−3 are in orange. Data from SPY1

are in blue.

asymmetric-symmetric transition zone NCN = 140 of the low-
fissility nuclei, as discussed in Sec. V A and in particular in
Fig. 16(a). No prescission kinetic energy is included yet in the
model. Such contribution, varying from 0 MeV [43], 10 MeV
[22,44], up to 20 MeV [45], depending on the model, could
fill the gap between our actual description and the observed
experimental trend. This contribution will be included as soon
as we have access to a controlled description of it.

E. Sensitivity to the excitation energy

The excitation energy of the fissioning system clearly af-
fects the energy balance and is theoretically taken into account
in the ECN term of Eq. (1). It can be written as ECN = MCN +
Q, where MCN is the mass of the fissioning system and Q
its excitation energy. Note that only the first chance fission is
taken into account in the SPY model and that individual bind-
ing energies and single-particle level schemes are calculated
at zero temperature. For spontaneous fission, Q = 0 MeV,
while for thermal neutron-induced fission it corresponds to the
neutron separation energy, i.e., for both 239Pu and 235U, Q =
6.5 MeV. The symmetric part of the fission yields distribution
is known to increase with increasing excitation energy of the
fissioning system [12] and at very high excitation energies
(several tens of MeV), the fission becomes essentially sym-
metric with the fissioning system behaving as a liquid drop.
For the fission of actinides, such behavior is not yet reached
with 14 MeV neutron-induced fission, the symmetric part of
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FIG. 13. SPY2 pre-neutron-emission smooth fission yields of 240Pu as a function of the fragment mass number A for different initial
excitation energies (in MeV), in log scale (a) and in linear scale (b). The excitation energy of 6.5 MeV corresponds to the thermal neutron-
induced fission of 239Pu. Solid lines with dots denoted by “sf” correspond to experimental data for spontaneous fission of 240Pu [46], “nth” to
the thermal neutron-induced fission of 239Pu [35], and “γ , 20” to the 240Pu photofission with 20 MeV γ ’s [47].

the isobaric fission yields increasing from about 0.01% to 1%.
This feature is also observed for 240Pu fission [Fig. 13(a), thin
lines with dots] between the spontaneous fission [46] and the
20 MeV photofission [47]. SPY reproduces fairly well this
feature compared to experimental data [Fig. 13(a), solid lines].

Another feature observed in experimental data is the shift
of the most probable fragmentation towards more asymmetric
fission with increasing excitation energy and, to a lesser
extent, a shift of the mean value of the heavy peak [Fig. 13(b)].
Both features are also described by the SPY model. For the
0, 6.5 and 20 MeV energies, the mean value of the heavy
peak amounts to 138.86, 139.38, and 139.2, respectively, for
experimental data and 136.19, 137.46, and 137,87 for SPY.
Concerning the most probable fragmentation, experimentally
they are found at (105 + 135), (103 + 137), and (101 + 139),
respectively, and with SPY at (108 + 132) and (100 + 140)
in the two other cases. This rapid shift in SPY2 yields of the
most probable fragmentation with excitation energy is due to
the strong odd-even effect in the yields distribution.

In the framework of the SPY model, the increase of the
symmetric contribution to the yields distribution with increas-
ing energies can be understood in terms of available energy
and number of available states. On the one hand, the initial
excitation energy shifts the available energy of all fragmenta-
tions by a constant value, which consequently decreases the
relative available energy differences between the fragments.

Since yields in a first approximation are proportional to the
available energy, they will be less affected by these differences
at high energy. On the other hand, at increasing energies, shell
effects are washed out and the state densities becomes a sim-
ple Fermi gas relatively insensitive to the nuclear deformation.
At high excitation energy, the fission system behaves as a
liquid drop for which shell effects become negligible and stop
affecting the yields distribution, hence favoring a symmetric
fission.

F. Odd-even effects in yields

From the experimental point of view, the proton pairing
effect in the isotopic yields is more accessible than the neutron
one because the charge of a fragment is easily measurable
[48,49]. The proton staggering in SPY2 isotopic yields is
clearly too strong, but can be significantly reduced by ap-
plying our smoothing procedure [Eq. (26)], as illustrated in
Fig. 14.

The isotopic yield staggering can be quantified by the
proton odd-even effect amplitude δp [53],

δp[%] =
∑

Y (Zeven ) − ∑
Y (Zodd )∑

Y (Z )
, (29)

where Y (Z ) is the isotopic yields.
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FIG. 14. The black dotted lines represent experimental isotopic
fission yields for thermal neutron-induced fission of 235U (a) [50],
239Pu (b) [51], and the spontaneous fission of 252Cf (c) [52]. The
green lines are fission yields from SPY2, the red lines are smooth
yields from SPY2.

Experimentally, the proton odd-even effect amplitude tends
to decrease with increasing fissility parameter Z2

CN/A1/3
CN [53],

as given in Table I. The SPY2 results obtained with the raw
and smooth yields are also given in Table I. The width σz,n of
the Gaussian function used to smooth raw yields [Eq. (26)] is
chosen to reproduce at best the experimental proton odd-even
effect in the Pu and Cf cases (see Fig. 14). Due to the large
symmetric part of the U fission yields, the proton odd-even
effect amplitude is however underestimated.

As mentioned in Sec. IV A, the pairing effect has an
opposite impact on individual binding energies and state

TABLE I. Proton odd-even effect amplitude δp for isotopic yields
on Fig. 14.

Z2/A1/3 Exp. data Raw Smooth

235U 1370 23.7 53.7 13.3
239Pu 1422 13.4 53.8 13.4
252Cf 1520 12.2 48.4 12.0

FIG. 15. Left y axis: nucleon (δa), neutron (δn), and proton (δp)
odd-even effect amplitude derived from SPY2 raw isobaric, isotonic
and isotopic fission yields, respectively, of 240Pu as a function of
the initial excitation energy Q (solid lines). Right y axis: excitation
energy fluctuations 	ε relative to the mean excitation energy of
a fragment ε (dashed lines) and the mean excitation energy per
fragment 〈ε〉, mean neutron and proton critical energies 〈U (Tc,q )〉
(dot-dash lines). The vertical solid black line corresponds to the
intersection between 〈ε〉 and 〈U (Tc,p)〉 curves.

densities; consequently the strong pairing effect in the yields
may be due to the low pairing effect in the state densities,
in particular around the critical temperature. In the case of
the neutron-induced fission of 239Pu, the typical excitation
energy of a fragment is around 7 MeV for the light fragment
and 9 MeV for the heavy one which correspond generally to
a temperature slightly higher than the critical temperature.
For example, the proton critical temperature is reached at
an excitation energy around 6 MeV for the open-shell nu-
cleus 104Mo. The low pairing effect in the state densities
is due to the fast drop of the pairing gap to zero around
the critical temperature. The pairing gap in a nucleus may
however remain rather large for temperatures above the crit-
ical temperature when pairing gap fluctuations are taken into
account [29]. For this reason, a way to increase the pairing
effects in the state densities will be to introduce pairing gap
fluctuations.

The odd-even staggering evolution is known to decrease
with increasing excitation energies [12,53]. In the 240Pu case,
this trend is reproduced, as shown in Fig. 15. The neutron
δn and nucleon δa odd-even effect amplitudes, defined in a
way similar to the proton one Eq. (29), decrease as well. The
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energy odd-even amplitudes

	εq

εq
=

∑〈εq〉(Xeven ) − ∑〈εq〉(Xodd )∑〈εq〉(X )
(30)

are also found to decrease with increasing initial excitation
energies (Fig. 15).

The nucleon odd-even effect amplitude δa is lower than δp

and δn; this can be understood due to the small difference
between the

∑
Y (Aeven ) and

∑
Y (Aodd ) terms in Eq. (29).

Indeed, in the former term, the fragmentations with two
strongly paired fragments (even-even) are mixed with two
weakly paired fragments (odd-odd), while in the latter the
fragmentations with two moderately paired fragments (odd-
even and even-odd) are mixed. The proton odd-even effect
amplitude is higher than the neutron one, irrespective of the
initial excitation energy, due to a narrower peak in the isotopic
yields distribution compared to the isotonic one.

At low initial excitation energy, from Q = 0 up to around
Q = 2.5 MeV, the proton and nucleon odd-even effect ampli-
tudes are observed to increase slightly up to Q = 2.5 MeV,
where the excitation energy of the fragments is higher than
the proton critical energy (Fig. 15, vertical black line); at this
energy, the proton pairing gap 	p cancels out. The increase
of the proton and nucleon odd-even amplitudes is due to a
decrease of the pairing effect in the state densities whereas
the energy odd-even amplitudes do not decrease significantly
at low Q.

For Q > 2.5 MeV, δp decreases due to the decrease of
the energy odd-even amplitude, all significantly produced
fragments having a zero proton and neutron pairing gap. Note
that δn monotonically decreases because there is no neutron
pairing effect in the state densities of the fragments, so that
the excitation energy of the fragments from the spontaneous
fission is above the neutron critical energy.

On the basis of statistical considerations using a canonical
ensemble, Bocquet et al. [53] concluded that it was difficult
to explain the evolution of the odd-even amplitude with exci-
tation energies. SPY is based on a microcanonical ensemble
and clearly predicts the decrease of odd-even effects with
increasing initial energies in terms of available energy and
number of available states. The energy odd-even amplitude
becomes negligible at high energy and the state densities tend
to a simple Fermi gas relatively insensitive to the nuclear
deformation, leading to an attenuation of the odd-even stag-
gering in the yields distribution. As a result, pairing no more
impacts the fission yields.

The mean excitation energy of a fragment 〈ε〉 increases
linearly with initial excitation energy Q from 5.8 to 23.2 MeV
which represents an increase of 34.7 MeV of the total mean
excitation energy for an increase of 40 MeV of the initial
excitation energy. The increase of the initial excitation energy
ends up mainly as excitation energy in fragments whereas the
other part ends up as deformation energy which deforms the
fragments and consequently decrease the KE.

V. SYSTEMATICS

SPY2 is now used to calculate systematically the fission
yields for about 2000 heavy nuclei ranging between Z = 78

and Z = 110 (Fig. 16). Such a systematics allows us to study
the impact of fragments shell effects on the fission mode
[Fig. 16(a)], mean TKE [Fig. 16(c)], mean available energy
[Fig. 16(e)], mean deformation of fragments [Fig. 16(d)],
and mean number of evaporated neutrons [Fig. 16(f)]. The
transitions between the fission modes are studied in details
for the three representative isotopic chains of Pa, Cf, and Sg.

A. General discussion

Using the same peak analysis as in Ref. [5] for each
isobaric yields distribution, it is possible to estimate the peak
multiplicity corresponding to the number of significant humps
characterizing the isobaric yields distribution. This analysis
is performed with the raw fission yields distributions because
it is not sensitive to the odd-even staggering. A multiplicity
of one corresponds to a symmetric fission while a standard
asymmetric fission is characterized by a multiplicity of two.
For an isobaric yields distribution with three humps (i.e., for a
peak multiplicity of three), the symmetric and an asymmetric
fission are more or less equiprobable. We show in Fig. 16(a)
the SPY2 peak multiplicity for all the 2000 nuclei with an
initial excitation energy of 8 MeV. The SPY2 predictions
can be compared to SPY1 [Fig. 16(b)], which found a peak
multiplicity rather sensitive to the neutron number of the com-
pound nucleus responsible for the vertical transitions seen in
Fig. 16(b). This feature remains similar for SPY2 [Fig. 16(a)],
though some local modifications are seen. In particular, less
nuclei are depicted on the neutron-rich side in Fig. 16(a) in
comparison with Fig. 16(b) because the fission of these nuclei
is energetically forbidden in SPY2.

The fission of light nuclei NCN � 100 is found to be always
asymmetric; this is consistent with the asymmetric mode of
180Hg [6,7]. The symmetric fission region with 100 < NCN �
140 is more extended with SPY2 than with SPY1 where the
neutron-rich limit is obtained around NCN ≈ 132. According
to experimental data [11], the transition from symmetric to
asymmetric modes is located around NCN ≈ 136. The late
transition predicted by the SPY2 model is responsible for
the nonnegligible symmetric component found for 236

92 U144, as
illustrated in Fig. 8(a). The transition between symmetric to
asymmetric fission and the asymmetric fission mode of some
nuclei are complex problems which have been extensively
studied for the last decades, especially since the discovery
of the mass asymmetry feature characterising the U fission
[54–64]. It remains an open problem which has been mainly
studied from different aspects, in particular considering the
saddle or scission-points configuration of the fissioning sys-
tem.

Between the symmetric and asymmetric regions, a triple-
peak zone at NCN ≈ 143 and 84 < ZCN < 94 is found; this
result is somewhat consistent with experimental observations,
as inferred from the proton-induced fission of 226

88 Ra138 at
an excitation energy of 18 MeV leading to a triple-hump
yields distribution [12]. A similar triple-hump distribution is
experimentally obtained for the high-energy neutron-induced
fission of 232

90 Th142 at an excitation energy of 50–65 MeV [13].
The neutron-induced fission of 238

92 U146 is asymmetric at low
energy and does not seem to transit through a triple-hump
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FIG. 16. Systematics in the (N, Z) plane of major fission observables for some 2000 nuclei between Pt and Mt for an initial excitation
energy of Q = 8 MeV.

distribution before becoming symmetric at high excitation
energy [13].

The symmetric 160 < NCN < 170 and 90 < ZCN < 105
regions predicted by SPY1 [Fig. 16(b)] disappears with SPY2.
The doubly asymmetric fission zone shifts slightly from
NCN ≈ 178 [Fig. 16(b)] to NCN ≈ 184 and is extended by
SPY2 up to ZCN = 103 [Fig. 16(a)]. These nuclei play a
key role in explaining the origin of the rare-earth elements
(A � 165) during the r-process nucleosynthesis occurring in
collapsing neutron stars [2]. Our new SPY2 version of the
model confirms the conclusions of Ref. [2]. A new asymmet-
ric region appears at 200 < NCN < 222 and 90 < ZCN < 105.

The explanation of these various transitions will be detailed in
Sec. V B.

The mean TKE [Fig. 16(c)] increases mainly with the
proton number of the fissioning system due to the Coulomb
repulsion between fragments. If ZCN = Z1 + Z2 (where Z1 and
Z2 are the proton numbers of the first and second fragments)
increases, then the TKE that can be expressed in a rough
approximation as

TKE [MeV] = 197

137

Z1Z2

Rext,1 + Rext,2
(31)
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also increases. The symmetric-to-asymmetric transition at
NCN ≈ 143 is also visible in Fig. 16(c) with the sudden
TKE increase. This result may appear as counterintuitive
because symmetric splitting maximized the TKE according to
Eq. (31). However, the deformation of the fragments cannot
be neglected, and the TKE increase is caused by the decrease
of the mean deformation of the fragments from q̃ ≈ 0.54
to q̃ ≈ 0.32 [see Fig. 16(d)]. Note that a drop of the mean
deformation around NCN ≈ 180 can also be seen in Fig. 16(d)
and can be associated with the four-peak zone.

The mean available energy [Fig. 16(e)] also increases with
the neutron deficiency within a given isotopic chain and with
the proton number of the fissioning nucleus. As a result, it
increases roughly along the constant ACN line. Around NCN =
126 and 184, a drop of some MeV in the available energy
is found. It can be explained by the neutron shell closure of
the compound nucleus since a more bound fissioning nucleus
release less energy. Note that all fissioning systems in Fig. 16
are computed with the initial excitation energy of Q = 8 MeV.
Another drop is observed around NCN = 142 and is associated
with the transition between symmetric to asymmetric fission.

Finally, the mean number of evaporated neutrons
[Fig. 16(f)] increases with the neutron number of the fission-
ing nucleus and is seen not to be significantly impacted by the
fission mode. The more neutron rich the fissioning system,
the more neutron rich the fragments, hence the larger the
number of neutrons evaporated, especially for exotic neutron-
rich nuclei for which the neutron separation energy is small.

B. Transition of fission modes

We show in Fig. 17 the isotonic fission yields and frag-
ments deformation as a function of the neutron number of
the fragment since the fission mode depends mainly on the
neutron number of the fissioning nucleus [see Fig. 16(a)].

The Pa isotopic chain is representative of the transi-
tion between symmetric to asymmetric modes through a
symmetric+asymmetric fission. This last fission mode occurs
in the zone 140 < NCN < 145 for Pa [Fig. 17(a)]. In this zone,
the heavy Nfrag ≈ 82 fragment becomes gradually spherical.
When it is quasispherical with q̃ < 0.1, the fission mode is
asymmetric whereas for NCN < 140 the fission is symmetric
and the fragments deformed with q̃ > 0.2 up to 0.4 for NCN =
125 [Fig. 17(b)]. The asymmetric transition is associated with
the appearance of the spherical N = 82 shell closure. Despite
the offset in the transition from symmetric-to-asymmetric
fission compared to experimental data, at NCN ≈ 142 instead
of NCN ≈ 136 for thorium isotopic chain [11], the increase of
the mean neutron number of the heavy peak, which depends
on the neutron number of fissioning system, is in agreement
with experimental data [11,65].

The fission becomes more and more asymmetric with
increasing neutron number of the fissioning nucleus up to
NCN = 180. From NCN = 145 to NCN = 180, the light frag-
ments are quite deformed, especially close to the symmetric
fragmentation. The deformation of the heavy fragments are
quasi-spherical for N ≈ 82 which corresponds to the low
asymmetric fragmentations, this deformation increases for
heavier fragments. In a certain way, this feature is related to

the sawtooth shape of the evaporated neutron distribution per
fragment. From NCN = 164 up to NCN = 180, the fragmen-
tations close to the symmetric splitting with N ≈ 82 are not
spherical because the fragments with a neutron shell closure
N = 82 are disfavored due to a low states density with respect
to the deformed ones even if they release more energy. For
these fragmentations, deformed fragments are preferred. In
SPY1, where state densities did not include any shell effect,
the fission used to be symmetric in this region due to the
presence of the N = 82 shell closure in both fragments. But,
in SPY2, the number of available states associated with this
type of fragmentation is reduced which makes them less
probable.

Between NCN = 180 and NCN = 186, fission is not ener-
getically possible for an initial excitation energy Q = 8 MeV.
For NCN > 186, fission becomes again energetically possible
and is symmetric because asymmetric fragmentations are
not energetically reachable (less than 1 MeV) or beyond
the neutron drip line. The spherical N = 50 shell closure is
slightly visible but does not play a crucial role for the fission
mode.

Cf isotopes fission asymmetrically up to NCN = 180
[Fig. 17(c)]. The asymmetry increases with the increasing
neutron number of the fissioning nucleus. For NCN ≈ 146,
the N = 82 shell closure of the heavy fragment disfavors the
fragmentation that includes this shell closure. The N = 82
shell closure disfavors also the spherical deformation of the
fragments due to the low state density, except around NCN ≈
160 where the N = 82 shell closure is present in both frag-
ments of the fragmentations around the symmetric splitting
[Fig. 17(d)]. Fragments are less deformed with respect to
neighboring fissioning nuclei but they are not quasispherical.
The neutron-deficient Cf isotopes give a fission close to a
symmetric one because of the neutron shell closure in the frag-
ments, N = 50 for the light one and N = 82 for the heavy one.
For 180 < NCN < 188, a doubly asymmetric fission appears,
the splitting of the asymmetric peaks being caused by the N =
82 shell closure of the light fragment. For neutron-rich Cf
isotopes with NCN > 220, the asymmetry splitting is limited
by the N = 126 neutron shell closure of the heavy fragment.

The fission mode of Sg isotopes is mainly symmetric
[Fig. 17(e)], except for the regions 150 < NCN < 160 and
170 < NCN < 180, where the distribution is triple humped,
and the region 160 < NCN < 170, where the fission is asym-
metric. The triple-hump fission and the asymmetric one are
due to the presence of the spherical shell closure N = 82 in
one of the two fragments. When this shell closure is in a
fragment from a quasi-symmetric fragmentation (i.e., NCN ≈
164), it disfavors them with respect to more asymmetric
fragmentations. When this shell closure is in a fragment
from an asymmetric fragmentation, it disfavors them with
respect to to symmetric fragmentation and more asymmetric
ones which leads to a triple-peak fission. The three-peaks
region with 230 < NCN < 236 and the asymmetric fission of
NCN > 232 result from the N = 126 shell closure of the heavy
fragment which plays the same role as the shell closure N =
82 for lighter fissioning systems. The fragments deformation
[Fig. 17(f)] is also slightly impacted by the N = 82 shell
closure.
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FIG. 17. Pre-neutron-emission isotonic yields on left panels of protactinium, californium and seaborgium isotopic chains with an excitation
energy of Q = 8 MeV. These isotopic chains are representative of the evolution of the transition mode with the neutron number of compound
nucleus in Fig. 16(a). On right panels, their corresponding mean deformation distribution.

VI. CONCLUSION

We presented an updated version of the scission-point
model to estimate the yields as well as the KE distributions
of the fragments resulting from the complex mechanism of

fission. In this updated SPY2 version, a new definition of the
scission point is proposed. It is based on the mean-field proton
density at the scission neck and assumes that the Coulomb
repulsion between nascent fragments drives the evolution of
the fissioning system between the saddle and scission points.
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Moreover, HFB proton spatial distributions of the fragments
are considered to compute the Coulomb repulsion energy
between fragments. In contrast to our former version SPY1
[5], there is now no need to make assumptions on the proton
distributions of the fragments. In addition, to calculate the
phase space available to the fragments, we calculate the
state densities now in a fully microscopic framework which
takes pairing and shell effects coherently into account on the
basis of the same nuclear structure properties, as the one
used to estimate binding and Coulomb energies. All SPY2
inputs are computed within the same self-consistent micro-
scopic HFB framework on the basis of the BSk27 Skyrme
interaction.

In this updated SPY2 version, the fission yields calculation
is significantly improved, in particular by predicting relatively
wide peaks, as observed experimentally. The predicted KE
distribution also better describes experiment. A detailed study
was performed for the three fissioning systems for which
measurements are available, namely 236U, 240Pu and 252Cf.
The KE distribution of 240Pu has been analyzed on the basis
of the deformation of the fragments and the scission distances.
This study demonstrates that the assumption made in the
SPY1 model concerning the constant scission distance was
a rather good approximation. Without dynamical considera-
tions, SPY2 is able to reproduce the evolution of fission yields
distribution of 240Pu with increasing excitation energies. The
increase of the symmetric and largely asymmetric parts of
the yields distribution is found to be in good agreement with
experimental data.

Our systematic study of the fission mode for some 2000
heavy nuclei with 78 � Z110 shows that the fission mode
is mainly determined by the neutron number and that the
TKE is correlated with the mean deformation of the frag-
ments. The neutron shell closure of the fissioning nucleus
also impacts the fragments distribution through the mean
available energy, where the neutron shell closures of the frag-
ments, in particular N = 82, plays a key role. The fragment
deformation is less impacted by the neutron shell closures
especially when a spherical shell closure strongly disfavors
the spherical deformation due to the low state density of the
fragments.

Although our new SPY model has proven its capacity
to reproduce experimental data qualitatively well, for both
the fission yields and KE distributions, further tests have to
be performed with microscopic inputs computed with other
nucleon-nucleon interactions. Further microscopical studies
on the proton densities at scission neck will be performed
to include some dependence with the proton and neutron
number of the fissioning nucleus. The octupole degree of
freedom also needs to be included for an extensive exploration
of the available phase space. In particular, Scamps et al.
[21] have shown that asymmetric fission of actinides can
be induced by the octupole softness of open-shell nuclei
rather than by the shell effect in closed shell nuclei. More
work in this direction is foreseen. In addition, dynamical
effects, such as friction or inertia, could improve the accu-
racy of the SPY model predictions by introducing a pre-
scission kinetic energy that is missing in our purely static
description.
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APPENDIX A: COULOMB INTERACTION ENERGY
BETWEEN TWO COAXIAL HOLLOW CYLINDERS

For fragments with a nonanalytical proton distribution, the
Coulomb interaction energy has to be computed numerically.
For two charged fragments of proton density distributions,
ρπ,i(xi, yi, zi ), it is given by

Ecoul =
∑

i:{x1,y1,z1}

∑
j:{x2,y2,z2}

ρπ,iρπ, j	Vi	Vj

ri j
,

(A1)

ri j =
√(

x2
2 − x2

1

)2 + (
y2

2 − y2
1

)2 + (
z2

2 − z2
1

)2
.

The numerical calculations implies six nested loops which
is computerwise time consuming. However, using the z-
axisymmetric property of the proton density, the number of
loops can be reduced to four. To achieve this, the Coulomb
interaction energy between two coaxial hollow cylinders has
to be determined analytically from the proton densities and
their geometrical characteristics, i.e., radius, thickness and
width (see Fig. 18).

The Coulomb interaction energy between two coaxial hol-
low cylinders c1 and c2 of proton densities ρπ,1 and ρπ,2,
respectively, is given (in MeV) by

dEc1c2
coul = 197

137
r1dr1r2dr2dz1dz2ρπ,1ρπ,2

×
∫ 2π

0

∫ 2π

0

dϕ1dϕ2

||�r12||︸ ︷︷ ︸
f (r1,r2,d12 )

(A2)

To obtain an analytical expression for dEc1c2
coul , the function

f (r1, r2, d12) can be reduced to a one variable function times
a factor where the variable and the factor depend on the
cylinders radii and their respective distance. Let us define the

FIG. 18. Schematic representation of two coaxial hollow cylin-
ders along the z axis. Each hollow cylinder is characterized by a
width dzi, a radius ri and a thickness dri. The cylinders are distant
by d12.
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vector �r12 as

�r12 = −r1

⎛
⎝cos(ϕ1)

sin(ϕ1)
0

⎞
⎠ + d12

⎛
⎝0

0
1

⎞
⎠ + r2

⎛
⎝cos(ϕ2)

sin(ϕ2)
0

⎞
⎠. (A3)

The squared norm of this vector is given by

r2
12 = α2[1 − β cos(ϕ1 − ϕ2)]

= α2(1 − β )

[
1 − 2β

β − 1
sin2

(
ϕ1 − ϕ2

2

)]
, (A4)

where α and β are defined by

α2 = r2
1 + d2

12 + r2
2 , (A5)

β = 2r1r2

α2
(A6)

and depend on the cylinders radii and their respective dis-
tance. The distance α

√
1 + β corresponds to the longest

distance between two points of the cylinders and α
√

1 − β

to the shortest one. The function f (r1, r2, d12) can now be
expressed as

f (r1, r2, d12) = 1

α
√

1 − β

∫ 2π

0

∫ 2π

0

dϕ1dϕ2√
1 − 2β

β−1 sin2( ϕ1−ϕ2

2 )︸ ︷︷ ︸
g(β )

,

(A7)

where β varies from zero to one. The β = 0 case corre-
sponds to the configuration where at least one of two hollow
cylinders has a zero radius. The β = 1 case corresponds
to a nonphysical case where both cylinders are confounded
(d12 = 0 and r1 = r2). With a few changes of variables, g(β )
can be expressed in terms of an elliptic integral of the first
kind K [66]:

g(β ) = 8πK

(
−

√
2β

1 − β

)
, (A8)

where

K (k) =
∫ π/2

0

du√
1 − k2 sin2(u)

. (A9)

The g(β ) function can be interpreted as a dimensionless shape
factor of the two hollow cylinders configuration. Even if this
function is not analytical, it can be tabulated because β varies
from zero to one. The Coulomb interaction energy between
two coaxial hollow cylinders of width 	z, internal radius ri −
	r/2, external radius ri + 	r/2 separated by a distance d12

and a proton density ρπ,i can finally be obtained from

	Ec1c2
coul (r1, r2, d12) = 197

137
r1	r1r2	r2ρπ,1ρπ,2(	z)2

× 1

α

1√
1 − β

2πK

(
−

√
2β

1 − β

)
,

(A10)

where the Coulomb interaction energy is expressed in MeV,
the lengths 	z, ri, d12 in fm and the proton density in fm−3.

APPENDIX B: NUCLEAR INTERACTION ENERGY
BETWEEN TWO COAXIAL HOLLOW CYLINDERS

As for the Coulomb interaction energy between two
fragments with a nonanalytical proton distribution (see
Appendix A), the nuclear interaction energy has to be com-
puted numerically. The Reid-M3Y effective nucleon-nucleon
interaction [25,26],

veff (ρ, r12) = g(r12) f (ρ), (B1)

g(r12) =
∑

k=1,2

λk
e−bk r12

bkr12
, (B2)

f (ρ) = C(1 + αe−βρ ), (B3)

where ρ is the nucleon density, is used to compute nuclear
interaction energy. This interaction is a product of a radial
term and a density-dependent function [Eq. (B1)]. The radial
term [Eq. (B2)] is energy-independent because this depen-
dence is assumed to be of zero range with a sum of a short
range (0.25 fm) repulsive term (λ1 = 7999 MeV and b1 =
4 fm−1) plus a medium range (0.4 fm) attractive term (λ2 =
−2134 MeV and b2 = 2.5 fm−1). The density term [Eq. (B3)]
depends on the sum of the density of each fragment: ρ = ρ1 +
ρ2 separated by r12, with C = 0.44073, α = 4.3259, and β =
10.639 fm3.

The nuclear interaction energy between two coaxial hollow
cylinders can be deduced in the same way as the Coulomb
interaction energy, i.e.,

	Ec1c2
nucl (r1, r2, d12)

= r1	r1r2	r2ρnucl,1ρnucl,2(	z)2

× f (ρ)
∑

k=1,2

8πλk

∫ π/2

0

e−Rk

√
1− 2β

β−1 sin2(u)

Rk

√
1 − 2β

β−1 sin2(u)
du

︸ ︷︷ ︸
f̃ (β,Rk )

,

(B4)

with Rk = bkα
√

1 − β, β is given by Eq. (A6), and ρnucl,i

is the nucleon density of the fragment i. Like the function
g(β ) [Eq. (A8)], f̃ (β, Rk ) is not an analytical function but
can be tabulated because β varies from zero to one and
Rk ∈ [0, 16]. Beyond a given distance between the two hollow
cylinders, the nuclear interaction energy becomes negligible.
The maximal shortest distance α

√
1 − β is fixed at 4 fm to

decrease significantly the computation time.
The f̃ (β, Rk ) function can be considered as a shape factor

of the two hollow cylinders configuration like the g(β ) shape
factor in the Coulomb interaction case (see Appendix A).
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[24] J. Błocki, J. Randrup, W. Światecki, and C. Tsang, Ann. Phys.

105, 427 (1977).
[25] A. Kobos, B. Brown, R. Lindsay, and G. Satchler, Nucl. Phys.

A 425, 205 (1984).

[26] M. Brandan and G. Satchler, Phys. Rep. 285, 143 (1997).
[27] H. A. Bethe, Phys. Rev. 50, 332 (1936).
[28] P. Decowski, W. Grochulski, A. Marcinkowski, K. Siwek, and

Z. Wilhelmi, Nucl. Phys. A 110, 129 (1968).
[29] L. Moretto, Phys. Lett. B 40, 1 (1972).
[30] L. Moretto, Nucl. Phys. A 185, 145 (1972).
[31] P. Demetriou and S. Goriely, Nucl. Phys. A 695, 95

(2001).
[32] D. Madland and J. Nix, Nucl. Phys. A 476, 1 (1988).
[33] R. Razavi, A. Behkami, and V. Dehghani, Nucl. Phys. A 930,

57 (2014).
[34] C. Romano, Y. Danon, R. Block, J. Thompson, E. Blain, and E.

Bond, Phys. Rev. C 81, 014607 (2010).
[35] C. Tsuchiya, Y. Nakagome, H. Yamana, H. Moroyama, K.

Nishio, I. Kanno, K. Shin, and I. Kimura, J. Nucl. Sci. Technol.
37, 941 (2000).

[36] S. Zeynalov, F.-J. Hambsch, and S. Obertstedt, J. Korean Phys.
Soc. 59, 1396 (2011).

[37] H. Baba, T. Saito, N. Takahashi, A. Yokoyama, T. Miyauchi, S.
Mori, D. Yano, T. Hakoda, K. Takamiya, K. Nakanishi, and Y.
Nakagome, J. Nucl. Sci. Technol. 34, 871 (1997).

[38] K. Nishio, Y. Nakagome, I. Kanno, and I. Kimura, J. Nucl. Sci.
Technol. 32, 404 (1995).

[39] F.-J. Hambsch and S. Oberstedt, Nucl. Phys. A 617, 347
(1997).

[40] E. Garrido, P. Sarriguren, E. Moya de Guerra, and P. Schuck,
Phys. Rev. C 60, 064312 (1999).

[41] A. Bulgac and Y. Yu, Phys. Rev. Lett. 88, 042504
(2002).

[42] V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C 31,
1550 (1985).

[43] M. Borunov, P. Nadtochy, and G. Adeev, Nucl. Phys. A 799, 56
(2008).

[44] U. Brosa, S. Grossmann, and A. Müller, Phys. Rep. 197, 167
(1990).

[45] L. Bonneau, P. Quentin, and I. N. Mikhailov, Phys. Rev. C 75,
064313 (2007).

[46] L. Demattè, C. Wagemans, R. Barthélémy, P. D’hondt, and A.
Deruytter, Nucl. Phys. A 617, 331 (1997).

[47] H. Thierens, A. De Clercq, E. Jacobs, D. De Frenne, P. D’hondt,
P. De Gelder, and A. J. Deruytter, Phys. Rev. C 23, 2104 (1981).

[48] W. Leo, Techniques for Nuclear and Particle Physics Experi-
ments: A How-to Approach (Springer, Berlin, 1994).

[49] G. Knoll, Radiation Detection and Measurement (John Wiley &
Sons, New York, 2010).

[50] W. Lang, H.-G. Clerc, H. Wohlfarth, H. Schrader, and K.-H.
Schmidt, Nucl. Phys. A 345, 34 (1980).

[51] C. Schmitt, A. Guessous, J. Bocquet, H.-G. Clerc, R. Brissot,
D. Engelhardt, H. Faust, F. Gönnenwein, M. Mutterer,
H. Nifenecker, J. Pannicke, C. Ristori, and J. Theobald,
Nucl. Phys. A 430, 21 (1984).

[52] G. Mariolopoulos, C. Hamelin, J. Blachot, J. Bocquet, R.
Brissot, J. Crançon, H. Nifenecker, and C. Ristori, Nucl. Phys.
A 361, 213 (1981).

[53] J. Bocquet and R. Brissot, Nucl. Phys. A 502, 213 (1989).
[54] H. W. Newson, Phys. Rev. 122, 1224 (1961).
[55] I. Kelson, Phys. Rev. Lett. 20, 867 (1968).
[56] A. Iwamoto, S. Yamaji, S. Suekane, and K. Harada,

Prog. Theor. Phys. 55, 115 (1976).
[57] M. G. Itkis, V. N. Okolovich, and G. N. Smirenkin, Nucl. Phys.

A 502, 243 (1989).

034612-20

https://doi.org/10.1016/j.physrep.2007.06.002
https://doi.org/10.1016/j.physrep.2007.06.002
https://doi.org/10.1016/j.physrep.2007.06.002
https://doi.org/10.1016/j.physrep.2007.06.002
https://doi.org/10.1103/PhysRevLett.111.242502
https://doi.org/10.1103/PhysRevLett.111.242502
https://doi.org/10.1103/PhysRevLett.111.242502
https://doi.org/10.1103/PhysRevLett.111.242502
https://doi.org/10.1093/mnras/stv009
https://doi.org/10.1093/mnras/stv009
https://doi.org/10.1093/mnras/stv009
https://doi.org/10.1093/mnras/stv009
https://doi.org/10.1140/epja/i2015-15022-3
https://doi.org/10.1140/epja/i2015-15022-3
https://doi.org/10.1140/epja/i2015-15022-3
https://doi.org/10.1140/epja/i2015-15022-3
https://doi.org/10.1103/PhysRevC.92.034617
https://doi.org/10.1103/PhysRevC.92.034617
https://doi.org/10.1103/PhysRevC.92.034617
https://doi.org/10.1103/PhysRevC.92.034617
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRev.56.426
https://doi.org/10.1103/PhysRev.56.426
https://doi.org/10.1103/PhysRev.56.426
https://doi.org/10.1103/PhysRev.56.426
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.59.767
https://doi.org/10.1103/PhysRevC.59.767
https://doi.org/10.1103/PhysRevC.59.767
https://doi.org/10.1103/PhysRevC.59.767
https://doi.org/10.1016/j.nds.2015.12.009
https://doi.org/10.1016/j.nds.2015.12.009
https://doi.org/10.1016/j.nds.2015.12.009
https://doi.org/10.1016/j.nds.2015.12.009
https://doi.org/10.1103/PhysRevC.71.024316
https://doi.org/10.1103/PhysRevC.71.024316
https://doi.org/10.1103/PhysRevC.71.024316
https://doi.org/10.1103/PhysRevC.71.024316
https://doi.org/10.1103/PhysRevC.77.014310
https://doi.org/10.1103/PhysRevC.77.014310
https://doi.org/10.1103/PhysRevC.77.014310
https://doi.org/10.1103/PhysRevC.77.014310
https://doi.org/10.1103/PhysRevC.89.031601
https://doi.org/10.1103/PhysRevC.89.031601
https://doi.org/10.1103/PhysRevC.89.031601
https://doi.org/10.1103/PhysRevC.89.031601
https://doi.org/10.1103/PhysRevC.93.054611
https://doi.org/10.1103/PhysRevC.93.054611
https://doi.org/10.1103/PhysRevC.93.054611
https://doi.org/10.1103/PhysRevC.93.054611
https://doi.org/10.1038/s41586-018-0780-0
https://doi.org/10.1038/s41586-018-0780-0
https://doi.org/10.1038/s41586-018-0780-0
https://doi.org/10.1038/s41586-018-0780-0
https://doi.org/10.1103/PhysRevC.14.1832
https://doi.org/10.1103/PhysRevC.14.1832
https://doi.org/10.1103/PhysRevC.14.1832
https://doi.org/10.1103/PhysRevC.14.1832
https://doi.org/10.1103/PhysRevC.88.061302
https://doi.org/10.1103/PhysRevC.88.061302
https://doi.org/10.1103/PhysRevC.88.061302
https://doi.org/10.1103/PhysRevC.88.061302
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1016/0375-9474(84)90073-3
https://doi.org/10.1016/0375-9474(84)90073-3
https://doi.org/10.1016/0375-9474(84)90073-3
https://doi.org/10.1016/0375-9474(84)90073-3
https://doi.org/10.1016/S0370-1573(96)00048-8
https://doi.org/10.1016/S0370-1573(96)00048-8
https://doi.org/10.1016/S0370-1573(96)00048-8
https://doi.org/10.1016/S0370-1573(96)00048-8
https://doi.org/10.1103/PhysRev.50.332
https://doi.org/10.1103/PhysRev.50.332
https://doi.org/10.1103/PhysRev.50.332
https://doi.org/10.1103/PhysRev.50.332
https://doi.org/10.1016/0375-9474(68)90687-8
https://doi.org/10.1016/0375-9474(68)90687-8
https://doi.org/10.1016/0375-9474(68)90687-8
https://doi.org/10.1016/0375-9474(68)90687-8
https://doi.org/10.1016/0370-2693(72)90265-1
https://doi.org/10.1016/0370-2693(72)90265-1
https://doi.org/10.1016/0370-2693(72)90265-1
https://doi.org/10.1016/0370-2693(72)90265-1
https://doi.org/10.1016/0375-9474(72)90556-8
https://doi.org/10.1016/0375-9474(72)90556-8
https://doi.org/10.1016/0375-9474(72)90556-8
https://doi.org/10.1016/0375-9474(72)90556-8
https://doi.org/10.1016/S0375-9474(01)01095-8
https://doi.org/10.1016/S0375-9474(01)01095-8
https://doi.org/10.1016/S0375-9474(01)01095-8
https://doi.org/10.1016/S0375-9474(01)01095-8
https://doi.org/10.1016/0375-9474(88)90370-3
https://doi.org/10.1016/0375-9474(88)90370-3
https://doi.org/10.1016/0375-9474(88)90370-3
https://doi.org/10.1016/0375-9474(88)90370-3
https://doi.org/10.1016/j.nuclphysa.2014.07.016
https://doi.org/10.1016/j.nuclphysa.2014.07.016
https://doi.org/10.1016/j.nuclphysa.2014.07.016
https://doi.org/10.1016/j.nuclphysa.2014.07.016
https://doi.org/10.1103/PhysRevC.81.014607
https://doi.org/10.1103/PhysRevC.81.014607
https://doi.org/10.1103/PhysRevC.81.014607
https://doi.org/10.1103/PhysRevC.81.014607
https://doi.org/10.1080/18811248.2000.9714976
https://doi.org/10.1080/18811248.2000.9714976
https://doi.org/10.1080/18811248.2000.9714976
https://doi.org/10.1080/18811248.2000.9714976
https://doi.org/10.3938/jkps.59.1396
https://doi.org/10.3938/jkps.59.1396
https://doi.org/10.3938/jkps.59.1396
https://doi.org/10.3938/jkps.59.1396
https://doi.org/10.1080/18811248.1997.9733759
https://doi.org/10.1080/18811248.1997.9733759
https://doi.org/10.1080/18811248.1997.9733759
https://doi.org/10.1080/18811248.1997.9733759
https://doi.org/10.1080/18811248.1995.9731725
https://doi.org/10.1080/18811248.1995.9731725
https://doi.org/10.1080/18811248.1995.9731725
https://doi.org/10.1080/18811248.1995.9731725
https://doi.org/10.1016/S0375-9474(97)00040-7
https://doi.org/10.1016/S0375-9474(97)00040-7
https://doi.org/10.1016/S0375-9474(97)00040-7
https://doi.org/10.1016/S0375-9474(97)00040-7
https://doi.org/10.1103/PhysRevC.60.064312
https://doi.org/10.1103/PhysRevC.60.064312
https://doi.org/10.1103/PhysRevC.60.064312
https://doi.org/10.1103/PhysRevC.60.064312
https://doi.org/10.1103/PhysRevLett.88.042504
https://doi.org/10.1103/PhysRevLett.88.042504
https://doi.org/10.1103/PhysRevLett.88.042504
https://doi.org/10.1103/PhysRevLett.88.042504
https://doi.org/10.1103/PhysRevC.31.1550
https://doi.org/10.1103/PhysRevC.31.1550
https://doi.org/10.1103/PhysRevC.31.1550
https://doi.org/10.1103/PhysRevC.31.1550
https://doi.org/10.1016/j.nuclphysa.2007.11.002
https://doi.org/10.1016/j.nuclphysa.2007.11.002
https://doi.org/10.1016/j.nuclphysa.2007.11.002
https://doi.org/10.1016/j.nuclphysa.2007.11.002
https://doi.org/10.1016/0370-1573(90)90114-H
https://doi.org/10.1016/0370-1573(90)90114-H
https://doi.org/10.1016/0370-1573(90)90114-H
https://doi.org/10.1016/0370-1573(90)90114-H
https://doi.org/10.1103/PhysRevC.75.064313
https://doi.org/10.1103/PhysRevC.75.064313
https://doi.org/10.1103/PhysRevC.75.064313
https://doi.org/10.1103/PhysRevC.75.064313
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.1103/PhysRevC.23.2104
https://doi.org/10.1103/PhysRevC.23.2104
https://doi.org/10.1103/PhysRevC.23.2104
https://doi.org/10.1103/PhysRevC.23.2104
https://doi.org/10.1016/0375-9474(80)90411-X
https://doi.org/10.1016/0375-9474(80)90411-X
https://doi.org/10.1016/0375-9474(80)90411-X
https://doi.org/10.1016/0375-9474(80)90411-X
https://doi.org/10.1016/0375-9474(84)90191-X
https://doi.org/10.1016/0375-9474(84)90191-X
https://doi.org/10.1016/0375-9474(84)90191-X
https://doi.org/10.1016/0375-9474(84)90191-X
https://doi.org/10.1016/0375-9474(81)90477-2
https://doi.org/10.1016/0375-9474(81)90477-2
https://doi.org/10.1016/0375-9474(81)90477-2
https://doi.org/10.1016/0375-9474(81)90477-2
https://doi.org/10.1016/0375-9474(89)90663-5
https://doi.org/10.1016/0375-9474(89)90663-5
https://doi.org/10.1016/0375-9474(89)90663-5
https://doi.org/10.1016/0375-9474(89)90663-5
https://doi.org/10.1103/PhysRev.122.1224
https://doi.org/10.1103/PhysRev.122.1224
https://doi.org/10.1103/PhysRev.122.1224
https://doi.org/10.1103/PhysRev.122.1224
https://doi.org/10.1103/PhysRevLett.20.867
https://doi.org/10.1103/PhysRevLett.20.867
https://doi.org/10.1103/PhysRevLett.20.867
https://doi.org/10.1103/PhysRevLett.20.867
https://doi.org/10.1143/PTP.55.115
https://doi.org/10.1143/PTP.55.115
https://doi.org/10.1143/PTP.55.115
https://doi.org/10.1143/PTP.55.115
https://doi.org/10.1016/0375-9474(89)90665-9
https://doi.org/10.1016/0375-9474(89)90665-9
https://doi.org/10.1016/0375-9474(89)90665-9
https://doi.org/10.1016/0375-9474(89)90665-9


FULLY MICROSCOPIC SCISSION-POINT MODEL TO … PHYSICAL REVIEW C 99, 034612 (2019)

[58] F. Haddad and G. Royer, J. Phys. G: Nucl. Part. Phys. 21, 1357
(1995).

[59] M. Brack, S. M. Reimann, and M. Sieber, Phys. Rev. Lett. 79,
1817 (1997).

[60] K.-H. Schmidt, J. Benlliure, and A. Junghans, Nucl. Phys. A
693, 169 (2001).

[61] J. Randrup, P. Möller, and A. J. Sierk, Phys. Rev. C 84, 034613
(2011).

[62] T. Ichikawa, A. Iwamoto, P. Möller, and A. J. Sierk, Phys. Rev.
C 86, 024610 (2012).
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