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Effects of in-medium NN cross section and density distribution on the reaction
cross sections of Ne, Mg, and O isotopes with 12C at 1 GeV
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The nucleus-nucleus reaction cross sections of 18–34Ne, 20–36Mg, 16–24O + 12C at one GeV/u are calculated in
the Glauber theory using different models of the nucleon-nucleon (NN) cross sections and nuclear densities.
For in-medium effects, we consider the phenomenological (Ph), geometrical Pauli (GP), and modified combined
(MC) models for the NN reaction cross section. For the density distributions, we used the Sao Paulo (SP),
Skyrme-Hartree-Fock (SHF), and the angle-averaged deformed Fermi (DF) densities. The results are compared
with experiments as well as other theoretical calculations. It is found that the data can, generally, be described
by using the Ph and GP models for in-medium effects with the SP density, which, on the other hand, predicted
smaller radii. A satisfactory explanation of the experimental data is obtained by using more realistic densities
such as SHF and DF with realistic radii, and the MC model for medium modifications, which involve the
combined effect of the phase variation, higher momentum transfer components, and Pauli blocking of the NN
amplitude. The in-medium Ph and GP models when used with realistic densities, cannot describe the data at
1 GeV.
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I. INTRODUCTION

In recent years, great effort and progress has been made
for studying the structure and reactions of nuclei far from
the β stability line, on both the theoretical and experimental
sides [1–10]. Horiuchi et al. [11] calculated the reaction cross
sections of Ne, Mg, Si, O + 12C at intermediate and high
energies, using the Glauber model with the angle-averaged
deformed SHF densities with neglecting medium effects. The
calculated total reaction cross sections consistently agree with
the cross section data on Ne + 12C at 240 MeV/u. However,
considerable disagreement between the calculated and the
measured cross sections for O, Ne, and Mg isotopes on a
12C target at around one GeV/u has been observed. The
resolution of these problems requires further investigations
in both theory and experiment, as they have been concluded
there. Panda et al. [12] have used the Glauber model with
the relativistic mean-field (RMF) densities to calculate the
nucleus-nucleus reaction cross sections of these systems at
intermediate and high energies using the Glauber model with
neglecting medium modifications. The reaction cross section
calculated at 1 GeV strongly overestimated the data. Sharma
et al. [13] calculated the reaction cross sections at about
1 GeV in the framework of the Glauber model using RMF
and SHF densities also with neglecting medium effects on the
NN cross section as Horiuchi et al. and Panda et al. Again
the calculated nucleus-nucleus reaction cross sections overes-
timated the data. For example, for 20O + 12C the spherical and
deformed RMF densities calculated using NL3 interaction,
which predicted closer values to the experimental data than
the other used RMF parameterizations, overestimated the data
by about 50 and 100 mb when using spherical and deformed
densities. The largest reaction cross section has been obtained

by the SHF density, with SEI-I interaction, which much more
overestimated the data by 160 mb (see Table II and Fig. 4 of
Ref. [13]).

In a previous work [14] the total reaction cross sections of
Ne and Mg isotopes colliding by 12C at 240 MeV/u have been
analyzed using the Dirac-Brueckner approach (DBA) [15–22]
and Glauber model, where consistency description of the
data has been obtained. In DBA, the Dirac-Brueckner-Bethe-
Goldstone equation is solved, locally, in momentum space
configuration of two colliding nuclear matters, starting from
the one-boson-exchange potential of Bonn [23] as a bare
NN interaction. This procedure yields a complex interaction
energy and consequently complex optical potentials, which
have been used to calculate the reaction cross sections of
20–36Ne, 24–38Mg + 12C at 240 MeV/u. Medium modifica-
tions are fully incorporated in this relativistic microscopic
approach through the Pauli operator, the modifications of the
Dirac spinors of the single-particle Hamiltonian in the nuclear
medium and the density-dependent effective nucleon mass.
However, the application of this approach for calculating the
optical potential is, normally, limited to intermediate energy
below the pion threshold (∼300 MeV) [24–26], due to diffi-
culties arising from the opening of inelastic channels such as
those associated with pion production or � resonances.

The Glauber model, which can be applied for intermedi-
ate and high energies, has also been used in our previous
calculations [14] of the reaction cross sections of Ne and
Mg isotopes on a 12C at 240 MeV/u. Different models for
in-medium modifications such as the DBA parametrization
(DBAP) [27,28], the phenomenological model [29] and the
geometrical Pauli model [30] have been investigated. The
DBAP is a parametrization of the in-medium NN cross section
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based on the Dirac-Brueckner approach. The Ph model is a
modification of the DBA parametrization, which consisted
in combining the free NN cross sections parametrized in
Ref. [31] with the Brueckner theory results of Refs. [27,28].
In the GP model, introduced by Karakoc and Bertulani [30],
in-medium effects on the NN reaction cross section are in-
cluded by calculating Pauli projection operator, appearing
in the G matrix. It has been found that the Glauber model
satisfactorily described the data at 240 MeV/u when using
the phenomenological model as well as the geometrical Pauli
model for the in-medium effects and the realistic SHF densi-
ties. From this result of our earlier work at 240 MeV/u [14]
and on the calculations of Refs. [11–13] at 1 GeV/u important
questions arise. Why may one expect that the Glauber model
should not apply to higher energetic nuclear reactions? Do
the in-medium modifications in the cross sections make the
difference between lower and higher energies or between the
density distributions of the nuclei? We would expect that
the in-medium modifications are the crucial task here. Thus it
is interesting to investigate the effect of medium modifications
models for the case of high-energy nuclear collisions around
1 GeV/u.

The aim of the present work is to extend our earlier
work at 240 MeV/u [14] to high energy around 1 GeV/u.
We used different models for the density distributions, as
well as medium modifications. For medium modifications, we
consider three different models; the phenomenological, geo-
metrical Pauli blocking and modified combined [32], which
involve combined effect arising due to phase variation, higher
momentum transfer components, and Pauli blocking. For the
density distributions, we consider the Sao Paulo [33], Skyrme-
Hartree-Fock [34–36], and deformed Fermi density models.
These models for in-medium effects and density distributions
will be discussed in detail in Sec. II. Section III presents re-
sults and discussion. A summary and conclusion are presented
in Sec. IV.

II. THEORETICAL DESCRIPTION

The nucleus-nucleus reaction cross section in the optical limit
of the Glauber model can be written, as

σR = 2π

∫ ∞

0
db b[1 − e−χ (b)]. (1)

where,

χ (b) =
∫

dZ
∫

d3r σ NN (E , ρ)ρP(| r − R |)ρT (r). (2)

The vector R is the line joining the centers of the two
colliding nuclei, where R = √

b2 + Z2 and b is the impact
parameter. ρT and ρP are the target and projectile densities
and σ NN [E , ρ = ρT (r) + ρP(|r − R|)] is the isospin aver-
aged nucleon-nucleon (NN) cross section, which depends on
the density of the two interacting nuclei and incident energy.
The functional form of this dependence can be written as [29],

σ NN (E , ρ) = NPNT σ ∗
nn + ZPZT σ ∗

pp + (NPZT + NT ZP )σ ∗
np

APAT
,

(3)

where Zi, Ni, and Ai (i = T or P) are the proton, neutron, and
mass number of the nucleus i. It may be noted that Eq. (1)
gives the reaction cross section, σR, which also includes
any inelastic cross section to bound excited states of the
projectile and target, while the measured is the interaction
cross section σI , σR = σI + σinel. The difference between σR

and σI is estimated and it was found to be at most 100 mb
in a phenomenological way [37]. This difference is expected
to be smaller as it goes closer to the neutron drip line,
since the inelastic cross sections are expected to be small
because they are much more weakly bound. Hence σR can be
approximated to σI [38]. The assumption σR � σI has been
examined in Ref. [38] for the Carbon isotopes for energy
around 280 MeV/u colliding with 12C and it has been found
to be quantified and validated where the sum of the inelastic
cross sections of the target and projectile has been found to be
smaller than the uncertainty on the interaction cross section. A
similar conclusion has been found for magnesium isotopes for
energies around 250 MeV/u [39]. Furthermore, at relativistic
energies, σinel is smaller than the typical errors of σI and,
therefore, σI can be assumed to be nearly equal to σR. Hence,
the Glauber model, Eq. (1), can be used to calculate both
σI and σR [32]. We use this approximation, which has been
used in Ref. [32] as well as by many other authors (see, for
example, Refs. [11–14,38–42]).

The in-medium NN cross sections, appearing in Eq. (3),
are assumed to be factorized as the product of a medium cor-
rection factor F (E , ρ) and the free NN cross sections [14,43],
which reads

σ ∗
NN (E , ρP, ρT ) = σ Free

NN (E ) × FNN (E , ρ). (4)

In the following we discuss three different parametrization
models for including in-medium effects in the NN reaction
cross sections.

A. Medium modifications models

The first model is the phenomenological model, which is
widely used in the literature [5,14,29,44–46] for including
in-medium effects on the NN cross sections, which can be
written as

σ ∗
pp(E ; ρ) = σ free

pp (E ) × Fpp(E , ρ), (5)

σ ∗
nn(E ; ρ) = σ ∗

pp(E ; ρ). (6)

σ ∗
np(E ; ρ) = σ free

np (E ) × Fnp(E , ρ), (7)

where, the free NN cross sections can be written as (in mb
units),

σ free
pp (E ) = σ free

nn (E )

= 13.73 − 15.04(v/c)−1

+ 8.76(v/c)−2 + 68.67(v/c)4, (8)

σ free
np (E ) = −70.67 − 18.18(v/c)−1

+ 25.26(v/c)−2 + 113.85(v/c), (9)

where E is the energy per nucleon of the projectile and
the velocity v/c =

√
1 − 1/γ 2, where γ = E

931.5 + 1. The
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density-dependent factors are given in this model by [29]

Fpp(E , ρ) = Fnn(E , ρ) = 1 + 7.772E0.06ρ1.48

1 + 18.01ρ1.46
, (10)

Fnp(E , ρ) = 1 + 20.88E0.04ρ2.02

1 + 35.86ρ1.9
. (11)

The parameters of this phenomenological model are adjusted
to reproduce the nucleus-nucleus reaction cross sections. The
local density dependence of the NN cross section is used,
where the density is taken as the sum of the target and
projectile densities in each volume element being considered,
i.e., the local density at each point along the trajectory.

The second parametrization model for including in-
medium effects is the geometrical Pauli (GP) model, which
was introduced by Karakoc and Bertulani [30]. In this model
in-medium effects on the NN reaction cross sections are
included by calculating Pauli projection operator, appearing in
the G matrix. The functional form of the in-medium density-
dependent factor FNN is given by [30]

FNN (E , ρ) = 1

1 + 1.892
( 2ρ<

ρ0

)( |ρP−ρT |
ρ̃ρ0

)2.75

×
{

1 − 37.02ρ̃2/3

E , if E > 46.27ρ̃2/3

E
231.38ρ̃2/3 , if E � 46.27ρ̃2/3

, (12)

where ρ̃ = (ρP + ρT )/ρ0, ρ< = min(ρP, ρT ), and ρ0 =
0.17 fm−3. The free NN cross section of this model is given
explicitly in Ref. [30], whose parameters fit the experimental
NN data over a variety of energies, ranging from 10 MeV to
5 GeV.

The third model used for including medium modifications
is the MC model, which has been described in detail by
Ahmed et al. [32]. In this model, the in-medium NN ampli-
tude has been modified to include combined effects arising
due to phase variation, higher momentum transfer compo-
nents, and Pauli blocking. Ahmed et al. used this MC model
and they were able to describe in a satisfactory manner the
O + C reaction cross section data at 1 GeV/u, using harmonic
oscillator densities with realistic radii. Thus the model is
expected to be more appropriate at high energy.

B. Density distribution models

For the proton and neutron density distributions of target
and projectiles we first use the SP density provided by the Sao
Pauli group [33] as a global density. The SP density has the
functional form of the two-parameter Fermi, as

ρp.n(r) = ρ0

1 + exp
( r−R0p,n

a0p,n

) , (13)

where the parameters R0p,n and a0p,n are obtained in Ref. [33],
as

R0p = 1.81Z1/3 − 1.12, a0p = 0.47 − 0.00083Z (14)

R0n = 1.49N1/3 − 0.79, 0n = 0.47 + 0.00046N, (15)

where, Z and N are the proton and neutron number, respec-
tively. It is worth mentioning that the SP density is fitted to

TABLE I. rms radii for Ne isotopes predicted by the SP density
distribution defined by Eqs. (13)–(15).

Nucleus Rn(fm) Rp(fm) Rm(fm)

18Ne 2.445 2.753 2.621
19Ne 2.511 2.753 2.641
20Ne 2.574 2.753 2.665
21Ne 2.634 2.753 2.692
22Ne 2.692 2.753 2.720
23Ne 2.747 2.753 2.750
24Ne 2.801 2.753 2.781
25Ne 2.852 2.753 2.813
26Ne 2.902 2.753 2.846
27Ne 2.950 2.753 2.879
28Ne 2.997 2.753 2.912
29Ne 3.042 2.753 2.946
30Ne 3.087 2.753 2.980
31Ne 3.130 2.753 3.013
32Ne 3.172 2.753 3.047

the calculated results of the Dirac-Hartree-Bogoliubov model
in the stable nuclear region. The results for the SP root-mean-
square (rms) radii are listed in Tables I–III for Ne, Mg, and O
isotopes.

The second model for the nuclear density is the
SHF [34,35], where we perform SHF calculation for both
target and projectiles assuming spherical symmetry, adopting
SKRA force [36], which seems to address the nuclear interac-
tions adequately. The ground state is obtained by minimizing
the energy density functional [34], E (ρ) = EN + EC − Ecm.
The Coulomb energy EC includes both direct and exchange
parts. The center-of-mass energy Ecm is approximated by
the usual approximation Ecm ≈ ∑

i p2
i /(2mA). The nuclear

energy EN is given by a functional of the nucleon density
ρq(r), the kinetic density τq(r), and the spin-orbit-current
density ∇.Jq(r), (q = n, p).

The third model used for the density distribution is the
deformed Fermi distribution, which will be used for Ne and

TABLE II. Same as Table I but for Mg isotopes.

Nucleus Rn(fm) Rp(fm) Rm(fm)

20Mg 2.445 2.900 2.727
21Mg 2.511 2.900 2.740
22Mg 2.574 2.900 2.757
23Mg 2.634 2.900 2.776
24Mg 2.692 2.900 2.798
25Mg 2.747 2.900 2.822
26Mg 2.801 2.900 2.847
27Mg 2.852 2.900 2.874
28Mg 2.902 2.900 2.901
29Mg 2.950 2.900 2.930
30Mg 2.997 2.900 2.959
31Mg 3.042 2.900 2.988
32Mg 3.087 2.900 3.018
33Mg 3.130 2.900 3.048
34Mg 3.172 2.900 3.079
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TABLE III. Same as Table I but for oxygen isotopes.

Nucleus Rn(fm) Rp(fm) Rm(fm)

16O 2.445 2.592 2.519
17O 2.511 2.592 2.549
18O 2.574 2.592 2.582
19O 2.634 2.592 2.616
20O 2.692 2.592 2.652
21O 2.747 2.592 2.689
22O 2.801 2.592 2.726
23O 2.852 2.592 2.764
24O 2.902 2.592 2.802

Mg isotopes,

ρi(=p,n)(r, θ ) = ρ0i

1 + exp
( r−Ri (θ )

ai

) , (16)

where, the proton (neutron) half-density radius is written as,

Ri(θ ) = R0i[1 + β2iY20(θ )]. (17)

To obtain the proton and neutron quadrupole deformation
parameters, β2i, half-density radii, R0i, and diffuseness ai we
have performed RMF calculations in an axially symmetric
deformed basis, using the relativistic mean-field Lagrangian
density, adopting the force parameter NL3* [47,48]. Pairing
correlations have been treated within the BCS method with
constant gap approximation [48,49]. The results of the RMF
quadrupole deformation parameters and root-mean-square
(rms) radii are listed in Tables IV and V for Ne and Mg
isotopes. Following Ref. [48], the quadrupole deformation
parameters, appearing in the Fermi density, β2i are fixed as
calculated from the RMF theory, as listed in Tables IV and V.
The other parameters of the deformed Fermi shape, the proton
and neutron half-density radii and diffuseness are adjusted to
reproduce the rms radii as predicted by the RMF calculations
of Tables IV and V. A similar procedure has been used in

TABLE IV. The calculated RMF neutron, proton, and matter
radii and quadrupole deformation parameters of Ne isotopes.

Nucleus Rn(fm) Rp(fm) Rm(fm) β2n β2p β2m

18Ne 2.703 3.095 2.928 .047 0.155 0.107
19Ne 2.845 3.077 2.969 0.071 0.144 0.110
20Ne 2.927 3.042 2.985 0.076 0.129 0.103
21Ne 3.001 3.003 3.002 0.436 0.423 0.430
22Ne 3.048 2.966 3.011 0.451 0.422 0.438
23Ne 3.081 2.926 3.014 0.375 0.359 0.368
24Ne 3.091 2.880 3.005 0.225 0.237 0.230
25Ne 3.140 2.854 3.029 0.119 0.131 0.123
26Ne 3.210 2.846 3.075 0.037 0.040 0.038
27Ne 3.283 2.852 3.133 0.116 0.132 0.122
28Ne 3.346 2.877 3.186 0.129 0.161 0.141
29Ne 3.394 2.890 3.229 0.051 0.069 0.057
30Ne 3.446 2.908 3.276 0.013 0.008 0.012
31Ne 3.554 2.924 3.364 0.184 0.177 0.182
32Ne 3.638 2.972 3.444 0.382 0.346 0.371

TABLE V. Same as Table IV but for Mg isotopes.

Nucleus Rn(fm) Rp(fm) Rm(fm) β2n β2p β2m

20Mg 2.654 3.170 2.974 0.025 0.104 0.072
21Mg 2.783 3.160 3.004 0.169 0.295 0.241
22Mg 2.895 3.168 3.047 0.425 0.519 0.476
23Mg 2.969 3.145 3.062 0.481 0.535 0.509
24Mg 3.019 3.110 3.065 0.484 0.517 0.500
25Mg 3.071 3.077 3.074 0.432 0.465 0.448
26Mg 3.088 3.030 3.061 0.315 0.365 0.338
27Mg 3.130 3.005 3.075 0.252 0.299 0.273
28Mg 3.196 3.008 3.117 0.265 0.302 0.281
29Mg 3.257 3.007 3.156 0.236 0.281 0.255
30Mg 3.308 3.007 3.191 0.181 0.241 0.205
31Mg 3.345 3.005 3.218 0.083 0.124 0.099
32Mg 3.390 3.015 3.255 0.017 0.015 0.016
33Mg 3.469 3.024 3.314 0.105 0.125 0.112
34Mg 3.550 3.067 3.387 0.328 0.335 0.330
35Mg 3.609 3.090 3.440 0.3948 0.383 0.390
36Mg 3.663 3.111 3.489 0.442 0.415 0.433

Ref. [32], where the parameters of the harmonic oscillator
density were determined by the RMF, adopting NL3* inter-
action.

As in Refs. [12,50] we perform an angle average over the
polar angle θ ,

ρp,n(r) = 1

2

∫ π

0
ρp,n(r, θ )sin(θ )dθ. (18)

It may be important to be noted that, the RMF theory has
been successfully applied to study global properties of stable
and unstable nuclei (see, for example, Refs. [47–49,51,52]). It
has the advantage that it is providing a realistic self-consistent
covariant relativistic description, based on meson theory, for
nuclear structure. Thus taking RMF parameters and using
them in a Fermi shape gives a simple description of the density
distribution of stable and unstable nuclei under the constraint
that its parameters predict realist radii.

III. RESULTS AND DISCUSSION

Figures 1–3 show the reaction cross sections of Ne, Mg,
and O isotopes on 12C calculated at around one GeV/nucleon
using the Glauber model with the SP densities for both tar-
get and projectiles. For the target, 12C, the predicted matter
radius, using Eqs. (13)–(15), is found to be 2.41 fm, which
seems to be reasonable in comparison with that deduced
from electron scattering experiments [53]. The dash-dotted
lines represent the free reaction cross sections calculated
using Eqs. (1)–(9) for the free NN cross section (denoted by
Free1), where, FNN (E , ρ) = FNN (E , 0). The solid lines rep-
resent calculations of the reaction cross sections defined by
Eqs. (1)–(11), which include in-medium effects by the phe-
nomenological model. The dashed lines, denoted by GP1,
represent calculations of the reaction cross sections including
in-medium NN cross sections as geometric effects of the
Pauli operator, as described by Eq. (12) and using Eqs. (8)
and (9) for the free NN cross section. Calculations using the
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FIG. 1. The reaction cross sections of 18–32Ne + 12C, calculated
at about 1 GeV/u using the Glauber model with SP densities.
The solid, dashed, dotted, and short-dotted lines (denoted by PhSP,
GP1SP, GP2SP, and MCSP, respectively) represent the reaction cross
sections calculated using the SP densities and the in-medium NN
reaction cross sections described by the Ph, GP1, GP2, and MC
models. The dash-dotted and dash-double dotted lines represent the
calculation using the SP density and the free NN cross section as
described by Eqs. (8) and (9) (Free1SP) and the that of the particle
data group [30] (Free2SP). The calculations of Horiuchi et al. [11]
and Panda et al. [12] around one GeV/u are shown for comparison.
The experimental data are taken from Ozawa et al. [5].

GP model and the free NN cross sections of the particle data
group [30] are shown in these figures by the dotted lines and
denoted by GP2. The reaction cross section calculated without
medium modifications and using the free NN cross section
of [30] is shown by the dash double-dotted lines and denoted
by Free2. The reaction cross sections calculated with medium
modifications as described by the MC model is shown by the
short dashed lines. The calculations of Horiuchi et al. [11],
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FIG. 2. Same as Fig. 1 but for 20–36Mg + 12C. The experimental
data are taken from Ozawa et al. [5] and Kanungo et al. [54].
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FIG. 3. Same as Fig. 1 but for 16–24O + 12C. The calculation of
Sharma et al. [13], which used the spherical SHF Skyrme force
SKI-I and the RMF interaction NL3 are shown for comparison. The
experimental data are taken from Ozawa et al. [5] and Kanungo
et al. [55].

Panda et al. [12], and Sharma et al. [13] around one GeV/u are
shown in these figures for comparison. The experimental data
are taken from [5,54,55]. As shown from these figures cal-
culations include in-medium NN cross sections through both
the Ph and GP models, generally, reproduced the nucleus-
nucleus reaction cross sections, where a good agreement is
obtained, when the SP density distribution is used. The GP1
and GP2 models produce, slightly, larger nucleus-nucleus
reaction cross sections than the Ph model. Both Ph and GP
models reduced the reaction cross sections than the free
models as expected. The MC model produces much lower
reaction cross sections than the free and than the data. The
calculations of Horiuchi et al. and Panda et al. neither predict
the experimental cross sections nor the trend of data, where
they predicted almost much larger reaction cross sections,
as shown from Figs. 1–3. The nonrelativistic and relativistic
calculations of Sharma et al. [13] of the reaction of oxygen
isotopes overestimated the date as shown for Fig. 3. In Fig. 4
we show calculations of the reaction cross sections of oxygen
isotopes on 12C, as in Fig. 3, but using SHF density with
SKRA parametrization instead of the SP density. As shown
from this figure the SHF density, which is more realistic than
the SP density, produced much larger reaction cross sections
even including medium effects through the Ph and GP models.
On the other hand, the SP density, which generally reproduced
the reaction cross section data predicted, in general, smaller
radii, as seen in Tables I–III. For example, the matter radii
of 20Ne, 24Mg, and 16O predicted by the SP model density
are 2.665, 2.798, and 2.519 fm, respectively, as seen from
Tables I–III, while that predicted by the RMF calculations,
employing NL3* interaction, for 20Ne and 24Mg, are 2.985
and 3.065 fm, as seen from Tables IV and V, respectively. For
16O electron scattering experiments give the value 2.7 fm [53].
A similar remark has been noticed recently in Ref. [32] for
the case of the reactions of oxygen isotopes with 12C, where
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FIG. 4. Same as Fig. 3 but calculated using the density distri-
butions derived from SHF calculation using SKRA parametrization.
The calculations Ahmed et al. [32] are shown for comparison.

they used Slater determinants of harmonic oscillator single-
particle wave functions (SDHO) to describe the densities of
oxygen isotopes. They found that the radii deduced from the
reaction cross section data, using SDHO densities are much
smaller as compared to those obtained using RMF densities.
For example, for 16O the deduced matter radius has been
found to be 2.55 fm, similar to that predicted by the SP model
namely; 2.52 fm, which is smaller than that of the electron
scattering data or RMF � 2.72 fm [32]. In order to describe
the data with the correct realistic radii, they readjusted the
harmonic oscillator parameters of the density distributions to
reproduce the RMF radii and modified the in-medium NN
amplitude at one GeV by considering the effects arising due
to phase variation, higher momentum transfer components,
and Pauli blocking. With these modifications they are able to
reproduce the data for 16–24O + 12C except for 23,24O. In this
work, we used this MC model for the NN cross section in the
calculations of the nucleus-nucleus reaction cross sections and
using realistic SHF densities for both target and projectiles
adopting SKRA interaction. The result of these modified and
more realistic calculations is shown in Fig. 4 by the short-
dashed line. Also shown in Fig. 4 the calculations of Ahemd
et al. [32] for comparison. As shown from this figure the data
are satisfactorily described even better than that of Ahmed
et al., especially for lighter isotopes, where they used modified
harmonic oscillator densities, while densities derived from
SHF calculation are used here.

Figure 5 is the same as Fig. 1 but SHF densities are used
in the calculation of the reaction cross sections instead of the
SP densities. Again the MC model for the NN cross, which
reduces the reaction cross section much more than the other
in-medium Ph, GP1, and GP2 models, generally, described
the data. However, the data are not satisfactorily described,
such as in the case of oxygen isotopes, which are predicted,
in general, to be spherical. This is due to the fact that most of
the Ne and Mg isotopes are predicted to be deformed, as seen
from Tables IV and V.
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FIG. 5. Same as Fig. 4 but for 18–32Ne + 12C.

Figures 6 and 7 show the reaction cross sections of Ne and
Mg isotopes as Figs. 1 and 2 but calculated using the angle-
averaged deformed Fermi density, as described in Sec. II B
where the deformation parameters and rms radii of the DF
density are described by the RMF model with NL3* interac-
tion, as listed in Tables IV and V. The data are satisfactorily
described when using MC model for the NN cross section
with deformed Fermi density, which has realistic radii. The
cross sections calculated using DF density and the in-medium
phenomenological and geometrical Pauli, as well as free mod-
els, overestimated the data. The reason that Ph and GP models
produce larger reaction cross sections than the MC model
is that the MC model considers besides the Pauli blocking
effects, which have also been considered in both Ph and GP
models, other effects of medium modifications arising from
phase variation, and higher momentum transfer components,
which additionally, reduce the reaction cross sections.

Finally, it is important to compare the results of the present
reaction cross section calculations within the Glauber model
at 1 GeV with that of our previous work [14] at intermediate
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FIG. 6. Same as Fig. 5 but calculated using the DF density.
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FIG. 7. Same as Fig. 5 but for 20–36Mg + 12C.

energy. We found that both the Ph and GP models, which
satisfactorily described the data at 240 MeV/u with realistic
densities cannot do the same at high energy around 1 GeV.
In fact, the phenomenological model is a modification of the
parametrization of NN cross section derived from the rela-
tivistic G matrix at intermediate energy. The geometrical Pauli
model is a simple geometrical treatment of the angle-averaged
Pauli blocking operator appearing in the Brueckner G matrix,
which is normally solved at energies less than 300 MeV/u,
due to pion production threshold. Therefore these two models
could be more appropriate to intermediate-energy nuclear

collisions but they could need further modifications in order to
also well work at high energy. However, further investigations
of medium modifications models for other different reactions
at high energy is required. The work along this direction is
underway.

IV. SUMMARY AND CONCLUSION

We studied the effects of in-medium NN cross sections
and nuclear densities on the reaction cross sections of neon,
magnesium, and oxygen isotopes colliding by 12C target at
1.0 GeV/nucleon, in the framework of the Glauber model. In-
medium effects are included through three different NN cross
section models; the phenomenological, geometrical Pauli, and
the modified combined. The latter involves combined effects
arising due to phase variation, higher momentum transfer
components, and Pauli blocking. For the density distributions,
we used the SP, SHF, and DF densities. The deformation
parameters and radii of the deformed Fermi density are deter-
mined by RMF calculation. The Saw Pauli density produces
smaller rms radii than the realistic SHF and RMF densities.
The in-medium modifications are important, where they, in
general, reduce the reaction cross section. The Ph and GP
models, which include Pauli blocking effect, reduce the cross
sections by about 30 mb at all energies, depending on the
model but overestimated the reaction cross section data when
using realistic densities. The data can be reproduced using re-
alistic densities and the MC model for medium modifications,
which include, besides Pauli blocking, the effects arising from
phase variation and higher momentum transfer components,
which additionally reduce the reaction cross sections, and they
are not considered in the Ph and GP models.
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