
PHYSICAL REVIEW C 99, 034318 (2019)

Optimizing the relativistic energy density functional with nuclear ground
state and collective excitation properties
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We introduce a new relativistic energy density functional constrained by the ground state properties of
atomic nuclei along with the isoscalar giant monopole resonance energy and dipole polarizability in 208Pb. A
unified framework of the relativistic Hartree-Bogoliubov model and random phase approximation based on
the relativistic density-dependent point coupling interaction is established in order to determine the DD-PCX
parametrization by χ 2 minimization. This procedure is supplemented with the covariance analysis in order to
estimate statistical uncertainties in the model parameters and observables. The effective interaction DD-PCX
accurately describes the nuclear ground state properties including the neutron-skin thickness, as well as the
isoscalar giant monopole resonance excitation energies and dipole polarizabilities. The implementation of the
experimental data on nuclear excitations allows constraining the symmetry energy close to the saturation density,
and the incompressibility of nuclear matter by using genuine observables on finite nuclei in the χ2 minimization
protocol, rather than using pseudo-observables on the nuclear matter, or by relying on the ground state properties
only, as it has been customary in the previous studies.

DOI: 10.1103/PhysRevC.99.034318

I. INTRODUCTION

Solving the quantum many-body problem of strongly in-
teracting nucleons represents one of the fundamental chal-
lenges not only for understanding the phenomena of nuclear
structure and dynamics, but also for various applications of
astrophysical relevance, e.g., modeling the stellar evolution,
supernova explosion, the properties of compact stars, the
synthesis of chemical elements in the universe, etc. Among
a variety of theoretical frameworks to address this problem,
the nuclear energy density functional (EDF) represents a
unified approach to study quantitatively static and dynamic
properties of finite nuclei along the nuclide map [1,2] as well
as the equation of state of nuclear matter [3]. Considerable
progress has been achieved in constructing and optimizing
the phenomenological EDFs, both in nonrelativistic [4–6] and
relativistic [1,7–10] frameworks. Recently, the construction
of the EDFs was also inspired by ab initio calculations [11]
and effective field theories [12]. As pointed out in Ref. [13],
strengths of the tensor forces guided by ab initio relativistic
Brueckner-Hartree-Fock calculations can also be used as a
guide for the future ab initio derivations of the EDFs. At
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present, only the phenomenological EDFs provide a level
of accuracy required to quantitatively describe the nuclear
properties across the whole nuclide map.

So far, the EDFs have mainly been parametrized with the
experimental data on the ground state properties of nuclei.
These observables alone are often not enough to constrain
the effective interaction completely, especially its isovector
channel, thus the protocols to determine the EDF’s parameters
often included constraints on the pseudo-observables on the
nuclear matter properties. The neutron skin thickness rnp,
isovector dipole excitations in nuclei and neutron star mass
and radii represent some of the possible observables that could
be used to probe the isovector channel of the EDFs [3,14,15].
However, the data on rnp are often model dependent, and
the most recent data from parity-violating electron scattering
experiment (PREX) on 208Pb [16] have large uncertainties,
while the neutron star mass-radius data are still rather limited.
An alternative observable to improve the performance of
the EDF’s isovector sector is the dipole polarizability (αD),
which is proportional to the inversely energy-weighted sum
of the isovector dipole excitation in a nucleus. Recently, it has
been represented as an observable strongly correlated with
the symmetry energy parameters of the nuclear equation of
state [17,18]. The dipole polarizability was also measured in
several nuclei, including 48Ca, 68Ni, 120Sn, and 208Pb [19–22].
So far, mainly due to computational difficulties, the dipole
polarizability was not employed to constrain the EDFs di-
rectly; instead, already established EDFs were tested for their
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performance in reproducing the experimental data on αD [3].
On the other hand, the isoscalar giant monopole resonance
(ISGMR) energy in nuclei also represents an important ob-
servable to probe the isoscalar channel of the EDFs and
incompressibility of nuclear matter K0 [23]. To date, only in
Ref. [10] was the ISGMR used directly in the optimization
of an EDF (relativistic FSUGold2 interaction) along with the
properties of finite nuclei and neutron stars.

The purpose of this work is to establish the first unified
framework based on the EDF, which allows us to constrain
an effective interaction not only by the experimental data on
nuclear ground state properties, but also by a direct imple-
mentation of the measured properties of collective nuclear
phenomena: the ISGMR excitation energy and the dipole
polarizability. In this way, the properties of nuclei and the
nuclear equation of state; incompressibility of nuclear matter
and the symmetry energy around the saturation density will be
constrained directly by the experimental data on finite nuclei.

II. THEORETICAL FRAMEWORK

In the framework of the relativistic nuclear energy den-
sity functional, the nuclear ground state density and en-
ergy are determined by the self-consistent solution of rela-
tivistic single-nucleon Kohn-Sham equations [24,25]. In the
present study these equations are implemented from an in-
teraction Lagrangian density with four fermion contact inter-
action terms including the isoscalar-scalar, isoscalar-vector,
isovector-vector and isospace-space channels (for more de-
tails see Refs. [7,26]),

L = ψ̄ (iγ · ∂ − m)ψ

− 1

2
αS (ρ)(ψ̄ψ )(ψ̄ψ ) − 1

2
αV (ρ)(ψ̄γ μψ )(ψ̄γμψ )

− 1

2
αTV (ρ)(ψ̄�τγ μψ )(ψ̄�τγμψ )

− 1

2
δS (∂νψ̄ψ )(∂νψ̄ψ ) − eψ̄γ · A

1 − τ3

2
ψ. (1)

In addition to the free-nucleon terms, the effective Lagrangian
includes point-coupling interaction terms, coupling of pro-
tons to the electromagnetic field, and the derivative term
accounting for the leading effects of finite-range interactions
necessary for a quantitative description of nuclear density
distribution and radii. Starting from the microscopic density
dependence of the scalar and vector self-energies, the follow-
ing functional form of the couplings is employed [7,27],

αi(ρ) = ai + (bi + cix)e−dix, (i = S,V, TV ), (2)

where x = ρ/ρ0, and ρ0 represents the nucleon density in
symmetric nuclear matter at saturation point. The point-
coupling model includes ten parameters (aS , bS , cS , dS , aV ,
bV , dV bTV , dTV , and δS). For the description of open-shell
nuclei, the relativistic Hartree-Bogoliubov (RHB) model [26]
is used and the pairing field is formulated using separable
pairing force, which also includes two parameters for the
pairing strength (Gp and Gn) [28]. More details and various
implementations of the RHB model can be found in
Refs. [29,30]. In the small amplitude limit, the collective

excitations are described by the relativistic (quasiparticle) ran-
dom phase approximation (Q)RPA [2]. In the present study, a
unified computational framework of the RHB model [26] and
self-consistent relativistic (Q)RPA [2] is established to con-
strain the 12 model parameters by minimizing the χ2 objective
function [31]. In order to constrain the model parameters, the
binding energies (34 nuclei), charge radii (26 nuclei), and
mean pairing gaps (15 nuclei) of the selected open-shell nuclei
are used along with the two observables on collective excita-
tions: the constrained ISGMR energy (EISGMR = √

m1/m−1)
and dipole polarizability for 208Pb (see the Supplemental Ma-
terial in Ref. [32] for details on the data set). Here, m1 and m−1

represent the energy-weighted moment and inverse energy-
weighted moment of the strength distribution [2], respectively.
The mean gap values for protons and neutrons are calculated
using the five-point formula [33]. The adopted errors for the
binding energies, charge radii and pairing gaps are taken as
1.0 MeV, 0.02 fm, and 0.05 MeV, respectively. Recently, the
dipole polarizability was measured in 208Pb using polarized
proton inelastic scattering at extreme forward angles [19].
After the subtraction of the quasideuteron effect from the
experimental data, the dipole polarizability was obtained as
19.6 ± 0.6 fm3 in 208Pb [17]. Several experimental studies
were also performed to explore the ISGMR in 208Pb [34–38].
Although the uncertainties for the measured ISGMR ener-
gies are small, there are differences in the excitation ener-
gies from different studies. Recently, the ISGMR energies
were measured for 204,206,208Pb using inelastic α scattering
at extremely forward angles, and the constrained ISGMR
energy was found as 13.5 ± 0.1 in 208Pb [34], whereas this
energy was previously obtained as 14.18 ± 0.11 MeV in the
Texas A&M experiment [35]. In optimizing the EDF, the
constrained ISGMR energy is taken as 13.5 MeV [34] and
due to experimental uncertainties we adopted slightly large
error (1.0%) in the fitting protocol. The dipole polarizability
is also taken as 19.6 fm3 [17] and the adopted error used
is 0.5%. As mentioned above, the implementation of the
collective nuclear excitations in the fitting protocol is crucial
in constraining both the isoscalar and isovector channels of
the EDF’s [3,23].

Using the observables introduced above, the χ2 mini-
mization for the relativistic point-coupling interaction is per-
formed. This procedure is supplemented with the covariance
analysis that allows us to determine statistical uncertainties of
the model parameters and other quantities, as well as relevant
correlations between various properties [18,31]. Accordingly,
the curvature matrix is determined at the χ2 minimum, M ≡
∂pi∂p j χ

2, where pi and p j denote the interaction parameters
(i, j = 1, . . . , 12). Then, it is used to estimate the uncer-
tainties of the model parameters, using σ (pi ) ≡

√
(M−1)ii

relation [31]. The covariance between the two observables
(A, B) is defined as [31]

cov(A, B) = cov(B, A) =
N∑

i, j=1

(
∂A

∂ pi

)
M−1

i j

(
∂B

∂ p j

)
, (3)

where the derivatives of the observables and the inverse of
the curvature matrix are calculated at the χ2 minimum. The
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TABLE I. Parameters of the DD-PCX interaction with the corre-
sponding statistical uncertainties. The value of the nucleon mass is
939.0 MeV and the saturation density is set to 0.152 fm−3.

parameters DD-PCX σ

as (fm2) −10.979243836 0.010808546
bs (fm2) −9.038250910 0.023987420
cs (fm2) −5.313008820 0.047152813
ds 1.379087070 0.003900800
av (fm2) 6.430144908 0.024888709
bv (fm2) 8.870626019 0.019549460
dv 0.655310525 0.003073028
btv (fm2) 2.963206854 0.092150525
dtv 1.309801417 0.053360277
δs (fm4) −0.878850922 0.004512226

Gn (MeV fm3) −800.663126037 6.279054350
Gp (MeV fm3) −773.776776597 4.003044910

statistical uncertainty of any quantity of interest A is calcu-
lated using σ (A) = √

cov(A, A).

III. RESULTS AND DISCUSSION

The resulting DD-PCX parametrization with the respective
statistical uncertainties are given in Table I. The statistical un-
certainties of the parameters are found to be small, indicating
that the parameters of the interaction are well constrained.

Table II shows the nuclear matter properties at the satu-
ration for density-dependent point-coupling interactions, DD-
PCX (with uncertainties) and DD-PC1 [7], density-dependent
meson-exchange interaction DD-ME2 [8], and nonlinear point
coupling interaction PC-PK1 [9]. These include the energy
per nucleon E/A, the Dirac effective nucleon mass m∗

D [7],
the nuclear matter compression modulus K0, the symmetry
energy at saturation density J and the slope of the symmetry
energy at saturation L [3]. Compared to the DD-PCX, the DD-
PC1, DD-ME2, and PC-PK1 interactions were established
using different protocols. The DD-ME2 parametrization is
based on the density-dependent meson-exchange interaction,
constrained using the ground state properties of spherical
nuclei [8], whereas the DD-PC1 interaction is based on the
point-coupling model, and optimized using the binding en-
ergies of deformed nuclei [7]. In addition, selected nuclear
matter properties were fixed in both interactions, and no
data on excitations have been used in the χ2 minimization.
In Ref. [9] the nonlinear point coupling interaction PC-PK1

TABLE II. The saturation properties of nuclear matter for the
DD-PCX, DD-PC1 [7], DD-ME2 [8], and PC-PK1 [9] interactions.

DD-PCX DD-PC1 DD-ME2 PC-PK1

E/A (MeV) −16.026 ± 0.018 −16.06 −16.14 −16.12
m∗

D/m 0.5598 ± 0.0008 0.580 0.572 0.590
K0 (MeV) 213.03 ± 3.54 230.0 250.89 238.0
J (MeV) 31.12 ± 0.32 33.0 32.30 35.60
L (MeV) 46.32 ± 1.68 70.0 51.26 113.0

has been constrained by fitting to observables of 60 selected
spherical nuclei, including the binding energies, charge radii,
and empirical pairing gaps, and no constraints on the nuclear
matter properties have been used in the fitting protocol. Due
to the implementation of the nuclear excitations for 208Pb
in constraining the DD-PCX interaction, we find that the
incompressibility (K0) and symmetry energy parameters (J
and L) at saturation density are lower than for the DD-PC1,
DD-ME2, and PC-PK1 effective interactions. The respective
uncertainties are also found to be small, indicating that within
the fitting protocol employed both the isoscalar and isovector
channels of the interaction are tightly constrained. The DD-
PCX interaction values for J and L are in agreement with the
suggested values from previous studies [3]. The compression
modulus K0 is also found at around 213 MeV, which is
lower in comparison to other relativistic interactions [7,8]. We
realize that small K0 is a direct consequence of the more recent
experimental data (EISGMR = 13.5 ± 0.1 MeV) [34] used in
the fitting protocol, and the implementation of the data from
Texas A&M experiment (EISGMR = 14.18 ± 0.11 MeV) [35]
would lead toward the higher value of K0. Clearly, resolving
the ambiguities between different experimental studies on the
ISGMR data for 208Pb is essential for constraining the nuclear
matter incompressibility.

In the following, the performance of the DD-PCX in-
teraction in description of various nuclear ground state and
excitation properties is presented. Figure 1 shows the differ-
ences between the experimental [39] and calculated binding
energies (top panel) and the charge radii for Ca, Ni, Sn,
and Pb isotopes (bottom panel) for the DD-PCX interac-
tion. For comparison, the results are also shown for the
density-dependent point-coupling interaction DD-PC1 [7],
density-dependent meson-exchange interaction DD-ME2 [8],
and nonlinear point-coupling interaction PC-PK1 [9,40]. In
this work, the calculations are performed using the RHB
model with separable pairing force and spherical symmetry
is assumed. It is seen that all interactions under consideration
provide a reasonable description of the binding energies and
produce similar isotopic dependencies. Compared to the DD-
PC1 and DD-ME2, the newly parametrized DD-PCX inter-
action seems to be more successful in the predictions of the
experimental binding energies of spherical nuclei. Since the
pairing parameters (Gn, Gp) are also included in the fitting
protocol, the success of the DD-PCX can also be related to the
better reproduction of pairing properties of nuclei as discussed
below. In comparison to the experimental data [41], the charge
radii are also accurately reproduced, with a few exceptions
for Ca isotopes and 60Ni. In order to assess a more general
overview about the performance of the DD-PCX interaction,
we calculate the root mean square error (�) and root mean
square relative error (δ) in percentage for binding energies,
charge radii, and mean pairing gaps for a set of nuclei (see
Supplemental Material for the list of nuclei [32]), and the
results are given in Table III. It is seen that the resulting
binding energies and mean gap values are better reproduced
using the DD-PCX interaction, while the deviations for the
charge radii are similar in all cases. An extended list with the
calculated binding energies and charge radii for the selected
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FIG. 1. Top: the difference between the experimental [39] and calculated binding energies for Ca, Ni, Sn, and Pb isotopes. Bottom: the
calculated charge radii in comparison with the experimental values [41]. The calculations are performed using the DD-PCX, DD-PC1 [7], and
DD-ME2 [8] interactions. Available data for the PC-PK1 interaction from Refs. [9,40] are also shown.

nuclei using the same interactions is also given in the Supple-
mental Material with the corresponding experimental data.

The predictive power of the DD-PCX interaction is also
tested on the nuclear excitations of nuclei. Table IV shows the
constrained ISGMR energies for 90Zr, 120Sn, 208Pb calculated
using various relativistic interactions, and compared to the
experimental results [34,35,42–44]. In this part, we should
mention that the DD-ME2 calculations are performed using
the finite-range Gogny interaction D1S in the particle-particle

TABLE III. The root mean square error (�) and root mean
square relative error (δ) in percentage for the binding energies (B.E.)
(MeV), charge radii (rc) (fm), and mean gaps (MeV) for a set
of spherical nuclei, using the relativistic DD-PCX, DD-PC1, and
DD-ME2 interactions. The numbers of the nuclei considered in the
calculations are given in parentheses.

Interaction B.E. (65) rc (46) Mean Gap
(56)

DD-PCX � 1.38 MeV 0.016 fm 0.18 MeV
δ 0.21% 0.47% 15.40%

DD-PC1 � 3.05 MeV 0.017 fm 0.29 MeV
δ 0.48% 0.49% 21.73%

DD-ME2 � 2.08 MeV 0.016 fm 0.35 MeV
δ 0.27% 0.44% 26.13%

channel for open-shell nuclei [45], while separable pairing is
used with the DD-PCX and DD-PC1 interactions. Among the
relativistic interactions, the DD-ME2 (DD-PC1) interaction
predicts the lowest (highest) values for the constrained IS-
GMR energies. Considering the point-coupling interactions,
the table clearly demonstrates the relevance of including the
constraint on the ISGMR excitation energy for 208Pb in order
to provide a reasonable description of the ISGMR energies in
all nuclei under consideration. Using the DD-PCX interaction,
the calculated values for 90Zr and 120Sn are slightly above the
experimental values and further fine tuning of the interaction
may be achieved by considering the ISGMR energies of ad-
ditional nuclei and using smaller adopted error within the χ2

minimization of the interaction. However, the softness of the

TABLE IV. The constrained ISGMR energies (in MeV) for 90Zr,
120Sn, and 208Pb in comparison with the experimental data.

Exp. DD-PCX DD-PC1 DD-ME2

90Zr 17.58+0.06
−0.04 [42] 18.00 ± 0.10 18.83 17.80

17.66 ± 0.07 [43]
120Sn 15.5 ± 0.1 [44] 16.18 ± 0.09 16.92 16.07
208Pb 13.5 ± 0.1 [34] 13.66 ± 0.08 14.22 13.49

14.18 ± 0.11 [35]
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FIG. 2. The dipole polarizabilities for 48Ca, 68Ni, and 208Pb (left)
and tin isotopic chain (right). The calculations are performed using
RHB+(Q)RPA with DD-PCX, DD-PC1, and DD-ME2 interactions.
The experimental data are taken from Refs. [17,19–22].

Sn nuclei still represents an open question, and their inclusion
in constraining the interaction may cause difficulties.

Due to the empirical constraint imposed on the dipole po-
larizability for 208Pb, it is expected that the isovector channel
of the DD-PCX interaction is improved in comparison to
other effective interactions, as illustrated in a few following
examples. Figure 2 shows the dipole polarizabilities for 48Ca,
68Ni, and 208Pb (left panel) and Sn isotopic chain (right panel).
The calculations are performed using the DD-PCX, DD-PC1,
and DD-ME2 interactions, and the available experimental data
are also provided [17,19–22]. As shown in Fig. 2, only the
DD-PCX interaction systematically reproduces the experi-
mental results on αD for all nuclei under consideration, while
the DD-ME2 and DD-PC1 interactions mainly overestimate
the measured values. Although in constraining the functional
we only use the dipole polarizability for 208Pb, the DD-PCX
interaction is also successful in the prediction of the dipole
polarizabilities for other nuclei, as expected due to the strong
correlation between the dipole polarizabilities in different
nuclei [17].

Another important isovector property to be considered
is the neutron skin thickness rnp. In Fig. 3, the neu-
tron skin thickness for 208Pb is shown for a set of rela-
tivistic [7–9,31,46] and nonrelativistic calculations [4,31,47]
along with the experimental data from Refs. [16,19,48–51].
Using the DD-PCX interaction, the neutron skin thickness
for 208Pb is predicted as rnp = 0.159 ± 0.005 fm, and the
(yellow) band denotes the calculated statistical uncertainty.
Considering the experimental results, it is clear that there are
discrepancies in the predictions for rnp values in 208Pb. The
nonrelativistic functionals predict lower values for the neutron
skin thickness compared to the relativistic ones, with the
exception of the new effective interaction DD-PCX. Among
the relativistic interactions, the DD-PCX prediction provides
the lowest neutron skin thickness for 208Pb, which is also
in a good agreement with the majority of the experimental
data. The neutron-skin thicknesses of neutron-rich 48Ca and
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FIG. 3. The neutron skin thickness for 208Pb predicted by differ-
ent experiments and nuclear energy density functionals. The exper-
imental data are taken from (γ , π 0) [48], PREX [16], (p, p′) [19],
(p, p) [49], p [50], LAND(PDR) [51]. The calculations with the
nonrelativistic interactions: SV-min [4], SLy5-min [31], Skχm∗ [47],
and relativistic interactions: FSUGold [46], DDME-min [31], DD-
ME2 [8], DD-PC1 [7], PC-PK1 [9].

132Sn nuclei are also calculated as 0.172 ± 0.003 fm and
0.218 ± 0.005 fm, respectively. We find that the calculated
neutron skin thicknesses are also in a good agreement with the
model-averaged results in Ref. [52]. The results demonstrate
that the DD-PCX interaction can also be used to make reliable
predictions for the neutron skin thicknesses of other nuclei.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have established a unified theoretical
framework to constrain the relativistic nuclear EDF, based
on the RHB plus (Q)RPA, supplemented with the covariance
analysis, using not only the nuclear ground state properties,
but also relevant properties on collective nuclear excitations.
The relativistic point-coupling interaction DD-PCX intro-
duced in this work represents the first effective interaction
that is constrained using the binding energies, charge radii,
and pairing gaps, together with a direct implementation of the
ISGMR energy and dipole polarizability in the χ2 minimiza-
tion. In comparison to the previous studies, where the func-
tionals have the properties of the nuclear symmetry energy
either unconstrained, constrained by the pseudo-observables
on nuclear matter that are often arbitrary, or validated by the
data after the parameters have been determined, the present
study implements directly genuine observables on collective
excitations to optimize the effective nuclear interaction. The
success of the DD-PCX interaction in the predictions of the
dipole polarizabilities and neutron skin thicknesses in other
nuclei not used in optimizing the model parameters validates
the isovector channel of the functional and the respective
symmetry energy properties. The present analysis clearly
demonstrates the relevance of accurate measurements of the
nuclear collective phenomena, as well as the necessity to
resolve the ambiguities in the existing data from different
experiments, both in the isoscalar (e.g., the ISGMR energy in
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208Pb [34,35]) and isovector sectors for constraining modern
nuclear energy density functionals.
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[8] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.
C 71, 024312 (2005).

[9] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82,
054319 (2010).

[10] W.-C. Chen and J. Piekarewicz, Phys. Rev. C 90, 044305
(2014).

[11] J. Dobaczewski, J. Phys. G 43, 04LT01 (2016).
[12] J. Bonnard, M. Grasso, and D. Lacroix, Phys. Rev. C 98, 034319

(2018).
[13] S. Shen, H. Liang, J. Meng, P. Ring, and S. Zhang, Phys. Lett.

B 778, 344 (2018).
[14] M. Baldo and G. F. Burgio, Prog. Part. Nucl. Phys. 91, 203

(2016).
[15] J. Piekarewicz, Eur. Phys. J. A 50, 25 (2014).
[16] S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).
[17] X. Roca-Maza, X. Viñas, M. Centelles, B. K. Agrawal, G. Colò,

N. Paar, J. Piekarewicz, and D. Vretenar, Phys. Rev. C 92,
064304 (2015).

[18] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303
(2010).

[19] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T.
Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K.
Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata, Y.
Kalmykov, A. M. Krumbholz, E. Litvinova, H. Matsubara,
K. Nakanishi, R. Neveling, H. Okamura, H. J. Ong, B.
Ozel-Tashenov, V. Y. Ponomarev, A. Richter, B. Rubio, H.
Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu,
F. D. Smit, T. Suzuki, Y. Tameshige, J. Wambach, R. Yamada,
M. Yosoi, and J. Zenihiro, Phys. Rev. Lett. 107, 062502 (2011).

[20] J. Birkhan, M. Miorelli, S. Bacca, S. Bassauer, C. A.
Bertulani, G. Hagen, H. Matsubara, P. von Neumann-Cosel,
T. Papenbrock, N. Pietralla, V. Y. Ponomarev, A. Richter, A.
Schwenk, and A. Tamii, Phys. Rev. Lett. 118, 252501 (2017).

[21] T. Hashimoto, A. M. Krumbholz, P. G. Reinhard, A. Tamii,
P. von Neumann-Cosel, T. Adachi, N. Aoi, C. A. Bertulani,

H. Fujita, Y. Fujita, E. Ganioglu, K. Hatanaka, E. Ideguchi, C.
Iwamoto, T. Kawabata, N. T. Khai, A. Krugmann, D. Martin,
H. Matsubara, K. Miki, R. Neveling, H. Okamura, H. J. Ong,
I. Poltoratska, V. Y. Ponomarev, A. Richter, H. Sakaguchi, Y.
Shimbara, Y. Shimizu, J. Simonis, F. D. Smit, G. Susoy, T.
Suzuki, J. H. Thies, M. Yosoi, and J. Zenihiro, Phys. Rev. C
92, 031305 (2015).

[22] D. M. Rossi, P. Adrich, F. Aksouh, H. Alvarez-Pol, T. Aumann,
J. Benlliure, M. Bohmer, K. Boretzky, E. Casarejos, M.
Chartier, A. Chatillon, D. Cortina-Gil, U. DattaPramanik, H.
Emling, O. Ershova, B. Fernandez-Dominguez, H. Geissel, M.
Gorska, M. Heil, H. T. Johansson, A. Junghans, A. Kelic-Heil,
O. Kiselev, A. Klimkiewicz, J. V. Kratz, R. Krucken, N. Kurz,
M. Labiche, T. LeBleis, R. Lemmon, Y. A. Litvinov, K. Mahata,
P. Maierbeck, A. Movsesyan, T. Nilsson, C. Nociforo, R. Palit,
S. Paschalis, R. Plag, R. Reifarth, D. Savran, H. Scheit, H.
Simon, K. Summerer, A. Wagner, W. Walus, H. Weick, and M.
Winkler, Phys. Rev. Lett. 111, 242503 (2013).

[23] U. Garg and G. Colò, Prog. Part. Nucl. Phys. 101, 55 (2018).
[24] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[25] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
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