
PHYSICAL REVIEW C 99, 034319 (2019)

Inertia tensor and fine structure of scissors-mode resonances
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In a recent paper it has been shown that a number of rare-earth elements have a definite deviation from
axial symmetry, with the triaxiality angle γ � 8 degrees and the ratios of the components of the inertia tensor
in qualitative agreement with the irrotational model. Such results have been extracted from experimental data
within the J-2 subspace, but scissors-mode resonances, which are most sensitive to the nuclear shape, were not
included in the analysis. The irrotational and rigid inertia tensors have an opposite dependence on the triaxiality
angle γ and this affects in a striking way the fine structure of scissors-mode resonances.
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I. INTRODUCTION

In a recent paper Allmond and Wood [1] extracted the val-
ues of the moments of inertia of a number of deformed nuclei
including rare-earth elements from experimental data within
the J-2 subspace. The results are (i) the absolute values of the
inertia tensor are proportional to the square of the deformation
parameter β; (ii) the ratios of the components of the inertia
tensor are in qualitative agreement with the irrotational model,
with a definite deviation from axial symmetry. The values of
the deformation angles β, γ are reported in Table I of the
present work.

Scissors-mode resonances (SRs), however, were not in-
cluded in the analysis, while their properties are very sensitive
to the nuclear shape. On the experimental side, for instance,
the total B(M1) strength is proportional to β2, see Refs. [2,3]
for a review. From a theoretical point of view the dependence
of the SR on deformation parameters is evident in general
from sum rules [4], in which the moments of inertia appear ex-
plicitly, which are widely used to analyze experimental data.
A complete assessment of the dependence of the structure of
SRs on the inertia tensor, however, is at present impossible
for insufficient predictive power of the theory, and inclusion
of SRs in the analysis of Allmond and Wood [1] appears
even more complicated by the fact that the inertia tensor in
scissors modes might differ from the inertia tensor in other
excitations of one and the same nucleus. Guttormsen et al.
[5], for instance, consider the possibility that the moment
of inertia in scissors modes built on the ground state and in
the quasicontinuum might differ from one another, and Beck
et al. [6] consider the possibility that the moment of inertia
in the scissors band might be 1.5 times larger than in the
ground-state band.

The most relevant feature of irrotational moments of inertia
concerning SRs is their dependence on the triaxiality angle γ ,
which is opposite to that of the rigid moments. This should
make it easier to establish the actual nature of the moment of

*fabrizio.palumbo@lnf.infn.it

inertia in SRs. If one were able to reproduce their structure
by theoretical calculations one could evaluate the moments of
inertia and compare with the results of Ref. [1]. Unfortunately
to my knowledge the inertia tensor has never been evaluated
this way.

It is the purpose of the present paper to show the impor-
tance of the form of the inertia tensor in the structure of SRs
and to examine to which extent the findings of Allmond and
Wood [1] are compatible with the known phenomenology of
scissors modes in the rare-earth region on the basis of the
present theoretical understanding. I will first make a brief,
partial review of the calculations concerning splitting and
fragmentation of SR in the rare-earth elements, and I will
later make by comparison some considerations concerning the
actinides, which were not studied by Allmond and Wood.

Soon after the discovery [7] of scissors modes it was
shown, within the two-rotors model (TRM) [8], that in the
presence of triaxial deformation the SR should be split [9], a
result confirmed by a sum rule and a schematic RPA analysis
[10]. In the discussion of such a splitting it is convenient to
introduce its signature

σ = B2 − B1

B2 + B1

ω2 + ω1

ω2 − ω1
, (1)

where ωi, Bi are the energies and B(M1) the strengths of the
members of the split resonance. In the quoted calculations the
moment of inertia was assumed to be rigid and the resulting
signature was positive.

The effect of deviation from axial symmetry was reconsid-
ered [11] with a collective Hamiltonian of surface vibrations
and an irrotational moment of inertia. No splitting was found
this time. Instead a fragmentation appeared related to the
coupling of scissors modes with β and γ vibrations.

Faessler et al. [12] also investigated the possibility of
splitting of the SR related to triaxiality on the nuclei 164Dy,
168Er, and 174Yb. They essentially confirmed the results of [9]
finding always a positive signature, but they used values of γ

smaller than three degrees.
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TABLE I. In the first and second column the angles γ in degrees
and β in radiants as given in Ref. [1]. In the third and fourth
columns the relative energy splitting and the relative B(M1) strength
difference times 10−2 evaluated from the data [19]. In the last column
the signature σe.

Nucleus γ β δω

ω
|e δB

B |e σe

150Nd 10.4 0.28 21 −141 − 6.7
156Gd 7.9 0.33 29 140 4.8
166Er 9.2 0.35 31 5 0.2
168Er 8.4 0.35 23 74 3.2
172Yb 4.9 0.33 27 −117 − 4.3
182W 10.0 0.24 27 125 4.6
184W 11.3 0.25 34 161 4.7
190Os 22.1 0.18 16 −38 − 2.4

An important progress was achieved by Rompf et al. [13]
using the pseudo-SU(3) model. These authors introduce, in
addition to the angle between the axes of approximate axial
symmetry of the rotors, the angle of each rotor about its
approximate symmetry axis. The difference between these
angles is associated with a new excitation mode that they call
twist. They find between one and four collective states includ-
ing one twist, one scissors, and a doublet of twist + scissors.
By the inclusion of noncollective one- and two-body residual
interactions in the Hamiltonian they obtain good agreement
of fragmentation of the SR with the data of 156,160Gd and
196Pt, with clustering of M1 fragments around the collective
excitations. They notice that their results are not worse than
those of Zawischa and Speth [14] (who, however, state that
their findings disagree with the picture of scissors modes).
It is noticeable in the present context that Rompf et al. [13]
find values for the triaxiality angle smaller than six degrees,
in disagreement with Ref. [1], but they do not evaluate the
inertia tensor.

The importance of the spin contribution to the B(M1)
strength was recognized by several authors [15–18]. In par-
ticular Balbutsev et al. [16] using the method of the Wigner
functions moments found spin scissors modes intermingled
with orbital scissors modes giving rise to a splitting of the
SR in which the upper state is substantially of orbital and the
lower state of spin nature. I will refer to it as to a spin-orbital
SR and to that predicted by the TRM as an orbital SR. The
signature of spin-orbital SRs is always negative, while that
of orbital SRs (with the present values of the parameters) is
always positive.

All the available experimental data on SRs in the rare-earth
elements are collected by Balbutsev et al. [19] in Fig. 9 of their
work. These data do not show to me any regularity: there is a
significant extended and disordered fragmentation that only
in few cases suggests a clustering into two groups of states
possibly related to an actual splitting. Nevertheless in order
to compare with their approach that predicts two collective
levels Balbutsev et al. [19] tried (in their words) “to identify
two clusters with the artifact to divide a given spectrum into
a lower-lying and a higher-lying group,” which were folded
with two Lorentzians. The results are reported in Table IX of

their work. From these data I evaluated the relative energy
splitting

δω

ω
= 2

ω2 − ω1

ω2 + ω1
, (2)

the relative B(M1) strength difference

δB

B
= 2

B2 − B1

B2 + B1
, (3)

and the signature that I call experimental. I find that half the
rare-earth elements have positive and half negative signature. I
report these data for the nuclei studied by Allmond and Wood
in Table I of the present work. One can note that the signature
has a large spread, taking negative values for 150Nd, 172Er, and
190Os as predicted by the WFM method, and positive values
for 156Gd, 168Er, 182W, 184W, and 166Er.

From the above partial review one can see that at present
there is no unified theoretical description of the fragmentation
of the SR in the whole rare-earth region (but it would be
interesting to know the performance of the pseudo-SU(3)
method [13], which, as already said, was applied only to
few nuclei). The WFM method and the TRM give always
a negative, positive signature. It is reasonable to think that
the complexity of the observed spectrum originates from
an interplay of the two mechanisms with one or the other
dominating and a further fragmentation due to twists and other
degrees of freedom. In order to get some insight on how the
irrotational inertia tensor affects the structure of SRs I will
make the following assumptions.

(i) The folding of the data with two Lorentzians, even
though artificial, reproduces qualitatively the first step
of the splitting that is more or less obscured by a
further strong fragmentation as found by Rompf et al.
[13].

(ii) An important part of this fragmentation is related to
spin forces, and when their effect decreases the ratio
B2/B1 increases [16].

(iii) When the experimental signature is positive, the spin
contribution should be small and the predictions of the
TRM might be qualitatively acceptable.

The TRM depends on the restoring force constant C and
the inertia tensor I. Its intrinsic properties do not depend on
their values. These properties are the existence of the scissors
mode and of the J = 2+ scissors rotational band predicted
in Ref. [8], the splitting of the SR (but not its signature)
in the presence of triaxial deformation and the entanglement
[20] of scissors modes. Also independent of these parameters
is the existence of scissors modes of negative parity, whose
realization in atomic nuclei, however, requires the existence
of excited states of the proton and neutron fluids sepa-
rately odd under inversion of the intrinsic coordinates [21].
The J = 2 member of the SR has been recently confirmed
[6]) while the entanglement has not yet been investigated
experimentally.

The quantitative properties instead are very sensitive to the
values of C and I, and among these the total B(M1) strength
and signature of SRs. I will then compare the predictions of
the TRM with different inertia tensors for all the nuclei studied
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by Allmond and Wood [1] with the understanding that they
might be relevant only for those with positive signature.

II. EXCITATION ENERGY AND B(M1) STRENGTH
OF THE SCISSORS MODE IN THE TRM

In the TRM with axially symmetric rotors the excitation
energy and the B(M1) strength of the scissors mode [8] are
given by

ω = 1

2

√
C

I
B(M1) = B

√
C I = 2B ωI, (4)

where B is a constant I do not need to specify. In the literature
one can find the statement that the B(M1) strength is in gen-
eral proportional to the moment of inertia. Such a statement
is in agreement with the third member of the above equation
only if the excitation energy ω does not depend on the moment
of inertia.

If a nucleus has a triaxial deformation one can use the
above formulas for the rotations about the axes orthogonal
to the axis of approximate axial symmetry [9]. The restoring
force constants have been evaluated [8] according to the
procedure of Goldhaber and Teller [22]

C1 = C(
R2

3 − R2
2

)(R3

R2

)4

C2 = C(
R2

3 − R2
1

)(R3

R1

)4

, (5)

where C is a constant and

Rk = R0

[
1 +

√
5

4π
β cos

(
γ − k

2π

3

)]
. (6)

Notice that for γ > 0, R3 > R1 > R2. After the above esti-
mate of the restoring force constant, which gave poor quanti-
tative results, there have been other more realistic evaluations
[23,24] for axially symmetric nuclei taking into account the
local density dependence and using the asymmetry energy
of the Bethe-Weizsäcker mass formula, but I am essentially
interested in the comparison of different moments of inertia, I
will use the above expressions for their simplicity.

The moments of inertia for rigid, two-fluids, and irrota-
tional systems, respectively, are

(Irig)k =
[

1 −
√

5

4π
β cos

(
γ − 2π

3
k

)]
Irig

(Itf )k = (Irig)k − 2

5
ρR5

s ≈
√

5

π
β(Irig)k

(Iirr )k = β2 sin2

(
γ − 2π

3
k

)
Iirr, (7)

where Irig and Iirr are constants, which do not depend on the
deformation parameters and I do not need to write explicitly,
ρ is the nuclear density, and Rs the shortest nuclear radius,
which with the present conventions is R2. The expression for
the two-fluid model [25] in the presence of triaxial defor-
mation has been derived by subtracting from the rigid body

value the contribution of the sphere of the smallest radius Rs

(neglecting stretching effects).
One can see by inspection that according to (4) to first order

in β

∝ β rigid

B(M1) ∝ β
3
2 two-fluid

∝ β2 irrotational (8)

showing that only the irrotational tensor gives a β2 depen-
dence of the B(M1) strength. Such a behavior was first found
in a collective model of proton-neutron vibrations [26], first
observed in Ref. [27] and quantitatively studied by Lo Iudice
and Richter [28].

Next I evaluate the signature. The relative energy splitting
and the relative B(M1) strength difference are given by

δω

ω
≈ δC

2C
− δI

2I (9)

δB

B
≈ δC

2C
+ δI

2I , (10)

where

δC

2C
= C(γ ) − C(−γ )

C(γ ) + C(−γ )
,

δI
2I = I (γ ) − I (−γ )

I (γ ) + I (−γ )
. (11)

In terms of these variations the signature is

σ ≈ IδC + CδI
IδC − CδI . (12)

Approximating the above expressions to first order in β and
γ , which are of order 0,1, I get

δC

2C
≈ 2

(
1 + 9

4
βγ

)
1√
3

tan γ (13)

δIrig

2Irig
≈ 3

2
βγ

1√
3

tan γ

δItf

2Itf
≈ 1

2

(
1 + 5

3
βγ

)
1√
3

tan γ

δIirr

2Iirr
≈ −2

1√
3

tan γ , (14)

so that

2

(
1 + 3

2
βγ

)
1√
3

tan γ , rigid

δω

ω
≈ 3

2

(
1 + 22

9
βγ

)
1√
3

tan γ , two-fluid

4

(
1 + 9

8
βγ

)
1√
3

tan γ , irrotational (15)

2
(
1 + 3βγ

) 1√
3

tan γ , rigid

δB

B
≈ 5

2

(
1 + 32

15
βγ

)
1√
3

tan γ , two-fluid

9

2
βγ

1√
3

tan γ , irrotational, (16)

034319-3



FABRIZIO PALUMBO PHYSICAL REVIEW C 99, 034319 (2019)

TABLE II. All the figures must be multiplied by 10−2. In the
first and third columns the relative energy splitting and the relative
B(M1) difference evaluated according to the WFM method [16]. In
the second and fourth columns the same quantities evaluated with
the TRM for rigid, two-fluid, and irrotational moments of inertia,
respectively.

Nucleus δω

ω
|WFM

δω

ω
|TRM

δB
B |WFM

δB
B |TRM

150Nd 13 26; 22; 48 −76 32; 35; 8
156Gd 26 21; 23; 49 −55 26; 36; 10
166Er 26 25; 23; 50 −57 30; 37; 10
168Er 26 22; 23; 50 −57 28; 37; 10
172Yb 25 13; 23; 49 −65 16; 36; 9
182W 19 25; 21; 47 −92 29; 33; 7
184W 18 28; 21; 47 −102 33; 33; 7
190Os 12 52; 19; 45 −91 60;.31; 5

where

βγ =
√

5

4π
β cos γ ≈

√
5

4π
β . (17)

I can finally evaluate the signature

≈ 1 + 3

2
β, rigid

σ ≈ 5

3

[
1 − 42

135
β

]
, two-fluid

≈ 9

8
β , irrotational. (18)

One can see that the signature is always positive, so that unless
one will find other expressions for the relative variations of
C and I a negative signature can only be due to degrees of
freedom ignored in the TRM.

The numerical evaluation of the above quantities is re-
ported in Table II. First one can see, comparing with Table I,
that in the cases of positive signature the relative energy
splitting is in qualitative agreement with the rigid or two-fluids
inertia tensor, but the relative difference of B(M1) strength is
about a factor 3–4 smaller than the experimental one.

Second, which is the object of the present investigation,
the irrotational inertia tensor gives strikingly different results:
a very small relative strength difference and a relative energy
splitting about twice that of rigid case.

Even though the irrotational moment of inertia reproduces
the observed β2 behavior of the B(M1) strength, my conclu-
sion is that under the above assumptions the irrotational inertia
tensor appears significantly disfavored.

III. SPLITTING OF THE SR IN THE ACTINIDES

The actinides are of not direct relevance here because they
were not included by Allmond and Wood in their investi-
gation. Nevertheless I will make some considerations about
them to show how far one is from a unified theoretical picture
of SRs valid for all deformed nuclei.

A clean splitting of the SR was observed by Adekola
et al. [29] and soon afterwards the clustering in 232Th was
confirmed by Guttarmson et al. [5] who also found new data

on Pa and U, which are affected, however, by larger statistical
uncertainties. The signatures of the first, second experiment
can be evaluated from Table II of Ref. [19] and are σ =
−1.1,−1.9, respectively, with a difference of a few percent
among the different nuclei.

Nojarov et al. [30] studied 236,238U and 232Th with a
Woods-Saxon potential plus residual interactions getting rea-
sonable results for fragmentation and clustering. Kuliev et al.
[31] also studied 1+ states with RPA in 236,238U and 232Th im-
proving on the restoration of broken symmetries and including
1− states. They found a good agreement for the formation of a
split resonance, but they predicted also a third cluster that has
not been observed. Balbutsev et al. [19] performed the same
work done for the rare-earth elements and they found good
agreement with their theory.

One can see that actinides and rare-earth elements are
quite different systems. The signature in all the actinides is
negative with a small spread of its value in different nuclei,
which in this respect appear as one and the same system.
Such a result is explained by both the WFM method, which
provides a spin-orbital interpretation, and by the calculation
of Kuliev et al. [31], which is done in terms of quasiparticles,
so that spin and orbital components cannot be separated in
a straightforward way. Therefore even though the agreement
found by Balbutsev et al. in the actinides is impressive, in
my opinion one cannot draw a definitive conclusion about
the general validity of the spin-orbital structure because in the
actinides there appears to be an alternative explanation and in
the rare-earth elements the WFM signature is realized only in
half nuclei.

IV. CONCLUSIONS

The purpose of this paper is to compare the structure of SRs
in the rare-earth elements with irrotational inertia tensor on
one side, and two-fluid and rigid one on the other. Because the
dependence on the triaxiality angle is opposite in the two cases
one should expect a striking difference if the fine structure is
affected by triaxiality.

In order to draw a solid conclusion one should have a
unified theory of such a fine structure. Such a theory should
reproduce the complex pattern of positive and negative sig-
natures. Now Refs. [11–13] considered only few rare-earth
elements, which all have positive experimental signature,
while the WFM method and the TRM give always negative
and positive signatures, respectively. One can think that an
interplay of orbital and spin-orbital splitting might produce
the experimental oscillating signature. Indeed I would find it
surprising if triaxiality would not contribute at all to the fine
structure of SRs. In this connection an important role might
be played by twists, which can increase the B(M1) strength at
lower or higher energy depending on their location. The WFM
method is so general that it has the potentiality to efficiently
include all these degrees of freedom.

In any case in spite of considerable progress especially in
showing how clustering of levels can be generated, at present
a unified understanding of the fine structure of SRs valid
at least in the whole rare-earth region is still lacking. In its
absence I tried to get some insight about the compatibility of
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the inertia tensor determined by Allmond and Wood [1] with
the experimental data on SRs under assumptions, which can
be summarized as follows.

(i) All the fragments of SRs belong to two clusters, which
can be regarded as the members of a split resonance,
as argued by Balbutsev et al. [19]. This in my view is
the weakest point of the present analysis

(ii) When the signature of the clusters is positive, the
whole resonance is predominantly orbital, so that the

predictions of the TRM can be qualitatively accept-
able.

Under such assumptions an irrotational inertia tensor ap-
pears substantially disfavored. These assumptions can be con-
firmed or disproved by future progress, but I think I gave
some evidence of the need to take SRs into account in the
determination of inertia tensors.
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