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Angular momentum of fission fragments
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The strong deformation present immediately after scission has consequences for the angular momentum
population of the fragments as well as the angular distribution of their decay radiation. We find that the
usual spin-cutoff parametrization describes very well the angular momentum distribution associated with the
deformation of the fragments at the scission point. Depending on the deformation, its contribution can be
comparable to the thermal contribution to the angular momentum of the newly formed fragments. The M
distribution of the angular momentum is highly polarized and gives rise to large anisotropies in the subsequent γ

cascade. We treat in detail a typical γ cascade in a daughter nucleus, following usual model assumptions except
for the anisotropy of the initial state. In principle, the observed anisotropy can provide information on the relative
amounts of deformation and thermal energy present at the scission point.
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I. INTRODUCTION

Fission is a very complex nuclear reaction, both before and
after the scission point. In principle the post-scission theory
should be simpler because one is treating ordinary decay pro-
cesses (γ and neutron emission) in nearly isolated midmass
nuclei. However, there are differences from the decays of the
excited nuclei produced in compound-nucleus reactions. Most
importantly, the fission fragments may start in a state of high
deformation aligned along the fission axis. Until recently [1],
the angular momentum of the fragments as been treated statis-
tically, ignoring the specific consequences of the deformation.
Without inclusion of deformation effects, statistical modeling
fails to reproduce average angular momenta by as much as a
factor of two [2].

The goal of this paper is to calculate the effects of the defor-
mation on the angular momentum distribution of the nascent
fission fragments and their subsequent decay. The theory of
the scission process is now under active development and
many details are still obscure. One promising approach to
determine properties of the fragments immediately following
scission is time-dependent density functional theory [3] (see
also Ref. [4]). The relation between deformation and angu-
lar momentum content can be reasonably modeled in well-
established mean-field theories such as Hartree-Fock (HF) or
Hartree-Fock-Bogoliubov (HFB). In the first section below,
we estimate the average angular momentum in deformed
configurations using one of the popular energy density func-
tionals (Gogny D1S). In the section after that we determine
the angular momentum probability distribution by projection.
We find that the shape of the J distribution coming from
deformation is nearly identical to the shape assumed in the
statistical theory, differing only by the parameter controlling
the average width 〈J2〉.

An interesting observable that has hardly been used in
the past is the angular distribution of the decay γ rays. Due
to the alignment of the deformed fragment along the fission
axis, the M distribution of its states favors M = 0 along the
axis. Here, we examine the angular distributions modeling the
cascade from a fully aligned initial population. We find that
the effect on the γ distribution can approach a factor of two
in anisotropy. This effect is certainly measurable even in the
presence of a large contribution from the isotropic quasipar-
ticle contribution. The sign of the anisotropy is opposite for
dipole and quadrupole photons, and in fact the both kinds of
anisotropy have been seen in the final decays to the ground
states of daughter nuclei [5].

Of course the angular momentum distribution also has
contributions from quasiparticle excitations. Typically the
pre-scission state is already highly excited above the collec-
tive potential energy surface and that excitation energy will
be carried over to the post-scission fragments. The strong
alignment of the deformed initial configuration is degraded by
the presence of quasiparticles and both 〈J2〉 and the angular
distributions will be affected. However, in view of all of the
uncertainties in the present theory at the scission point we
have not attempted to make a quantitative estimate of the
resulting cascade angular distributions.

II. ANGULAR MOMENTUM OF ALIGNED
DEFORMED NUCLEI

The deformation and alignment of the fission fragments
requires that the wave function be a coherent superposi-
tion of angular momentum states. To determine the angular
momentum content, we take the wave function from self-
consistent mean-field theory. The first question we address is
the relationship between deformation as characterized by the
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Bohr parameter β and the average squared angular momentum
〈J2〉. The second question is how the angular momentum
is distributed, i.e., the probability distribution P(J ) given its
average for the configuration. These relationships were also
studied in Ref. [1] using different modeling assumptions.

III. MEAN-SQUARE ANGULAR MOMENTUM

We construct deformed configurations using the Gogny
D1S energy functional in the HF approximation, constraining
on the mass quadrupole operator Q0 = 〈�|2z2 − x2 − y2|�〉.
Here, the many-body wave function � is a Slater determinant
of orbitals. It is conventional to characterize the shape by the
deformation parameter β defined as

β = (5π )1/2

3A5/3r2
0

Q0, (1)

where r0 = 1.2 fm.
The general HF formula for the mean-square angu-

lar momentum 〈J2
i 〉 around a Cartesian axis i = x, y, z is

〈�|Ĵ2
i |�〉 = ∑

k,k′ nk (1 − nk′ )〈k| ĵi|k′〉2, where k, k′ label a
complete set of single-particle orbitals and nk (equal to 0
or 1) is the occupation number in the wave function. A
similar formula applies to HFB wave functions [[6], Eq. (49)],
[[1], Eq. (40)].

We carry out the constrained minimization of the energy
functional using the code HFBAXIAL written by one of us
(L.M.R.). We consider several daughter nuclei that are promi-
nent among the products of the 235U(n, f ) reaction, namely
the light fragments 96Kr, 96Sr, and 96Zr, and the heavy frag-
ments 140Te, 140Xe, and 140Ba. Since the scission dynamics
is still obscure and different models can give very different
shapes of the newly formed fission fragments, we do not
attempt to calculate the deformations here but rather consider
a range.

The output wave function of HFBAXIAL is axially sym-
metric and invariant under time reversal. This implies that
the angular momentum satisfies 〈J2

z 〉 = 0 and 〈J2
x 〉 = 〈J2

y 〉.
The code’s text output includes the expectation value 〈J2

x 〉,
from which we obtain 〈J2〉 = 2〈J2

x 〉. Graphs of 〈J2〉β are
shown in Fig. 1 for the six nuclei mentioned in the previous
paragraph. The curves are far from smooth, due to the strong
shell effects in the HF approximation. As the deformation
increases, particles jump to orbitals of higher angular momen-
tum, discontinuously increasing the total. The dashed lines
in the figure are visual fits assuming a linear relationship. A
linear formula covering both sets of nuclei is1,2

〈J2〉 ≈ (0.3 ± 0.05)A3/2β. (2)

To assess the importance of the deformation contribution we
can look to the existing theory on the scission dynamics. In
one extreme, the scission is treated as a statistical process,

1Here and elsewhere, the angular momentum is given in units of h̄.
2Equation (2) is purely phenomenological. It would be interesting

to determine the leading dependence on A and β theoretically,
perhaps using semiclassical methods.

FIG. 1. Angular momentum of various fission fragments as a
function of deformation β. The upper black,blue, and red lines are
for heavy fission fragments 140Ba, 140Te, and 140Xe, respectively.
The lower lines are The other source of angular momentum is the
quasiparticle contribution; we hope to include its effects in a later
publication.for the light fission fragments 96Kr, 96Zr, and 96Sr. The
dashed lines show the fit obtained with Eq. (1).

depending only on the density of states of the daughter frag-
ments [7–9]. In particular, Ref. [8] concluded that the lighter
fragment would be formed with a deformation β ≈ 0.6. In
the opposite extreme, the scission can now be treated without
any statistical assumptions by time-dependent self-consistent
mean field theory [3]. In Ref. [10] it was found that the
deformation of the lighter post-scission fragment of mass A =
105 was in the range β = 0.55–0.7, depending on the energy
functional. Applying Eq. (2), the coherent angular momentum
would be in the range 〈J2〉 = 175–220. This is much larger
than the estimates ∼100 based on statistical modeling [2].
We may conclude that the coherent deformation is potentially
the most important contributor to the angular momentum of
the final state. The other source of angular momentum is the
quasiparticle contribution; we hope to include its effects in a
later publication.

IV. J DISTRIBUTION

Next we analyze the distribution of angular momenta in
the deformed wave function. An aligned axially symmetry
wave function can be decomposed into angular momentum
eigenstates |JM〉 as

|�〉 =
∑

J

aJ |J0〉, (3)

where
∑

J |aJ |2 = 1, and J is restricted to even angular mo-
menta for an even-even nucleus in its ground state. The indi-
vidual probabilities |aJ |2 can be calculated by the projection
formula

|aJ |2 = (2J + 1)
∫ 1

0
dμ〈�|R̂(θ )|�〉PJ (μ), (4)
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FIG. 2. Angular momentum decomposition of a axially de-
formed wave function aligned along the z axis. Black: Eq. (6); red
circles: Eq. (5).

where R̂ is the rotation operator about the x axis, μ = cos θ ,
and PJ is a Legendre polynomial. In practice [11,12], the
overlap 〈�|R̂(θ )|�〉 is very well fitted by an exponential
function of μ. Then the probabilities |a j |2 are computed from
the integral

|aJ |2 = (2J + 1)
∫ 1

0
dμe−C(1−μ2 )PJ (μ). (5)

Here, C is a constant determined from 〈J2〉 = ∑
J J (J +

1)|aJ |2; it is approximately given by D ≈ 〈J2〉/4. The result-
ing distribution for mean square angular momentum 〈J2

p〉 =
〈J2〉 = 100 is shown by the red circles in Fig. 2.

In statistical theory, the angular momentum distribution
is often parametrized by Gaussians in the three Cartesian
directions, P(Ji ) ∼ e−J2

i /2〈J2
i 〉. Assuming this functional form

for the aligned intrinsic state and adding a quantum correction,
we obtain the standard spin-cutoff formula [[5], Eq. (3)]

|aJ |2 ∼ (J + 1/2)e−J (J+1)/2σ 2
, (6)

where σ 2 ≈ ∑
i〈J2

i 〉. This distribution is shown by the black
line in Fig. 2. We see that Eq. (6) is an excellent approximation
to the projection formula Eq. (5).

In fact, the same formula Eq. (6) emerges from the semi-
classical limit of a Gaussian distribution only in the transverse
directions [1]. We note also that Refs. [13,14] also assume that
the angular momentum is purely transverse.

V. STATISTICAL DECAY ANGULAR DISTRIBUTIONS

The γ -ray angular distribution from fission products car-
ries information about the alignment of the deformed frag-
ments. Indeed, significant anisotropies with respect to the
fission axis were observed a long time ago [5]. There will also
be a component due to the Doppler shifts which we ignore
here.

In the γ decay J ′ → J the relative populations of daughter
states ρ(J, M ) are given in terms of the feeding population

distribution ρ(J ′, M ′) as

ρ(J, M ) =
∑
M ′

ρ(J ′M ′)(J ′M ′L M−M ′|JM )2. (7)

Here, L is the multipolarity of the electromagnetic transition
and (J ′M ′ LM − M ′|JM ) is a Clebsch-Gordan coefficient.
The angular distribution p(θ ) of the emitted photon is given
by [15]

p(θ ) = NJ

∑
M ′,M,K

∣∣dL
K,1(θ )

∣∣2
ρ(J ′M ′)(J ′ M ′ L K|J M )2, (8)

where dL
μ,μ′ is the reduced Wigner D function and NJ is a

normalization constant.
We first analyze a very simple cascade that starts from a

pure aligned state of angular momentum (J, M ) = (7, 0). The
cascade proceeds by emitting dipole photons until the final
transition which is quadrupolar. Each dipole decay lowers J
by one unit until the final quadrupole decay. Thus the decay
chain is 7 → 6 → 5 → 4 → 3 → 2 → 0. The population of
the 2+ first excited state remain highly polarized despite the
4–5 preceding γ decays, as may be seen in as the solid line
in the upper panel of Fig. 3. The angular distribution of the
subsequent quadrupolar γ ray is shown in the lower panel
of the figure. It has an easily measurable anisotropy and is
peaked along the fission axis.

The dipole photons in the cascade also show an anisotropy.
The top panel of Fig. 4 shows the distribution of dipole
photons with respect to their angular momentum about the
fission axis. One sees that M = 0 is favored even though
M = ±1 is permitted for the great majority of the transitions
in the cascade. Again the resulting angular distribution (shown
in the bottom panel of the figure) is anisotropic, but now
suppressing emission along the fission axis.

We have confirmed these findings with a more realistic
treatment of the level spectrum in the cascade. The level
density is generated stochastically following the constant-
temperature formula [16,17] ρ(E∗) = exp(−E∗/T )/T , where
E∗ is the excitation energy and the parameter T is set to
1 MeV. Each level is assigned randomly an angular momen-
tum and parity Jπ , except as described below. The probability
distribution for J is given by the spin-cutoff formula Eq. (6).
Here, we assume that the factor σ depends on excitation
energy E∗ as [18] σ = b(E∗)1/4 with the parameter b =
4 MeV−1/4. The stochastic spectrum is modified in two ways.
First, the lowest two states are given spin-parity assignments
0+ and 2+, typical of nearly all even-even nuclei. We also limit
the maximum J = Jmax in the probabilistic determination to
ensure the cascade will not end on an isomeric state.

The decay branching is also treated stochastically assum-
ing that all transitions except the final one are electric dipole
in character, with relative transition rates given by the Brink-
Axel strength function [19]

Tγ ∝ E3
γ 	

Eγ 	(
E2

R − E2
γ

)2 + E2
γ 	2

. (9)

The giant resonance parameters are taken as 	 = 5 MeV and
ER = 15 MeV.
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FIG. 3. Top panel: histogram of M-state populations of the 2+

first excited level in the cascade. Solid line is from the simplified
cascade 7 → 6 → 5 → 4 → 3 → 2 starting from the initial distri-
bution ρ(7, M ) = δM0. Dashed line is from the realistic cascade (see
text). Bottom panel: resulting angular distribution of the γ decay
2+ → 0+

g.s..

The angular momentum of the entry point is taken as
(J, M ) = (8, 0), chosen to be close to average values ob-
tained from phenomenological analyses [20,21]. Its excitation
energy should be a little higher than the neutron separation
energy; we set it to E∗ = 8 MeV. Further details are given in
the Supplemental Material [22].

The resulting populations of M quantum numbers and γ

angular distributions are shown as the dashed lines in Figs. 3
and 4. We see that the qualitative character of the polariza-
tion remain in the more realistic treatment. It is common
to characterize the anisotropy as coefficients of Legendre
polynomials,

p(θ ) = 1 + c2P2(cos θ ) + . . . . (10)

The results of our models are shown in Table I. For the
realistic cascade, we found c2 = −0.2 and 0.4 for the dipole
and quadrupole distributions, respectively.

FIG. 4. Top panel: Dipole γ probabilities as a function of K
of the γ . Solid histogram is from the simplified cascade; dashed
line is from the realistic cascade. Bottom panel: Dipole γ angular
distribution.

The qualitative features of the γ decay angular distribution
were already seen many years ago [5] in a study of the decay
products from the spontaneous fission of 252Cf. Measurements
were presented for transitions from the first excited state to
the ground state in the isotopes 144Ba, 110Ru, and 105Mo;
the measured anisotropy coefficients were c2 ≈ 0.1, 0.3, and
−0.3, respectively. The first two are electric quadrupole
transitions and the signs agree with expectations, as was
indeed noted in the paper. The higher anisotropy suggests
that heavier fragment is more spherical, also expected due
to its proximity to the doubly magic 132Sn. The negative c2

for 105Mo was left unexplained in the paper. We now know
that spin-parity assignments of the ground and first excited
states in that nucleus [23]: the transition is 7/2− → 5/2− and
has a predominantly M1 character. Thus, we expect a dipole
anisotropy, as observed. Overall, the large amplitudes of the
measured anisotropies suggest that quasiparticle excitations
do not dominate the angular momentum distribution of the
newly formed fragments.
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TABLE I. Anisotropy coefficients c2 in Eq. (10). The model
labeled “simple” assumes the decay chain having five stretched
dipole transitions followed by a single quadrupole transition to the
ground state. The model labeled “realistic” is based on the phe-
nomenological level densities and dipole strength function described
in the text. The experimental anisotropies are for the decays from the
first excited state to the ground state reported in Ref. [5].

Model Dipole Quadrupole

Simple −0.3 0.4
Realistic −0.2 0.4
Exp. 144Ba 0.1
Exp. 110Ru 0.3
Exp. 105Mo −0.3

VI. OUTLOOK

We hope that the observable discussed here, the prompt
γ angular distribution, can be used to learn more about the
division of excitation energy in the newly formed fission frag-
ments. Unfortunately, there are too many variables to make
a direct connection. The amount of deformation at scission,
and its energy cost, is still very much uncertain. We believe
that much of the excitation energy in the newly formed fission

fragments is thermal, in the form of quasiparticle excitations,
but we are still lacking a theory of the scission process that can
describe the sharing of thermal excitation energy between the
two fragments. Combining quasiparticle angular momentum
with the deformation will certainly reduce the anisotropy
of the gamma radiation, and that relationship needs to be
understood quantitatively.

Another question that needs to be re-examined is the role
of Coulomb excitation in the post-scission acceleration phase.
Both dipole and quadrupole components of the Coulomb field
of the partner fragment are large in first hundred femtoseconds
after scission. Reference [[5], Appendix] found the effects to
be small in a simple model, but with present-day theoretical
tools one could make a much more reliable estimate.
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