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Elastic magnetic electron scattering from deformed nuclei
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Magnetic form factors corresponding to elastic electron scattering from odd-A nuclei are presented. The
calculations are carried out in plane-wave Born approximation. The one-body properties are obtained in a
deformed self-consistent mean-field calculation based on a Skyrme HF+BCS method. Collective effects are
also included in the cranking approximation. Results on several stable nuclei are compared with the available
experimental information. It is shown that a deformed formalism improves the agreement with experiment in
deformed nuclei, while reproducing equally well spherical nuclei by taking properly the spherical limit of the
deformed model and the effect of nucleon-nucleon correlations. Thus, the capability of the model to describe
magnetic form factors is demonstrated. This opens the door to explore also unstable nuclei of particular interest
that could be measured in future experiments on electron-radioactive beam colliders.
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I. INTRODUCTION

Electron scattering is a unique tool for studying the electro-
magnetic properties of nuclei, getting insight into the nuclear
charge and current distributions. There are several reasons
for using electrons as probes. First, the electron interacts
with the nucleus with the electromagnetic force, which is
the best known interaction, accurately described by quantum
electrodynamics. The coupling constant of the interaction is
also sufficiently weak to not significantly disturb the nuclear
structure under study. In addition, the weakness of the inter-
action allows one to work in first-order perturbation within
the one-photon exchange approximation. Second, in contrast
to the case of real photons, one can vary the energy transfer
and the momentum transfer independently, thus mapping out
the Fourier transform of the densities. Extensive work on
electron scattering has been performed in the past in the
elastic, inelastic, and quasielastic regimes, providing us with
the most accurate measurements on charge radii, transition
probabilities, as well as momentum distributions and spectro-
scopic factors [1-6].

Electron scattering is not only sensitive to the nuclear
charge distribution. Electrons also scatter from the nuclear
electromagnetic current distributions and the experimental
observation of this process provides information on the con-
vection and magnetization currents within the nucleus. In
particular, elastic magnetic electron scattering provides fine

" . .
p-sarriguren @csic.es

2469-9985/2019/99(3)/034325(12)

034325-1

details of the nuclear ground-state convection and magnetiza-
tion current distributions [7-9].

Although magnetic scattering shares the advantages of the
electromagnetic probes, there are significant differences with
respect to charge scattering. Because the angular momenta
of the nucleons pair off within the core, the magnetic prop-
erties in odd-A nuclei are determined to a large extent by
the unpaired nucleon. Therefore, magnetic scattering mainly
provides information on the single-particle properties of the
valence nuclear wave function, whereas the collective aspects
that dominate charge scattering show up only in particular
cases. In addition, the intrinsic magnetic moments of pro-
tons and neutrons are quite similar in magnitude and thus,
magnetic electron scattering will provide information on both,
contrary to the case of charge scattering, which is mostly
sensitive to protons.

Electron scattering experiments have been limited so far to
stable isotopes, but the advantages of electron probes men-
tioned above can be exploited to gain information on unstable
nuclei as well. At present, there is a large activity devoted
to investigate with such probes the properties of stable [10]
and unstable isotopes at radioactive nuclear beam facilities
[11]. The technical challenges to perform such experiments
on unstable nuclei are being considered in new facilities such
as ELISe (FAIR-GSI) [12] and SCRIT (RIKEN) [13]. The
conceptual design and the scientific challenges of the electron-
ion collider ELISe (Electron-Ion Scattering in a Storage Ring)
can be found in Ref. [14]. In SCRIT (Self-Confining Radioac-
tive Ion Target), a circulating beam of electrons scatters off
ions stored in a trap [15,16], and the first elastic electron
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scattering experiment on '3>Xe has already been performed
[17].

New interesting and challenging aspects such as nuclear
halos and neutron skins can be addressed with these new
electron scattering experiments from exotic nuclei. More gen-
erally, the evolution of the charge distributions in isotopic
chains can give valuable information on the extent to which
these phenomena may trigger sizable changes in the charge
radius. This can be a test of the different theoretical models
used for predicting charge distributions. Examples of these
studies can be found in Refs. [18-27].

Similarly to the case of charge scattering, magnetic scatter-
ing has been also studied in stable nuclei from different the-
oretical frameworks [7], including shell model [28-31], rela-
tivistic mean-field [32-35], and deformed mean-field models
[8,9,36-40].

Since the magnetic form factors are mainly determined by
the last occupied orbital of the nucleon, valuable information
on the characteristics of these single-particle properties have
been extracted on stable nuclei. These experiments could
become in the future an alternative tool to study the va-
lence structure of odd-A exotic nuclei, in particular, the wave
function of the loosely bound halo nucleons that may be
only slightly perturbed by the electromagnetic probe. Electron
scattering would be an additional tool to complement the
information obtained by other means. This is for example
the case of magnetic dipole (M1) excitations in nuclei, where
it is well known [41,42] that complementary information is
obtained when using different electromagnetic (y, y'), (e, ')
or hadronic (p, p) probes.

Deformation can be an important issue when dealing with
the structural evolution in isotopic chains, including both
stable and unstable isotopes, undergoing a shape transition.
A model describing properly the isotopic evolution of these
properties is desirable.

The aim of this work is to analyze the dependence on
deformation of the magnetic form factors of odd-A nuclei and
to show the capability of our deformed formalism to describe
both spherical and deformed nuclei. To fulfill this purpose, we
compare our results with the available experimental informa-
tion on stable nuclei.

The paper is organized as follows. In the next section we
present the theoretical formalism to calculate the magnetic
form factors in deformed nuclei, as well as its spherical
limit. Section III contains the results obtained in the case
of spherical and deformed nuclei. Section IV contains the
conclusions of the work.

II. THEORETICAL FORMALISM

A. Cross section and form factors

The formalism of electron scattering from deformed nuclei
that we follow in this work was introduced and discussed
earlier [8,36,37]. In particular, the work in Refs. [37,38]
demonstrated the need for deformation to account for the data
in '81Ta. Actually, magnetic scattering on '®!Ta was a case of
success where first came theory and then experiment [43] con-
firmed the theoretical predictions in Ref. [37]. The method has

been already applied to different cases [39,40,44,45], where
the various sensitivities of the results to different approxima-
tions concerning nuclear structure and reaction mechanism
were studied. In particular, it was shown that the magnetic
form factors of deformed nuclei may differ considerably from
those of spherical nuclei. The sensitivity tests can be further
explored, but the focus in this paper is mainly to investigate
the dependence of the form factors on deformation.

Here, we briefly summarize this formalism. Following the
notation of Ref. [8], the general cross section for electron
scattering of ultrarelativistic electrons for transitions from the
nuclear ground state (/;) to final states (Ir) is given in the
plane-wave Born approximation (PWBA) by

do

o) = 4oy fiod IVLIFLI* + Ve |Fr)?], (1

rec

I,‘—)If

in terms of the Mott cross section

acos(@/2) 1°
ou = | 22| @)
2¢;sin“(0/2)
and the recoil factor,
2¢; sin(6 /2
frec =14 L(/) 3)

M Target

The dependence on the electron kinematics is given by the
longitudinal and transverse Rosenbluth factors,

Vi = (0%, Vr =tan’(/2) — (0%/24%), (4

where the kinematical variables are defined so that an inci-
dent electron with four-momentum k;, = (e;, k;) is scattered
through an angle 6 to four-momentum ky, = (¢y, k¢) by ex-
changing a virtual photon with four-momentum Q = (w, q).
The cross section can be separated into longitudinal (L) or
Coulomb, and transverse (T) parts, weighted with different
kinematical factors.

Because all the charged nucleons contribute equally to the
Coulomb (charge) form factors Fy, they scale like Z? in the
cross section. On the other hand, transverse form factors Fr
are basically single-particle observables that depend mostly
on the properties of the unpaired nucleon in the outermost
shell and do not carry this factor. As a consequence, Fy
dominates at most angles and special kinematic conditions
are needed to maximize magnetic Fr contributions. This is
why backward scattering (6 = 180°) is commonly used to
measure Fr [see Egs. (1)—(4)]. If magnetic form factors were
to be measured in unstable nuclei, this difficulty of backward
scattering will add to those inherent to the scattering from
radioactive beams. In electron scattering experiments from
unstable nuclei, the number of targets available is an important
issue due to the limitations in the number of nuclei that can
be produced and to their short half-lives. The luminosity
L, defined as the ratio of the event rate per time to the
cross section, is a key parameter to asses the feasibility of
the experiment. Luminosities over 107 cm™ s~! have been
already achieved at the SCRIT facility in the 1**Xe experiment
[17] and similar luminosities are expected for unstable nuclei
in the next future [16] that will allow to measure them. The
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luminosities expected in ELISe are also within similar ranges
[14].

The dependence on the nuclear structure is contained in the
g-dependent longitudinal and transverse form factors, which
are written in terms of Coulomb (C), transverse electric (E),
and transverse magnetic (M) multipoles,

P =Y IFP Fr =) UF™ P+ FEPL (5)
20 A>1
which are defined as the reduced matrix elements of the

multipole operators 7°* between initial and final nuclear
states

2 _ (AT (@) 1
2 + 1

For elastic scattering, parity and time reversal invariance

imply that only the even Coulomb and odd transverse mag-

netic multipoles contribute. Then, at & = 180° only odd mag-
netic multipoles will survive in PWBA,

Fr(q)l = Y [F™ . )

A=odd

|F*| ©6)

The magnetic multipole operators are defined as
L") =1 / dr ju(qr)Y}, (@) - (o), @®)

where J(r) is the current density operator. The currents J in
the transverse form factors contain both convection and mag-
netization components that arise from the motion and from the
intrinsic magnetic moments of the nucleons, respectively.

When we calculate the total form factors, we include center
of mass (c.m.) and finite nucleon size corrections. For the c.m.
correction we use the usual factor obtained in the harmonic-
oscillator approximation,

fem = exp[b2¢*/(4A)), )

with the oscillator length b = A!/® fm.

In the magnetization currents, we use bare nucleon mag-
netic moments, u? = 2.793 uy, wr = —1.913 py, corrected
with dipole form factors [46],

GY(¢%) = p{[1 +¢*/(18.23 fm )] 2. (10)

In the convection currents, we use bare orbital g factors,
gh =1 and g} = 0 scaled by g-dependent form factors. The
proton electric form factor is given by a sum of monopoles
parametrized in Ref. [46],

4
a
GEH =) ———. 11
") ;qu/m% (11)
The neutron electric form factor is given by the difference of
two Gaussians [47],

GE(q*) = exp(—q°r7/4) — exp(—¢*r2 /4),  (12)

with r:ZF = 0.507413 4 0.038664 fm?.

The effects of Coulomb distortion can be treated in a
quantitative way in the distorted-wave Born approximation
(DWBA) with a phase-shift calculation [48]. Nevertheless,
for the analysis and interpretation of experimental data on

magnetic scattering, neglecting the Coulomb distortion offers
clear advantages and PWBA is commonly used. In PWBA the
connection between data and the underlying physical quan-
tities is more transparent, and calculations are much easier.
Therefore, it is convenient to convert first the experimental
magnetic cross sections into plane-wave form factors that
can be used in PWBA interpretation. The most important
effect of Coulomb distortion can be accounted for by using
an effective momentum transfer. This procedure was done
in the data used in this paper (taken from Ref. [7]) and
therefore, the experimental form factors were converted into
plane-wave form factors that can be directly compared with
PWBA calculations.

It is worth noting that, in DWBA, backward electron
scattering may receive also longitudinal contributions that
could mix with the transverse ones. Then, a careful sub-
traction of longitudinal contributions should, in principle, be
done before interpreting the backward scattering as purely
transverse. These effects were studied in Ref. [49] concluding
that on heavy deformed nuclei the distortion effects enhance
somewhat the cross section at low g, while PWBA is reliable
at larger ¢ values beyond 1 fm~!. For the medium-mass nuclei
and magnetic multipoles considered in this work, these effects
are not expected to be important.

B. Form factors in a deformed formalism

The ground state of axially symmetric deformed nuclei is
characterized by angular momentum I, projection along the
symmetry axis k, and parity . Initial and final states in Eq. (6)
are the same for elastic scattering (/k™).

The magnetic F** multipole form factors can be written
in terms of intrinsic form factors F** weighted by angular
momentum-dependent coefficients. To lowest order in an
expansion in powers of the total angular momentum, the
intrinsic multipoles depend only on the intrinsic structure
of the ground-state band [8,9]. The transition multipoles in
Eq. (7) for the elastic case I; = I; = k can be written as

FYM% o = (kkXO |kk) FM* 4 (k. — k & 2k|kk) For*
AMA+1)
+ [

V2

JFM* are the transverse multipoles of the collective rotational
current (rotational multipoles) that depend on the nuclear
rotational model used to describe the band [8,9]. The single-
particle multipoles F* and F3* depend only on the single-
particle intrinsic wave function of the odd nucleon if the
even-even core is time-reversal invariant, as we assume in this
work. They are different from zero only for k 7 0 bands and
are given by,

(kk).O|kk) Fp'*. (13)

F = (el T 1), (14)
o a
I = (e Ty 1) +ak,1/zﬁf,g“. (15)

Tlﬁ"’ * is the u component of the M A tensor operator, see Eq. (8)
and Ref. [2]. ¢ and ¢; are the wave functions of the odd
nucleon and its time reverse, respectively, and a = (¢«|j+|Pz)
is the decoupling parameter for k = 1/2 bands.
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As we can see from the above expressions, the magnetic
form factors in odd-A nuclei receive two types of contribu-
tions, single-particle and collective. While the former depends
strongly on the single-particle state occupied by the unpaired
nucleon, the latter depends on the rotational properties of the
even-even core. The interplay between these two types of
contributions and their relative intensities were discussed in
Ref. [40]. It was found that the single-particle form factors
are dominant at most g values. They depend on the quantum
number k of the band, on the neutron or proton character of the
odd nucleon, as well as on the mean field used to generate the
single-particle states. The coupling of the unpaired nucleon
to the deformed core and the currents connected with the
collective rotation play also a role.

In the HF4+-BCS method for axially symmetric deformed
nuclei, the wave function for the i state is written in terms of
the spin components qb;’ and ¢; as [50],

¢i(R,0) = ¢, (r, 2) exp(iA~¢) x+(0)
+ ¢ (r,2)exp(iAT @) x-(0). (16)

The variables r, z, and ¢ are the cylindrical coordinates of the
radius vector R. x4 (o) are the spin wave functions and At =
Q; £ 1/2 > 0, where €; is the projection along the symmetry
axis of the total angular momentum, and it characterizes the
single-particle Hartree-Fock solutions for axially symmetric
deformed nuclei, together with parity ;.

The wave functions ¢; are expanded into eigenfunctions
Yo (R, 0) of an axially deformed harmonic oscillator poten-
tial,

$i(R,0) =) Ciyu(R,0), (17)

with o = {n,, n,, A, X}.

In the present work, the mean field of the odd-A nucleus
is generated within the equal filling approximation (EFA),
a prescription used in self-consistent mean-field calculations
that preserves time-reversal invariance. In this approximation
half of the unpaired nucleon sits in a given orbital and the
other half in the time-reversed partner. The odd nucleon
orbital, characterized by €2; = k and 7;, is chosen among those
around the Fermi level, according to the experimental spin
and parity values. The EFA should be in our view the first
reasonable attempt to describe odd-A nuclei because of its
numerical advantages and of its reliability when comparing
with the results obtained from more sophisticated approaches.
Such a comparison has been carried out in Ref. [51], where the
EFA was compared with the exact blocking procedure with
time-odd mean fields fully taken into account. It was shown
that both procedures are strictly equivalent when time-odd
terms are neglected. Different prescriptions for the time-odd
coupling constants were also explored in Ref. [51], showing
that the impact of the time-odd terms is quite small. The final
conclusion was that the EFA is sufficiently precise for most
practical applications. A microscopic justification of the EFA
was given in Ref. [52], in terms of standard procedures of
quantum statistical mechanics.

Time-odd fields vanish in the ground state of even-even
nuclei, but they are different from zero in / > 0 nuclei, where

the time-reversal symmetry is broken. Our knowledge of the
coupling constants of the time-odd terms is unfortunately still
very limited. They could be constrained by experimental data
on odd-A nuclei, but their ability to do so is still an open issue
[53,54]. It would be certainly interesting in the future to check
the impact of going beyond the EFA by including explicitly
odd terms in the Skyrme interactions to be adjusted to data
on elastic magnetic electron scattering from odd-A nuclei. All
the results presented in this work correspond to the Skyrme
interaction SLy4 [55], which has been thoroughly tested on
many nuclear properties along the full nuclear chart.

The explicit expressions for all the intrinsic form factors
in Egs. (14) and (15) in terms of these wave functions can be
found in Refs. [8,37]. Expressions for the intrinsic rotational
multipoles ]-'}y * can be also found in Ref. [8,9] for different
microscopic (projected Hartree-Fock and cranking), as well as
macroscopic (rigid rotor and irrotational flow) models.

C. Spherical limit

In the spherical limit, the single-particle wave functions
contain a single angular momentum component, so that the
odd-nucleon wave function ¢ contains a single component
¢;j. Thus, in this case j = k = I,.

In this limit there are no collective magnetic multipoles
(FM* = 0) and the intrinsic single-particle form factors are
given by the following expressions:

F = 15" 195

= ;UjkOUJ')((P‘HTMHW') (18)
2/ +1 ! "

= (¢jj|f21,m|¢_>jj)
=ﬂu—szj|jj><¢,-||fm||¢,->. (19)
2j+1

According to Eq. (6), for spherical nuclei one has
1 N

FM | oh = ——(;|IT"*|9,). 20
|sph T l(<¢>]|I l;) (20)
On the other hand, using Egs. (18) and (19), one can see
that FM*| ¢ in Eq. (13) is related to F*|;, by a geometrical

factor i} given by

(J —JA 2j|jj>2]
(jjr01j )

These coefficients are given explicitly by the following ex-

pressions for the two cases A < 2j and A = 2j:

= <,-,-m|jj>2[1 + 812j @21

;<2j I (2j + 1)!(21:)! ’ 22)
Qi+ A+ DI — )

;:2/‘ _ 21: +1 |: [(2j.)!]2i|. 23)
4j+1 “@n!

In the next section, we denote by FM*| ;. the form
factor obtained with the deformed codes for the case of odd-A
spherical nuclei using the above equations,

-
F* |son vimic = [17] FM laer (24)
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TABLE I. Calculated and measured charge root-mean-square radii r, [fm], quadrupole deformation parameter 3, spectroscopic nuclear

electric quadrupole moment Qy,;, [b], and magnetic moments © [uy].

Nucleus rr Ve th Feexp [63] ﬁp Qlaboralory.th Qlaboratory,exp [64] Mth,sph Meth,def Mexp [64]
70 5/2t 27429  2.6932(75) —0.034 —0.009 —0.02578 —1.913  —1.946 —1.89379(9)
BMg 5/2%  3.0868  3.0284(22) 0.338 0.167 +0.199(2) —-1.913  —0.864 —0.85545(8)
2si 1/2*  3.1434  3.1176(52) —0.172 - - —1.913  —0.739 —0.55529(3)
K 3/2t 34509  3.4349(19) 0.026 0.014 +0.0585(6) +0.124  +0.116 +0.39157(3)
#Ca 7/2- 34910  3.4780(19) —0.020 —0.027 —0.090(2)/ — 0.066(2) —1.913  —1.936 —1.5942(7)
Sty 7/2-  3.6233  3.6002(22) —0.027 —0.047 —0.043(5) +5.793 45817  +5.1487057(2)
¥Co 7/2- 37891  3.7885(21) 0.116 0.255 +0.41(1)/40.35(3) +5.793  +5.152 +4.627(9)
SNb 9/2t 43237  4.3240(17) —0.042 —0.216 —0.37(2)/ — 0.32(2) +6.793  +6.691 +6.1705(3)
151 9/2t 46175  4.6156(26) 0.090 0.632 +0.81(5) +6.793  +5.968 +5.5408(2)

with FM* |4 as in Eq. (13) and n} as in Eq. (21). These calcu-
lations are applied not only to the spherical nuclei (\70, *K,
#1Ca >V, and > Nb), but also to the deformed nuclei (Mg,
8i, ¥Co, and '® In) in the limit of zero deformation, using
constrained HF+BCS solutions for 8 = 0. The geometrical
factors n? in Eq. (24) are due to the loss of a favored intrinsic
direction that takes place when one goes from the deformed
to the spherical limit.

D. Natural orbitals and nucleon correlation effects on electron
elastic magnetic scattering from nuclei

It is known (see, e.g., Refs. [56,57]) that many experi-
mental data of scattering and reactions on nuclei show the
existence of sizable nucleon-nucleon (NN) correlation ef-
fects on nuclear properties that cannot be described correctly
within the mean-field approximation in the nuclear theory.
This concerns mainly the form of the single-particle wave
functions, the occupation probabilities, the spectral functions,
the momentum distributions of nucleons and clusters, and
others. It became possible to restore the single-particle picture
in the methods in which the NN correlations are accounted
for by using the so-called natural orbitals (NOs) and natural
occupation probabilities within the NO representation [58]
of the one-body density matrix (OBDM) that corresponds to
the correlated ground state of the system. The NOs and the
natural occupation numbers for the nucleus with A particles
can be obtained by the diagonalization of the OBDM in a
given model solving the equation:

/dl"p(l‘, )Y () = ng Yo (r), (25)

where V¥, (r) are the NOs and n, are the natural occupation
numbers that fulfill the conditions:

0<n, <1; ZnazA. (26)

Thus, in the NO representation [58] the OBDM has the form:

P, 1) =" na P () (r). 27)

In the present work, the NOs related to the OBDM in the
coherent density fluctuation model (CDFM) [56,57,59-61]

are obtained for different nuclei and used in the calculations
of the magnetic form factors.

The CDFM is based [56,59] on the §-function limit of the
generator-coordinate method [62]. The OBDM in the model
has the form:

p(r,r') = / |F0)I? pe(r, 1')dx, (28)

being an infinite superposition of the OBDMs p, (r, r’) related
to the one in the plane-wave case:

jl(kF(X)Il'—r’l)@( |r+r’|>
S T Ve x — ’
kg ()l — 1’| 2

px(r, ') = 3pp(x)

(29)
with
3A
Po(x) = ek (30)
372 173 o 97A\ '3
kr(x) = (—,Oo(X)> =—, a= <—) . 3D
2 X 8

The weight function | F (x)]? in (28) in the case of monotoni-
cally decreasing density distributions (dp(r)/dr < 0) can be
obtained from the density:

FeP = ——— 220

po(x) dr

(32)

The applications of the NOs to studies of the magnetic form

factors are a part of general studies of the correlated OBDMs
and their usage to analyses of nuclear states and processes.

III. RESULTS AND DISCUSSION

The nuclei studied here have been chosen because exper-
imental information on elastic magnetic electron scattering
form factors is available and a comparison with the calculated
ones can be performed to test the reliability of the theoretical
models.

Table I shows ground-state properties of the nuclei un-
der study, namely, charge root-mean-square radii r., spec-
troscopic electric quadrupole moments Qy,,, and magnetic
moments w. The results are compared with experimental data
from Ref. [63] for radii and from [64] for quadrupole and
magnetic moments.
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The relationship between the intrinsic quadrupole moment
Qo and the quadrupole deformation parameter ), is given by

5 2
Qo =/ =Ze(r") By, (33)
T

where (r?) is the nuclear mean-square radius. The measured
quadrupole moment Qy,, is related to the intrinsic quadrupole
moment Oy by

32— I(I + 1)6
I+ DQRI+3)

The measured electric quadrupole moments in Table I corre-
spond to ground states I = k. Of course, Qj,p, = 0forl/ =k =
1/2.

The magnetic moments in the deformed case iy gef are
obtained from the expression,

Oy = Qo. 34

2

I+1

= grl + [gx — gr + 8k.1/2(21 + D)(—1) 12/ 28],

(35)

where gg, gk, and gy are defined in Ref. [8] and calculated in
the cranking approximation. We also show for comparison the
Schmidt values g spn Obtained in the spherical limit.

The agreement between the calculated and the measured r,
is quite good, especially in the medium-mass nuclei from 2°Si
to 15In, where the error is less than 1%. This error is slightly
larger in the lighter nuclei. The quadrupole deformation pa-
rameters B, in Table I show that the isotopes 170, ¥K, YCa,
31y, and **Nb could be treated as spherical, while Mg, 2Si,
(o, and "In, should be treated as deformed. The calculated
and measured Qj,, agree in sign, as well as in magnitude in
most cases.

Concerning magnetic moments, for the spherical nuclei
(70, ¥K, #'Ca, 'V, and >Nb), both the Schmidt and the
deformed values show a reasonable agreement with the exper-
imental data, except in the case of 3K, where the calculations
overestimate the data in both cases. On the other hand, for
the deformed nuclei (ZSMg, 28, 59Co, and HSIn), there is a
clear improvement of the agreement with experiment in the
deformed formalism.

The reason why deformation does not improve the results
on spherical nuclei is simply that this is not a proper model to
describe them. For odd-A nuclei, the deformed model we use
is valid for well-deformed nuclei where the coupling between
the unpaired particle and the rotation of the even-even core
can be treated in the rotor plus quasiparticle approximation
(using Skyrme HF+BCS single-particle states). The spherical
model for odd-A nuclei assumes that the ground-state spin /
and parity 7 are those of the single nucleon determined from
the quantum numbers of the last filled spherical orbital, / = j,
7 = (—1)%. Typically, the deformed model can be applied
when the quadrupole deformation parameter 8 is larger than
0.1, whereas the spherical model is valid for zero or very small
deformations. Nuclei with small intrinsic deformations, such
as those in Table I (170, 8 = —0.034; °K, 8 = 0.026; *'Ca,
B = —0.020; °'V, B = —0.027; *Nb, B = —0.042) can be
considered to be spherical or rather soft nuclei, where the

o
|
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|
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FIG. 1. Magnetic form factors of 7O (I” = 5/2+) decomposed
into M1, M3, and M5 multipole components in the deformed model
(top) and in its spherical limit (middle). We also show (bottom) the
results from standard spherical calculations alone and together with
CDFM (see text). Data are taken from [7,66].

deformed formalism does not imply necessarily an improve-
ment over the spherical formalism. It is worth mentioning
that in the case of >Nb, where the deformed formalism
improves somewhat the magnetic moment, the deformation
is larger than in the other nuclei considered as spherical.
The description of these soft nuclei could be refined with a
more sophisticated treatment of the coupling of single-particle
and collective aspects, but this is beyond the purpose of the
present study. In any case, in the soft nuclei, the corrections
introduced by deformation are rather small and do not change
significantly the spherical results.

A. Spherical nuclei

In this section we study the magnetic form factors in sev-
eral nuclei that according to Table I can be taken as spherical,
namely, 170, ¥K, #'Ca, >'V, and *>Nb.

In Figs. 1-5 we show the calculations from the deformed
model in the top panels. The middle panels contain the results
in the spherical limit defined by Eq. (24). The geometrical
factors n; relating the spherical and the deformed form factors
in Eq. (21) are given explicitly in Table II for each j state and
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TABLE II. Geometrical factors [n} in Eq. (21)] for j states and A multipoles.

1/2 3/2 5/2

72 9/2

A 1 1 3 1 3 5 1

njk. 1 060 0.60 0.7143 0.1190 0.5476 0.7778 0.2121

5 7 1 3 5 7 9
0.0163 0.5335 0.8182 0.2937 0.0419 0.0019 0.5263

A multipole. It is worth noting that, in the spherical limit, there
are no collective contributions F'* from rotations of the core.
The bottom panels show a comparison between the results in
the spherical limit (sph limit) with the results obtained from
a standard spherical calculation (st sph) based on the code by
Blok and Heisenberg [65]. This comparison helps us to check
the reliability of the spherical limit. We also test the role of NN
correlations (st sph + CDFM) by incorporating these effects
and comparing the results. Correlation methods beyond the
mean-field picture are needed, especially to account for the
behavior at high momentum transfer. The NO representa-
tion is a convenient way to deal with these correlations. In
Ref. [57] NOs, obtained within the CDFM, were used to
calculate electron magnetic scattering form factors in '’O and
41Ca, which are examples of nuclei with a single nucleon

def 39

| \HHH‘ | \HHH‘ | \HHH‘ 1L L1

—_
' o: '
IBLALLL IR B R RRLL AL

| \HHH‘ | \HHH‘ | \HHH‘ 1L LI

—_
' o- '
IRLLALLL B EALLL IR RLLL B RLL

—— sph limit
--- stsph
-=-- st sph + CDFM

1 1‘.5 2 2.5
-1
q(fm )

FIG. 2. Same as in Fig. 1, but for **K (I* = 3/2%) decomposed
into M1 and M3 multipole components. Data are taken from [7] and
references therein.

| \HHH‘ | \HHH‘ | \HHH‘ I

[a—
o: '
URLLALLL B AL LU IR L

—_
(=]
(=]
(=]
W
W

outside a doubly closed core. In this work we extend those
calculations to other spherical nuclei.

Figure 1 for 70O (I" = 5/2%) shows the first example of
this comparison. Data are from Refs. [7,66]. In the deformed
case, contributions from the M3 multipole are negligible due
to the reduction factor 7]? = 0.119, but in the spherical case
it makes a difference by filling the region between the two
peaks. The first peak is totally due to the M1 multipole, while
the second peak and the tail at large ¢ is determined by the
M5 multipole. The spherical description clearly improves the
agreement with experiment due to the geometrical factors
that scale the various multipoles. The agreement between the
results from the spherical limit and the results from Ref. [65]
is remarkable, which is the general trend observed in all
cases studied in this subsection. The main effect of the NN

10 T ‘ ‘ ‘ ‘41‘ 3

E def o Ca E

107 F et 3
Cha: :
N\./ o ]
= sl |
10° 3

t f i

1 0-6 El { ! —+— — Total |+ — 15

F  sph limit 41 ]

- 3 Ca 1|

— 10'F 3
o 8 ]
Nv - ]
sl |
10° 3

. w i

107 Pty '41‘ e

- Ca -

— 10°F 3
o 3 ]
-~ f 4]
EORE Y h Timit ‘ ]
10_5 — sph limi N 5

—— stsph \ 3

-—. stsph+ CDFM hi .

-6 ! I L L L

100705 1 15 2 25 3 35
-1
q (fm )

FIG. 3. Same as in Fig. 1, but for #'Ca (I” = 7/2~) decomposed
into M1, M3, M5, and M7 multipole components. Data are taken
from Ref. [67].
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FIG. 4. Same as in Fig. 1, but for °'V (I* = 7/27) decomposed
into M1, M3, M5, and M7 multipole components. Data are taken
from Refs. [7] (circles), [68] (triangles), and [69] (squares).

correlations calculated with natural orbits within the CDFM
[57] is to modify the tails by shifting the form factors to higher
q values, thus improving the agreement with experiment. This
feature is also observed in all cases studied.

Figure 2 shows the same results, but for **K (I” = 3/2%).
Now, M1 (M3) determines the first (second) peak. The en-
hancement of the multipoles in the spherical limit improves
somewhat the agreement with experimental data. The effect
of the NN correlations is similar to the previous case. There
is a difficulty in the description of the region 1 < ¢ < 2 fm~!,
where the data are overestimated by the calculations. This is
the region where the M3 multipole is dominant.

In Fig. 3 we show the results for 'Ca (I =7/27). In
the deformed case we get a three-peaked profile. The two
first peaks are due to the M1 multipole, while the third peak
is determined by M7. M3, and M5 represent a negligible
contribution, partly due to their geometrical factors (see Ta-
ble II). In the spherical limit all the multipoles, but especially
M3 and M5, are enhanced with respect to the deformed
case, producing a much better agreement with experiment. In
particular, M3 and MS5 fill the total form factor in the range
between 0.5 < g < 2fm™', getting the results closer to the
data from Ref. [67], although slightly overestimating them

F.’(q)

P') ool v cd o ol ol d vl o cond vl ol o cod el ol o 10

=
Nv
[_4
Fy
A .A 'l ,'l N ,,
10°F] LR
- [i Il Il llll\ \\/ -'\“ hilka
1025 T T T T T 0 T
0°F Nb
30
—~ 107E
o 4[]
~~ 10
LDF -5
107k — sph limit
6 -—-- stsph
10 € .= stsph+ CDFM N
10'77 Il Il Il Il Il -
0O o5 1 15 2 25 3 5
-1
q(fm )

FIG. 5. Same as in Fig. 1, but for *Nb (I” = 9/2*) decomposed
into M1, M3, M5, M7, and M9 multipole components. Data are taken
from [7] (circles), [70] (squares), and [71] (triangles).

in the region 1 < g < 2 fm~!. The tails are again improved
when NN correlations are included.

Figure 4 shows the results for >'V (I* = 7/27) with data
from [7,68,69]. Again, M1 determines the first peak and M7
the broad second peak and the tail. The spherical limit with
the multipoles enhanced reproduces better the data. The NN
correlations improve the decay of the tail at large momentum
transfer.

Finally, Fig. 5 for ®*Nb (/™ = 9/2%) shows that, in the
deformed case, M1 is responsible for the two first peaks in the
form factor and M9 determines the third peak and the structure
of the tail at high momentum transfer. The role of M3, M5, and
M7 is irrelevant due to the reduction factors. In the spherical
limit, all the multipoles play a role. M1 determines the region
below ¢ = 0.5 fm~!, M3 between ¢ = 0.5 and ¢ = 1 fm~!,
M5 between ¢ = 1.0 and ¢ = 1.5 fm~!, M7 between ¢ =
1.5 and ¢ = 2.0 fm™!, and finally M9 the behavior beyond
g =2.0fm~!. The final result is a smeared profile in much
better agreement with the experiment [7,70,71]. The NN
correlations improve slightly the agreement with experiment.

In summary, we have found that in the case of the odd-A
spherical nuclei studied, the spherical formalism reproduces
quite reasonably the main features of the elastic magnetic
form factors measured. The results from standard spherical
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FIG. 6. Magnetic form factors of Mg (I" = 5/2%) in the de-
formed formalism and in its spherical limit, as well as in the spherical
CDFM (top). The multipole decomposition is shown in the deformed
model for single-particle contributions (middle), and including col-
lective contributions from the rotating core in the cranking approxi-
mation (bottom). Data used in Ref. [7] are taken from [70] (circles)
and [72] at different kinematical conditions (squares and triangles).

formalism perfectly agree with the results obtained in the
spherical limit of the deformed formalism. The latter is shown
to be inadequate to describe spherical or soft nuclei with
very small deformations, unless we previously rewrite the
corresponding equations in the spherical limit. NN correla-
tions modify the high-¢ tails of the form factors (g beyond
2fm~"), improving the agreement with experiment. On the
other hand, as we shall see in the next section, the deformed
formalism is needed to describe properly the measured form
factors, as it was also necessary to account for the values of
the experimental magnetic moments in deformed nuclei.

B. Deformed nuclei

In the next figures, Figs. 6-9, we compare in the top panels
calculations from the deformed and spherical formalisms in
the case of deformed nuclei, that according to Table I are
25Mg, 2984, ¥Co, and 'PIn. In this case, to calculate the
spherical limit a HF+BCS calculation constrained to zero
deformation has been performed for each nucleus. In the
middle panels we show the total magnetic form factor from

10 E T T 3
A 29. 7

r N Sl ]

107 N 3
= 107 E
2 3
~ = ]
= 10° E
; -—- sph limit \g

10 F =+ def (s.p) Ml =

E — def (s.p.+core) M1 N

'87 1 1 1 1 1 1 ]

10 05 1 15 2 25 3 35

S

q (fim™)

FIG. 7. Magnetic form factors of 25i (I" = 1/2") in the de-
formed and spherical models. Only the M1 multipole contributes.
Data are taken from Ref. [7] and references therein.

the deformed model decomposed into multipolarities with
single-particle contributions only. The bottom panels show
the results including rotational collective contributions from
the core Fi'*, calculated in the cranking model. Explicit
expressions for these contributions can be seen in Ref. [8].
We studied in the past [40,44] the effect of these collec-
tive rotational contributions from different microscopic and
macroscopic models and concluded that they are, in general,
small compared to single-particle contributions. They are only
expected to show up in the M1 multipoles at low g and do
not differ much from one rotational model or another. Thus,
we opted here for calculations from the cranking model that
produce better moments of inertia.

Figure 6 shows the results for Mg (I” = 5/27%) with data
taken from Refs. [7,70,72]. In the top panel we show the
deformed calculations compared with the spherical limit, as
well as with the standard spherical calculation with CDFM
correlations. We observe in the deformed case a clear im-
provement of the agreement with experiment. The first peak is
due to M1, whereas the second is due to M5, with a negligible
contribution from M3. We can see that the contribution of
the core rotational currents appears mainly in the first peak,
due to the effect on M1 at low g. This contribution improves
the agreement in the first peak. The high-g behavior is deter-
mined by the M5 multipole, which is practically unaffected
by Fal5.

In the next figure, Fig. 7, we show the results for »Si
(I = 1/2%). In this case only the M1 multipole contributes
and one panel is enough to show the various contributions.
We get a much better agreement with data [7] in the deformed
case. We should note that the improvement is due directly
to the structure of the deformed orbital in comparison to the
spherical, because in this case the M1 multipole is not reduced
by the geometrical factor n?. There is practically no contribu-
tion from the core rotational current, even though in this case
we have an extra contribution from the core proportional to
the decoupling parameter a = 1.166 [see Eq. (15)].

Figure 8 displays the results for the nucleus *Co (I” =
7/27). The data from Refs. [7,71,73] are better reproduced by
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FIG. 8. Magnetic form factors of ¥Co (I” =7/27) in the de-
formed and spherical models (top). The multipole decomposition
is shown in the deformed model for single-particle contributions
(middle) and including collective contributions from the rotating core
in the cranking approximation (bottom). Data used in Ref. [7] are
taken from [73] (circles) and [71] (triangles).

the spherical case at low and high g values, but the deformed
calculations reproduce better the whole structure of the first
peak including the fall of the curve. The filling of the form
factors in the range 1 < g < 2 fm~! produced by the spherical
calculation is not observed experimentally, which seems to
favor the deformed picture. This could be an indication that we
are dealing in this case with small deformations, see Table I.
We can see again a small contribution from the core rotational
current in the first peak that improves slightly the agreement
with experiment.

In the case of SIn (I” =9/2%), Fig. 9, the data from
Ref. [7] seem to show three peaks, which are better described
in the deformed picture. The spherical description smears too
much the profile of the curve. In this nucleus, collective effects
do not play a significant role.

It is worth noting that in the cases of >°Co and '"°In, the
form factors at low ¢ that determine the magnetic moment
of the nucleus are quite similar in the cases of spherical and
deformed calculations, with somewhat larger values in the
spherical case. This is correlated to the values of the magnetic
moments quoted in Table I. We can see that the magnetic
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FIG. 9. Same as in Fig. 8, but for '“In (/* = 9/2*%) Data are
taken from Ref. [7] and references therein.

moments from spherical and deformed calculations are close
to each other with slightly larger values in the spherical case.
On the other hand, in the cases of 2>Mg and *Si, the behavior
of M1 at low ¢ is very different, as well as the corresponding
magnetic moments in Table 1.

In summary, we have found that the geometrical factors in
the deformed formalism reduce the multipoles with respect
to the spherical ones and help to improve the agreement with
experiment in all the deformed cases studied. These reduction
factors appear naturally in the deformed formalism, whereas
they have to be introduced ad hoc to fit the data in other
approaches [21,33]. Collective effects manifest mainly at low-
q values through M1 rotational multipoles. Although they are
rather small in these calculations, they improve the agreement
with experiment.

IV. CONCLUSIONS

In this paper we have calculated magnetic form factors in
elastic electron scattering from odd-A nuclei within PWBA
and within a deformed formalism, using wave functions from
self-consistent HF+BCS calculations with Skyrme forces.

We have recovered the spherical limit of these calcula-
tions and have compared the results with those obtained
from spherical codes, finding a perfect agreement. We have
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shown that spherical nuclei are well described in this limit.
NN correlations are included with natural orbits within the
CDFM and are found to shift the tails of the form factors
to higher momentum transfer, improving the agreement with
experiment.

Then we proceed to calculate deformed nuclei and com-
pare both spherical and deformed calculations with exper-
iment. For these nuclei (Mg, »Si, 3°Co, and '"In), the
deformed picture represents clearly an improvement of the
agreement with the data, demonstrating the need for defor-
mation degrees of freedom to describe these nuclei. The role
of the collective rotation current of the core has been studied,
showing that it manifests itself mainly in the M1 multipole,
changing the profile of the form factor at low momentum
transfer and improving in general the agreement with the
measurements.

It is found that in odd-A deformed nuclei, the main con-
tribution to the magnetic form factor comes from the odd
particle. This result is in contrast to the case of charge form
factors, where all the nucleons contribute significantly. The
collective effects in the deformed formulation enter in three
different ways: (i) the deformation that modifies the single-
particle wave functions with respect to the wave functions
in the spherical case; (ii) the collective current contributions
through the rotational multipoles F4*; and (iii) the reduction
of the single-particle multipole contributions with respect to
the spherical ones due to the strong particle-rotor coupling that
manifests itself in the so-called geometrical factors. The effect

of the rotational multipoles is more important in the low-g
region (¢ < 1 fm~"'), where they interfere with the single-
particle contributions. This collective contribution from the
deformed core must be included for a quantitative comparison
with experiment.

We have shown that we can deal with spherical and de-
formed isotopes in a unified way using the same numerical
methods and codes. It is also worth noting that, at variance
with the approach followed in other works [21,33], in this
paper there is no fit of the coefficients weighting the various
multipoles contributing to the total magnetic form factors.
In the present formalism, the weights of the multipoles are
directly given by the geometrical factors relating the intrinsic
with the transition multipoles and therefore we do not intro-
duce any adjustable parameter.

Once the capability of the model has been tested against
data on magnetic form factors on spherical and deformed
stable nuclei, we have a trustable formalism to explore the
predictions on unstable nuclei.
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