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Deformed multi-� hypernuclei are studied within a relativistic mean-field model. In this paper, I take some
N = Z “hyper-isotope” chains, i.e., 8+n

n�Be, 20+n
n�Ne, and 28+n

n�Si systems where n = 2, 4 for Be and n = 2, 8
for Ne and Si. A sign of two-6

2�He cluster structure is observed in the two-body correlation in 12
4�Be. In the Ne

hyper-isotopes, the deformation is slightly reduced by addition of � hyperons, whereas it is significantly reduced
or even disappears in the Si hyper-isotopes.

DOI: 10.1103/PhysRevC.99.034324

I. INTRODUCTION

Hypernuclear physics studies have been made both theo-
retically and experimentally [1,2]. A primary motivation is the
unified understanding of the baryon-baryon interaction based
on the flavor SU(3) symmetry. The knowledge of general
baryon-baryon interactions is essential for the understanding
of neutron-star matter, in which the hyperons would emerge
at high densities. Hyperons could be a nondestructive probe
of nuclear structure with strong interaction, since they are free
from the Pauli principle of nucleons.

In any physics, precise information on hyperon-nucleon
and hyperon-hyperon interactions is essential. However, it
is difficult to perform nucleon-hyperon or hyperon-hyperon
scattering experiments because of the short lifetimes of hyper-
ons. The main strategy is to produce hyperon(s) in an ordinary
nucleus via (K−, π−), (π+, K+), (e, e′K+), or (K−, K+) re-
actions to extract information on the interactions [1–4]. Most
of the experimental data are limited to single-� hypernuclei,
and there are also a few data for double-� and � nuclei
[3–10]. Double-� hypernuclei are of special importance since
they provide information about hyperon-hyperon interaction.

Besides the original motivations for study of hypernuclear
physics, the properties of nuclear systems with one or more
hyperons have been found to be interesting. In particular,
so-called “impurity effects” of � hyperon when a few of
them are added to an ordinary nucleus have been of great
interest. The impurity effects have been extensively studied
with various theoretical models. The attractive N-� and �-�
interactions and the absence of the Pauli principle lead to a
variety of impurity effects in single- and double-� nuclei,
such as shrinkage of intercluster distance [12–17], modifi-
cation of deformation [18–26], extension of the drip line
[27], emergence of new collective modes [28], change of
fission barrier [30,31], and existence of “supersymmetric” or
“genuine hypernuclear” states [12,32].
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The multi-� system with more than two � particles also
is intriguing. I emphasize that hypernuclei with multiple
strangeness are expected to be produced in future experiments
[11] although it is not feasible at the moment to produce them
experimentally. In such systems, the � hyperon is no longer a
small amount of “impurity” but would be regarded as a third
constituent of the nuclear many-body system, giving another
dimension to the nuclear chart. The properties of the hyperon
different from the nucleon would bring about nontrivial struc-
tures of nuclear system. As a matter of fact, multistrangeness
nuclei have been discussed in some theoretical calculations
[14,33–44]. Those include the following: 6

2�He clusters in
hypernuclei [14,33,34], hyperon halo [35–37,39], competition
between � and � hyperons in finite nuclei [38,43], shell struc-
ture [38], dense hypernuclei [38], binding energy systematics
[42], �-� pairing correlation [44], and stability of light mul-
tistrange nuclei [40,41]. So far, to the best of my knowledge,
the calculations have been limited to spherical systems except
for the ones in Refs. [33,34,41], where a microscopic cluster
model, a molecular orbital model, and a cluster model were
applied to the Be hyper-isotopes, respectively. In Ref. [34],
it was demonstrated that the � hyperons in 12

4�Be favor a
localization around the two α clusters.

In this paper, I focus on the clusterization and deforma-
tion properties of multi-� systems. A relativistic mean-field
(RMF) model is employed, without any assumption on spatial
symmetry and cluster structure. The RMF is one of the widely
used models for hypernuclei (see Ref. [45] for a review). I take
the following N = Z hyper-isotope chains: 8+n

n�Be, 20+n
n�Ne,

and 28+n
n�Si systems, where n = 2, 4 for Be and n = 2, 8 for

Ne and Si. In particular, an analysis on the cluster structure is
made using the two-body correlation as well as the one-body
density distribution.

The paper is organized as follows. In Sec. II, I intro-
duce the RMF model employed in this work. In Sec. III,
I present the results of the Be hyper-isotopes and discuss
their structures with special attention to the cluster struc-
ture. In Sec. IV, I discuss the deformations of the Ne
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and Si hyper-isotopes. In Sec. V, I give the summary and
perspectives.

II. MODEL AND NUMERICAL DETAILS

To describe the multi-� hypernucleus, I use a meson-
exchange model with nonlinear couplings for RMF theory
[46]. The Lagrangian density is given by

L = ψ̄N (i∂/ − mN )ψN + ψ̄�(i∂/ − m�)ψ�

+ 1

2
(∂μσ )(∂μσ ) − 1

2
m2

σ σ 2 − c3

3
σ 3 − c4

4
σ 4

− 1

4
GμνGμν + 1

2
m2

ωωμωμ + d4

4
(ωμωμ)2

− 1

4
�Rμν · �Rμν + 1

2
m2

ρ�ρμ · �ρμ − 1

4
FμνFμν

− ψ̄N

(
gσNσ + gωNω/ + gρN�ρ/ · �τ + eA/

1 − τ3

2

)
ψN

− ψ̄�

(
gσ�σ + gω�ω/ + fω�

4m�

Gμνσ
μν

)
ψ�, (1)

where ψN and ψ� are nucleon and � hyperon fields,
and Gμν = ∂μων − ∂νωμ, �Rμν = ∂μ�ρν − ∂ν�ρμ, and Fμν =
∂μAν − ∂νAμ are the field tensors of the vector mesons ω and
ρ and the photon, respectively. �τ is the Pauli matrix in the
isospin space. In the present model, the ω-� tensor coupling
is explicitly included in the model although the ω-N tensor
coupling has not been considered in most of the existing RMF
parametrizations. The main role of the tensor coupling is to
modify the spin-orbit potential and the spin-orbit splittings
of the single-particle energies. A quark model in Ref. [47]
implies that the ω-� tensor coupling is stronger than the ω-N
tensor coupling. The ω-� tensor coupling is known to be
important to reproduce the small spin-orbit splittings observed
in the single-particle spectra of � hyperon [48–50]. I take
the PK1 parameter set [51] for the nucleon-meson couplings
and a parameter set in Ref. [48] for �-meson couplings. In
Ref. [48], gσ� is fitted to the binding energy of 40

� Ca (gσ� =
0.618gσN ). The naive quark model value gω� = (2/3)gωN is
taken for the Yukawa coupling between � and ω. As for
the tensor ω-� coupling, fω� = −gω� from the quark model
[47] is used as in Refs. [48,49]. The � hyperon mass m� is
taken to be 1115.6 MeV. This model with the parameters thus

determined reproduces the observed binding energies of light
to heavy single-� hypernuclei reasonably well [48,49]. In the
present study, the pairing correlations among nucleons and �

hyperons are not taken into account.
Here I make a remark on the �-� interaction. In principle,

one should consider the mesons coupled solely to the hyperon
as well as σ and ω mesons. There has been a discussion that
the σ -ω RMF model underestimates the observed double-
� binding energy B�� and �-� interaction energy B��

[38,52]. B�� and B�� are defined as follows,

B��

(
A
2�Z

) = B
(

A−2Z
) − B

(
A
2�Z

)
, (2)

B��

(
A
2�Z

) = B��

(
A
2�Z

) − 2B�

(
A−1

�Z
)
, (3)

where B(AZ ) is the binding energy of a nucleus AZ , and
B�(A−1

�Z ) = B(A−1
�Z ) − B(A−2Z ). In Refs. [38,52], the dis-

crepancies between the experimental data and the RMF results
were attributed to the contributions from strange σ ∗ and φ

mesons which are coupled only to � hyperon. However, the
discussion was based on the old data [3,5,6] for B�� and
B��, whereas the B�� and B�� values in newer data are
considerably smaller [4]. Table I lists the values of B�� and
B�� obtained with the present RMF model in comparison
with the experimental values (see also Table I in Ref. [52]).
It appears that the present RMF results without σ ∗ and φ

mesons agree better with the newer data. Nevertheless, it has
to be noted that the effect of beyond-mean-field correlations
which could be significant in the light systems is missing in
RMF, although there would be a partial cancellation of the
correlation energies upon the subtraction in Eq. (2). Moreover,
the experimental B�� and B�� values were deduced under
some assumption on the formation and decay processes of the
double-� nuclei [4]. Therefore, I leave discussions on extra
�-� interaction and correlation for future works and adopt the
phenomenological model in Eq. (1) fitted only to a single-�
nucleus. More of new data, especially of heavier systems,
from the ongoing analyses of the J-PARC E-07 experiment
are awaited [9,10].

The model Lagrangian given above is solved within the
mean-field and the no-sea approximations. I assume time-
reversal invariance and charge conservation of the mean-
field state, i.e., the time-odd or charged vector fields vanish.
The only nonzero components are their timelike and neutral

TABLE I. The double-� binding energies B�� and �-� interaction energies B�� obtained with the present RMF model. For comparison,
the experimental data in Refs. [3,4,9] are also listed. Note that the values of B�� and B�� for 6

2�He from Ref. [4] are given by the weighted
average of NAGARA event (B�� = 6.91 ± 0.16 MeV and B�� = 0.67 ± 0.17 MeV) [7] and MIKAGE event (B�� = 10.06 ± 1.72 MeV
and B�� = 3.82 ± 1.72 MeV) [8]. The former have been uniquely identified as 6

2�He [4,7] whereas the latter was only found most probable
to be 6

2�He [4,8]. The data of Ref. [9] are the very recent results of the MINO event in the J-PARC E-07 experiment, the candidates of which
are 10

2�Be, 11
2�Be (most likely), and 12

2�Be.

B�� (MeV) B�� (MeV)

RMF Exp. [9] Exp. [4] Exp. [3] RMF Exp. [9] Exp. [4] Exp. [3]

6
2�He 4.24 6.93 ± 0.16 10.9 ± 0.6 1.08 0.70 ± 0.17 4.7 ± 0.6
10
2�Be 13.23 (15.05 ± 0.11) 11.90 ± 0.13 17.7 ± 0.4 0.59 (1.63 ± 0.14) −1.52 ± 0.15 4.3 ± 0.4
13
2�B 23.3 ± 0.7 27.5 ± 0.7 0.6 ± 0.8 4.8 ± 0.7
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components, ω0, ρ0
3 , and A0, where the subscript 3 on the ρ

meson field means the third component in the isospace.
The scalar-isoscalar density ρS and vector-isoscalar and

vector-isovector densities j0 and j0
3 of nucleons are defined

in terms of the single-particle wave functions of nucleon ψ
(N )
k

as

ρS (r) =
∑
k∈occ

ψ̄
(N )
k (r)ψ (N )

k (r), (4)

j0(r) =
∑
k∈occ

ψ̄
(N )
k (r)γ 0ψ

(N )
k (r), (5)

j0
3 (r) =

∑
k∈occ

ψ̄
(N )
k (r)γ 0τ3ψ

(N )
k (r), (6)

where k runs over the occupied nucleon states. The scalar,
vector, and tensor densities of � hyperon are defined in terms
of the single-particle wave function of � hyperon ψ

(�)
k as

ρS�(r) =
∑
k∈occ

ψ̄
(�)
k (r)ψ (�)

k (r), (7)

j0
�(r) =

∑
k∈occ

ψ̄
(�)
k (r)γ 0ψ

(�)
k (r), (8)

V T �(r) =
∑
k∈occ

ψ̄
(�)
k (r)iαψ

(�)
k (r), (9)

where k here runs over the occupied �-hyperon states.
The equations of motion for the meson and electromag-

netic fields read(−∇2 + m2
σ

)
σ = −gσNρS − c3σ

2 − c4σ
3 − gσ�ρS�,

(10)(−∇2 + m2
ω

)
ω0 = gωN j0 − d4(ω0)3 + gω� j0

�

+ fω�

2m�

∇ · V T �, (11)

(−∇2 + m2
ρ

)
ρ0

3 = gρN j0
3 , (12)

−∇2A0 = e

2

(
j0 − j0

3

)
. (13)

Notice that there are the contributions from the � hyperon
to the sources of the σ and ω fields. The ρ and A fields
will also be affected by � hyperon through the modification
on the nucleon densities in the self-consistent calculation for
hypernuclei.

The Dirac equation for the nucleon single-particle wave
function is given by

[−iα · ∇ + VN + β(mN + SN )]ψ (N )
k = εkψ

(N )
k , (14)

where

SN = gσNσ, (15)

VN = gωNω0 + gρNρ0
3τ3 + eA0 1 − τ3

2
. (16)

Note that τ3 = +1 for neutron and τ3 = −1 for proton. The
Dirac equation for the single-particle wave function of �

hyperon is given by

[−iα · ∇ + V� + β(m� + S�) + T�]ψ (�)
k = εkψ

(�)
k , (17)

where

S� = gσ�σ, (18)

V� = gω�ω0, (19)

T� = fω�

2m�

iβα · (−∇ω0). (20)

The set of nonlinear equations, Eqs. (4)–(20), are
solved self-consistently. In the numerical calculations, the
single-particle wave functions are represented on a three-
dimensional lattice in the real space [53]. To avoid the fermion
doubling, the derivative in the Dirac equation is computed
in the momentum space with the fast Fourier transform [54],
for which I use the FFTW library [55]. The damped gradient
iteration technique [56,57] is used to solve the self-consistent
mean-field equations (see also Ref. [58]). The Klein-Gordon
equations for the mesons and the Poisson equation for the
Coulomb field are solved in the momentum space with the fast
Fourier transform. For solving the Poisson equation in the mo-
mentum space, I employ the same method as in Refs. [59,60].
Calculations are performed with 243 mesh points and lattice
spacing of 0.8 fm.

III. RESULTS AND DISCUSSION: BE HYPER-ISOTOPES

First, I show the results of 8Be, 10
2�Be, and 12

4�Be.
In the density plots in this paper, only the neutron and

� densities will be shown because the neutron and proton
densities are almost the same in the N = Z hyper-isotopes.
From here on, the neutron and � densities will be referred to
as ρn and ρ�, respectively,

ρn ≡ 1
2

(
j0 + j0

3

)
, (21)

ρ� ≡ j0
�. (22)

In Fig. 1, the density distributions of neutron and � hy-
peron are presented. The neutron densities ρn are drawn by
contour map, while the � densities ρ� are drawn by color
(grayscale) map. Figure 1(a) shows the ground state of 8Be,
Figs. 1(b) and 1(c) show the ground state of 10

2�Be with the
two � hyperons in the s orbital (denoted as 10

2�sBe) and 10
2�Be

with the two � hyperons in the p orbital (denoted as 10
2�pBe),

respectively, and Fig. 1(d) shows the ground state of 12
4�Be.

10
2�pBe is obtained by having the �’s occupy the second lowest
single-particle level during the self-consistent iterations. In
Fig. 2, I show the central mean-field potentials of neutron
and �,

Un ≡ Vn + Sn, (23)

U� ≡ V� + S�. (24)

In Fig. 2, the dotted line represents 8Be, dot-dashed and
double-dot-dashed lines represent 10

2�sBe and 10
2�pBe, respec-

tively, and the solid line represents 12
4�Be.

A. Structures of 10
2�Be with �’s in s or p orbitals

Here I compare the structures of 8Be, 10
2�sBe, and 10

2�pBe.
Note that the two � hyperons in 10

2�pBe occupy the p state
along the symmetry axis of the system [Fig. 1(c)]. Such a
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FIG. 1. Neutron and � hyperon density distributions of (a) 8Be, (b) 10
2�Be with �’s in s orbital (10

2�sBe), (c) 10
2�Be with �’s in p orbital(10

2�pBe),
and (d) 12

4�Be. The neutron densities ρn are shown by contour map, which starts from 0.1 fm−3 with the increments by 0.1 fm−3. The �-hyperon
densities ρ� are shown by color (grayscale) map. The densities at y = 0 as a function of z and x are plotted. z (vertical) is the symmetry axis.

configuration does not have an analog state in the nonstrange
isotopes, e.g., 10Be where two neutrons are added to 8Be
instead of � hyperons [1,12,21,29,32]. Thus, this state is
unique in the hypernucleus and is called a “supersymmetric”
or “genuine hypernuclear” state [12,32].

One sees in Figs. 1(a)–1(d) that the nucleon distributions
in the Be hyper-isotopes exhibit a well-developed α cluster
structure. In 10

2�sBe, the � particles stay around the middle
between the two α’s [Fig. 1(b)]. Accordingly, the central
potential for neutron, as seen from the dot-dashed curve in
Fig. 2(a), becomes deeper at the middle, due to the additional
attraction by the � hyperons. The nucleons are attracted
toward the middle of the system, which leads to a slight
reduction of the distance between the two α clusters. On the
other hand, in 10

2�pBe in which the two � hyperons are in the
p orbital, the potential becomes shallower and wider [double-
dot-dashed curve Fig. 2(a)], and the nucleon distribution is
stretched along the z axis, which is the axis of symmetry.
These effects are seen in the quadrupole deformation param-
eter β2, the root-mean-squared (rms) radius R of the system,
and the α-α distance Dαα , which are summarized in Table II.
The quadrupole deformation parameter and the rms radius are
defined as

β2 = 4π

5

∫
d3r r2Y20ρ∫

d3r r2ρ
(25)

FIG. 2. Central potentials of (a) neutron and (b) � hyperon of
Be hyper-isotopes, 8Be, 10

2�sBe, 10
2�pBe, and 12

4�Be along the symmetry
axis. In 10

2�sBe and 10
2�pBe, the two � hyperons occupy the s and the p

orbital, respectively.

and

R =
√∫

d3r r2ρ∫
d3r ρ

, (26)

respectively, where ρ is the density of the particle that is
considered. The α-α distance Dαα is defined as the distance
between the two maxima of the nucleon density distribution
along z axis. One observes that β2N (10

2�sBe) < β2N (8Be) <

β2N (10
2�pBe), and the same relations hold for RN and Dαα as

well. Note that a similar result was obtained also in Ref. [21]
with an antisymmetrized molecular dynamics model for 9

�Be
when a � particle occupies either s or p orbital.

B. Clusterization in 12
4�Be

In 12
4�Be with two more �’s, the density of � hyperon

becomes strongly deformed [Fig. 1(d)], and the nucleon den-
sity recovers nearly the same deformation, radius, and α-α
distance as in the 8Be normal isotope (see Table II). However,
as seen in Fig. 3, the � hyperon density distribution does not
have a neck at the middle as the nucleon density distribution
does. An interpretation to this behavior of the � hyperon
density is that the �’s are not as tightly bound to α as the
nucleons are, so they can move more freely between the two
clusters. As a consequence, the density distribution at the
mean-field level becomes flat at the middle.

TABLE II. Quadrupole deformation parameters β2, root-mean-
squared radii R, and the distance between the two α’s Dαα of the
Be hyper-isotope chain. β2N and RN are deformation parameter and
radius calculated from the nucleon density, and β2� and R� are
calculated from the � hyperon density. N� is the number of �

hyperons. �s and �p for N� = 2 mean that the � particles are in
s and p orbitals, respectively.

N� β2N β2� RN (fm) R� (fm) Dαα (fm)

Be hyper-isotopes
0 0.67 2.43 2.8
2�s 0.64 0.18 2.36 2.59 2.6
2�p 0.72 0.71 2.49 4.27 3.0
4 0.68 0.57 2.42 3.49 2.8
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FIG. 3. Comparison between the neutron (solid curve) and �

hyperon (dashed curve) densities in 12
4�Be along the symmetry axis.

I make a further analysis on the cluster structure in 12
4�Be,

using the fermion localization function [61–66]. The local-
ization function is a measure of localization, which is related
to the spatial two-body correlation between two like-spin
fermions of the same kind. The localization function for a
particle of kind q = n, p, or � with spin σ = +1/2 (↑) or
−1/2 (↓) is defined as

Cqσ (r) =
⎡
⎣1 +

(
ρqσ τqσ − j2

qσ − 1
4 (∇ρqσ )2

ρqσ τTF
qσ

)2
⎤
⎦

−1

. (27)

Here, τTF
qσ = 3

5 (6π2)2/3ρ5/3
qσ is the Thomas-Fermi kinetic en-

ergy density, and

τqσ (r) = 1

2

∑
k∈q,occ

[∇ψ
†
k (r)] · (1 + 2σ�3)[∇ψk (r)] (28)

and

jqσ (r) = Im

⎡
⎣ ∑

k∈q,occ

ψ
†
k (r)(1 + 2σ�3)∇ψk (r)

⎤
⎦, (29)

where �3 = (σz 0
0 σz

) is the spin operator and k runs over
the occupied states of the fermion kind q. Note that jqσ =
0, ρq↑ = ρq↓, and τq↑ = τq↓ in the present case with the time-
reversal symmetry.

A value of Cqσ close to one is the sign of localization
[62], which means that the probability of finding two particles
with the same spin close to each other is very low. Cqσ ≈ 1
simultaneously for all the spin-isospin combinations is a
minimal necessary condition of α clusterization [62]. The
α-cluster correlation in terms of the localization function can
be naturally extended to 6

2�He: Cqσ ≈ 1 at the same spacial
region for n ↑, n ↓, p ↑, p ↓, � ↑, and � ↓ implies 6

2�He
clusterization. In the present case with N = Z and time-
reversal symmetry, the wave functions of neutron and proton
are approximately the same, and the spin-up and spin-down
components are exactly the same, so it suffices to consider
only the neutron spin-up and � spin-up components.

Since the localization is not a meaningful quantity in the
regions where the one-body density is close to zero, we look

-4
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m
)

(a) 12
4 Be neutron
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FIG. 4. Localization functions Cqσ = Cqσ
ρqσ

maxρqσ
on zx plane in

12
4�Be for (a) (qσ ) = (neutron ↑) and (b) (qσ ) = (� ↑). In panels
(c) and (d) are plotted Cn↑ and C�↑, respectively, along the symmetry
axis.

at the localization function multiplied by the normalized one-
body density

Cqσ (r) = Cqσ (r)
ρqσ (r)

maxρqσ (r)
, (30)

as was done in Ref. [63].
In Fig. 4, the neutron and �-hyperon localization mea-

sures, Cn↑ and C�↑ defined by Eq. (30) are plotted. The
neutron localization has two strong peaks at the positions of
the two α clusters, indicating the α-cluster correlation. More
interestingly, the localization of � hyperon in Figs. 4(b) and
4(d) takes the values slightly more around the α clusters than
at the region in between, which was not seen in the one-body
density distribution in Fig. 3. This implies the existence of two
6
2�He clusters, although the localization of the � hyperons is
much more obscure than the nucleon.

I remark also that the rms radius of � hyperon in
12
4�Be is significantly larger than that of nucleon (R�/RN =
3.49/2.42 ≈ 1.4) although the number of � particles in 12

4�Be
is the same as those of neutrons and protons. This is because
the � particles are more weakly bound in a shallow potential
(≈ −30 MeV) as one sees in Fig. 2(b). In particular, the last
occupied orbital in 12

4�Be is bound only by 1.3 MeV, which
makes a halo- or skinlike structure of �. Similar results have
been obtained also in Refs. [35,36,39] for spherical multi-�
systems.

IV. RESULTS AND DISCUSSION:
NE AND SI HYPER-ISOTOPES

Next, I investigate Ne and Si hyper-isotopes with two and
eight � particles: 20Ne, 22

2�Ne, 28
8�Ne, 28Si, 30

2�Si, and 36
8�Si.

In Fig. 5 are shown the density distributions of neutrons
and � hyperons in 20Ne, 22

2�Ne, and 28
8�Ne. In Figs. 5(a)–5(e),
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FIG. 5. The density distributions on zx plane in the Ne hyper-
isotopes, (a) neutron in 20Ne, (b) neutron in 22

2�Ne, (c) � hyperon in
22
2�Ne, (d) neutron in 28

8�Ne, and (e) � hyperon in 28
8�Ne. Panels (f)

and (g) show the comparisons of neutron and � densities along the
symmetry axis, respectively, among the hyper-isotopes. The z axis
(horizontal) is the symmetry axis.

the density distributions of individual hyper-isotopes on the
zx plane are plotted, and in Figs. 5(f) and 5(g), the densities
of different hyper-isotopes along the symmetry axis are com-
pared. Notice that the axis of symmetry is horizontal in Fig. 5.
The quadrupole deformation parameters β2 and radii R are
tabulated in Table III.

The nucleon density distributions in the Ne hyper-isotopes
has prolate deformation. The density distributions of � par-
ticles are also prolately deformed so that they gain binding
energy from the attractive interaction with nucleons. From
Table III, one sees that the nucleon quadrupole deformation
β2N decreases from 20Ne to 22

2�Ne and from 22
2�Ne to 28

8�Ne.
The deformation of � hyperon β2� also decreases from the
2� to the 8� isotopes.

One also observes in the density distributions that the hole
at the center of neutron density becomes significantly de-
pressed when there are eight � hyperons. In Fig. 6 are shown
the central mean fields of neutrons and � hyperons in the

TABLE III. Quadrupole deformation parameters β2 and root-
mean-squared radii R of the Ne and Si hyper-isotope chains. β2N and
RN are deformation parameter and radius calculated from the nucleon
density, and β2� and R� are calculated from the �-hyperon density.
N� is the number of � hyperons.

N� β2N β2� RN (fm) R� (fm)

Ne hyper-isotopes
0 0.43 2.82
2 0.40 0.16 2.81 2.53
8 0.38 0.09 2.82 3.33

Si hyper-isotopes
0 − 0.31 3.14
2 − 0.22 − 0.12 2.95 2.49
8 0.00 0.00 2.92 3.14

Ne hyper-isotopes. As seen from the difference between the
dotted and the dot-dashed curves in Fig. 6(a), in 22

2�Ne, the �

particles in the lowest s-shell orbital give an extra contribution
to the central potential that shifts down the bottom of it.
When six more � particles are added (28

8�Ne), they occupy
the p-shell orbitals whose densities are very low around the
origin [compare the solid and dot-dashed curves in Fig. 5(g)].
Consequently, the mean-field potential shown with the solid
curve in Fig. 6(a) is deepened at regions where z ≈ ±2 fm.
A similar thing happens in the other directions as well. This
change in the potential induces the deeper hole in the nucleon
density of 28

8�Ne.
In the Si hyper-isotope chain, the shape variation is more

drastic. In Fig. 7, the density distributions of neutron and �

hyperon in 28Si, 30
2�Si and 36

8�Si are shown, and the quadrupole
deformations and radii are tabulated in Table III. 28Si is
oblately deformed. With two � hyperons, the oblate defor-
mation is relaxed from β2N = −0.31 to −0.22. With eight �

hyperons, the spherical magicity of � overcomes the nucleon
deformation, and the system becomes spherical. The nucle-
ons are in (1s1/2)4(1p3/2)8(1p1/2)4(1d5/2)12 configuration in
36
8�Si. Similar results are obtained also in the previous works
on single-� hypernuclei [18,22]. Since the potential energy
surface of 28Si is rather flat as a function of the quadrupole
deformation, the Si hyper-isotopes with one, two, or eight �

hyperons, which resist against deformation, easily go toward
a spherical shape [18,22].
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FIG. 6. Central potentials of (a) neutron and (b) � hyperon of Ne
hyper-isotopes, 20Ne, 22
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FIG. 7. Neutron and � hyperon density distributions of Si hyper-
isotopes, 28Si, 30

2�Si, and 36
8�Si. The z axis (horizontal) is the symmetry

axis.

In view of the flat potential energy surface of 28Si, the
predicted deformations of the Si hyper-isotopes may be model
dependent. To see the model dependence of the results of
the Si hyper-isotopes, I have made the same calculations
with different nucleon-meson effective interactions: NL3 [67],
NLSH [68], and TM2 [69]. For each of the given nucleon-
meson interaction, I refitted the �-σ coupling constant gσ� in
the same way for 40

� Ca as in Ref. [48]. The resultant values are
gσ� = 0.6186gσN for NL3, gσ� = 0.6201gσN for NLSH, and
gσ� = 0.6236gσN for TM2. The quadrupole deformations of
nucleon density distribution of the Si hyper-isotopes obtained
with the different interactions are summarized in Table IV. Al-
though they give similar β2N values for 28Si except for TM2,
the β2N value for 30

2�Si becomes zero for all the interactions
other than PK1. When β2N = 0, β2� = 0 in all cases shown
in Table IV.

As in the case of the Be hyper-isotopes, the radii of �

hyperon density distributions in Ne and Si are larger than
that of nucleon when �’s occupy the p-shell orbitals (see
Table III).

TABLE IV. β2N values in the ground states of the Si hyper-
isotopes obtained with different effective interactions, NL3 [67],
NLSH [68], and TM2 [69] as well as PK1.

β2N

PK1 NL3 NLSH TM2

28Si − 0.31 − 0.30 − 0.29 0.00
30
2�Si − 0.22 0.00 0.00 0.00
36
8�Si 0.00 0.00 0.00 0.00

V. SUMMARY AND PERSPECTIVES

In this work, I have investigated the clusterization
and deformation properties of N = Z multi-� nuclei,
8+n

n�Be, 20+n
n�Ne, and 28+n

n�Si, where n = 2, 4 for Be and n =
2, 8 for Ne and Si.

I employed a relativistic mean-field model with meson-
exchange interaction. One of the three coupling constants of
the �-meson couplings is fitted to the binding energy of a
single-� hypernucleus 40

� Ca, and the remaining two are fixed
by quark models.

In the 10
2�Be nucleus, when the two �’s occupy the s (p)

orbital, the intercluster distance decreases (increases), as in
the case of 9

�Be [21].
In the 12

4�Be nucleus, a sign of two-6
2�He cluster structure

is observed in the two-body correlation embedded in the
localization function, consistent with the result obtained in
Ref. [34]. Notice that to draw a conclusion on the clus-
ter correlation, one needs to perform a beyond-mean-field
calculation which properly takes into account the quantum
dynamics of shape degrees of freedom and to analyze the
spatial and spin-isospin correlations in the many-body wave
function.

When � hyperons fill up the spherical major shells (s and
p shells in the present study) but nucleons favor deformation,
there is a competition between them due to the attractive
interaction between the nucleons and the � hyperons. In
the Ne hyper-isotopes 22

2�Ne and 28
8�Ne, the nucleon density

distributions are slightly less deformed than in the normal
isotope 20Ne, attracted by the � hyperons that prefer a
spherical shape. At the same time, the � hyperon densities
get deformed, attracted by the nucleons that prefer a de-
formed shape. The Si hyper-isotopes are softer against the
deformation and its relaxation. The deformation of the Si
hyper-isotopes changes more drastically as a function of the
� hyperon number.

It is also seen that, as � hyperons in the p-shell orbitals are
more weakly bound than the nucleons, their density spreads
out more than that of nucleon in the deformed systems as well
as in spherical systems [35–37,39].

There are several directions for future works to explore
the generalized nuclear chart with the extra dimensions of
hyperons. More systematic investigations on the ground-
state structure of multi-� nuclei would be interesting. For
this purpose, it may be desirable to include �-� and
nucleon-� pairing correlations as well as nucleon-nucleon
pairing. The possible effects of NN�, N��, or ���
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three-body forces might also be important for multi-� nu-
clei and neutron-star matter. Other interesting subjects are
nuclei with many � and/or � hyperons as well as � hy-
peron. An extension of the model and numerical code to
such systems is straightforward as long as the interaction is
known. To further deepen our knowledge of the general multi-
strangeness system, collective excitations of multistrangeness
nuclei should also be studied with, e.g., GCM (generator

coordinate method) or RPA (random-phase approximation)
calculations.
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