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The properties of hyperheavy nuclei and the extension of nuclear landscape to hyperheavy nuclei are exten-
sively studied within covariant density functional theory. Axial reflection symmetric and reflection asymmetric
relativistic Hartree-Bogoliubov (RHB) calculations are carried out. The role of triaxiality is studied within
triaxial RHB and triaxial relativistic mean field + BCS frameworks. With increasing proton number beyond
Z ≈ 130 the transition from ellipsoidal-like nuclear shapes to toroidal ones takes place. The description of
latter shapes requires the basis which is typically significantly larger than the one employed for the description
of ellipsoidal-like shapes. Many hyperheavy nuclei with toroidal shapes are expected to be unstable toward
multifragmentation. However, three islands of stability of spherical hyperheavy nuclei have been predicted for the
first time in Afanasjev et al. [Phys. Lett. B 782, 533 (2018)]. Proton and neutron densities, charge radii, neutron
skins, and underlying shell structure of the nuclei located in the centers of these islands have been investigated
in detail. Large neutron shell gaps at N = 228, 308, and 406 define approximate centers of these islands in
neutron number. On the contrary, large proton gap appear only at Z = 154 in the (Z ≈ 156, N ≈ 310) island.
As a result, this is the largest island of stability of spherical hyperheavy nuclei found in the calculations. The
calculations indicate the stability of the nuclei in these islands with respect to octupole and triaxial distortions.
The shape evolution of toroidal shapes along the fission path and the stability of such shapes with respect
to fission have been studied. Fission barriers in neutron-rich superheavy nuclei are studied in triaxial RHB
framework; the impact of triaxiality on the heights of fission barriers is substantial in some parts of this region.
Based on the results obtained in the present work, the extension of nuclear landscape to hyperheavy nuclei is
provided.
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I. INTRODUCTION

One of the main focuses of modern low-energy physics is
the limits of the existence of finite nuclei. New generation
of facilities such as FRIB, FAIR, RIKEN, and GANIL will
explore such limits in neutron-rich nuclei. SHE-factory and
similar facilities will attempt to extend the limits of our
knowledge on superheavy nuclei. However, already now it is
clear that there are significant restrictions on what could be
achieved by these new facilities: many neutron-rich medium
mass, heavy, and superheavy nuclei will be beyond their
experimental reach [1]. In such a situation, theoretical predic-
tions became the only tool to investigate such limits. Indeed,
a significant progress has been achieved in understanding
the limits of nuclear landscape for the Z < 120 nuclei (see
Refs. [2–4]) and a more or less consistent picture has been
obtained using the combination of different theoretical tools.
In addition, systematic theoretical uncertainties [2,4,5] and
statistical errors [6–8] in the predictions of the properties of
neutron-rich nuclei and the positions of two-proton and two
neutron-drip lines have been evaluated.

However, the nuclear landscape is not restricted to the
Z < 120 nuclei. Although there were some attempts to inves-
tigate higher Z nuclei [9–14], these systematic studies were
restricted to spherical symmetry. Our recent study [15] based

on systematic axial relativistic Hartree-Bogoliubov (RHB)
calculations and triaxial RHB as well as triaxial relativistic
mean field + BCS (RMF+BCS) calculations for a reasonable
large set of selected nuclei has invalidated many conclusions
of these studies.1 In addition, it provided a new vision on
the properties of hyperheavy nuclei and on the extension of
nuclear landscape to the Z > 120 region. These results are
briefly summarized below. The increase of proton number be-
yond Z = 120 leads to the dominance of highly deformed and
superdeformed oblate ground states. However, these states
with ellipsoidal-like shapes become unstable with respect to
fission in the Z ≈ 130 region (see also Ref. [19] for the results
obtained for fission barriers in non-relativistic theories). This
triggers the transition to the states with toroidal shapes; the
lowest in energy solutions in the Z = 140–180 nuclei have
such shapes in axial RHB calculations. It was illustrated that
some of such states could be stable against fission. In addition,

1The effects of axial and triaxial deformations have also been
studied for a few hyperheavy nuclei in Refs. [16–18], respectively.
Somewhat larger set of the nuclei was studied with triaxiality in-
cluded in Ref. [19], but according to Ref. [15] the deformation range
employed in this work is not sufficient for Z � 130 nuclei.
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some regions of stability of spherical hyperheavy nuclei have
been predicted for the first time in Ref. [15]. Although these
states are highly excited with respect to the lowest in energy
states with toroidal shapes (as obtained in axial RHB calcula-
tions), they will become the ground states if toroidal states
are not stable with respect to multifragmentation (which,
according to the present understanding, see Ref. [20], is a
quite likely scenario).

Note that only in hyperheavy nuclei the states with toroidal
shapes could become the lowest in energy. The toroidal
shapes in atomic nuclei have been investigated in a number
of the papers [17,18,21–24]. However, in absolute majority
of the cases such shapes correspond to highly excited states
either at spin zero [18,23] or at extreme values of angular
momentum [21,22,25]. In the former case, such states are
unstable against returning to the shape of spherelike geometry
[23]. In the latter case, calculated angular momenta at which
toroidal shapes appear substantially exceed the values of
angular momentum presently achievable at the state-of-art
experimental facilities [26].

The present manuscript aims at the extension of the inves-
tigations of the properties of hyperheavy nuclei and of nuclear
landscape started in Ref. [15]. The topics covered by this
investigation are shortly mentioned in the next paragraph and
discussed in detail in the sections below.

The manuscript is organized as follows. The details of
theoretical calculations are discussed in Sec. II. Section III
is devoted to the analysis of the effects of the truncation of the
basis on the results of calculations. Density profiles, charge
radii, and neutron skins of spherical nuclei located in the
centers of the islands of stability and their dependence on
the functional are considered in Sec. IV. Section V discusses
the shell closures in the islands of stability of spherical hyper-
heavy nuclei. The stability of spherical nuclei in these islands
with respect to octupole and triaxial distortions is investigated
in Sec. VI. Section VIII analyzes the impact of octupole
deformation on stability of prolate superdeformed minima.
Systematic analysis of the results of the calculations for the
Z = 138 isotopic chain is performed in Sec. IX. The stability
of toroidal shapes in selected nuclei and the evolution of
such shapes along their fission path are considered in Sec. X.
Section XI is devoted to the analysis of the impact of triaxial
deformation on the fission barriers of neutron-rich superheavy
nuclei. The extension of nuclear landscape to hyperheavy
nuclei is discussed in Sec. XII. Finally, Sec. XIII summarizes
the results of our work.

II. THE DETAILS OF THE THEORETICAL
CALCULATIONS

The investigations of the properties of super- and hyper-
heavy nuclei have been performed in different theoretical
frameworks. Systematic investigation of hyperheavy nuclei
across the nuclear landscape between two-proton and two-
neutron drip lines is performed within the axial reflection
symmetric relativistic Hartree-Bogoliubov (RHB) framework
(see Ref. [4]). The stability of prolate minima with β2 ≈
0.5 of superheavy and low-Z hyperheavy nuclei as well as

of spherical minima of hyperheavy nuclei with respect to
octupole deformation has been studied with reflection asym-
metric RHB framework using OCT-RHB code of Ref. [27].
Triaxial RHB (TRHB code) [28] and triaxial relativistic mean
field + BCS (TRMF+BCS code) [29] frameworks have been
employed for the study of fission barriers in superheavy
nuclei and stability of hyperheavy nuclei with respect to
triaxial distortions. Note that the TRHB and TRMF+BCS
codes do not include octupole deformation. Considering very
time-consuming nature of the calculations in the OCT-RHB,
TRHB, and TRMF+BCS codes, only restricted set of nuclei
has been investigated in their frameworks.

The absolute majority of the calculations has been per-
formed with the DD-PC1 covariant energy density functional
[30]. This functional is considered to be the best relativis-
tic functional today based on systematic and global stud-
ies of different physical observables related to the ground-
state properties and fission barriers [1,4,27,28,31–33]. Other
functionals such as DD-ME2 [34], PC-PK1 [35], and NL3*
[36]), representing other major classes of covariant density
functional models [4], are employed only for the study of
some properties of spherical nuclei located in the centers
of the islands of stability of hyperheavy nuclei (see Fig. 6
in Ref. [15]). This is done for the assessment of systematic
theoretical uncertainties in the predictions of their properties.

The constrained calculations in employed codes perform
the variation of the function

ERHB/RMF+BCS +
∑
λ,μ

Cλ,μ(〈Q̂λ,μ〉 − qλ,μ)2. (1)

Here, (λ,μ) = (2, 0), (λ,μ) = (2, 0) and (3,0), as well as
(λ,μ) = (2, 0) and (2,2) in the RHB, OCT-RHB, and TRHB
(TRMF+BCS) calculations, respectively. ERHB and ERMF+BCS

are the total energies in the RHB and RMF+BCS calculations.
〈Qλ,μ〉 stand for the expectation values of the respective
multipole moments, which are defined as

Q̂20 = 2z2 − x2 − y2, (2)

Q̂22 = x2 − y2, (3)

Q̂30 = z(2z2 − 3x2 − 3y2). (4)

Cλ,μ in Eq. (1) are corresponding stiffness constants [37] and
qλ,μ are constrained values of respective moments. To provide
the convergence to the exact value of the desired multipole
moment, we use the method suggested in Ref. [38]. Here,
the quantity qλ,μ is replaced by the parameter qeff

λ,μ, which
is automatically modified during the iteration in such a way
that we obtain 〈Q̂λ,μ〉 = qλ,μ for the converged solution. This
method works well in our constrained calculations. In the
OCT-RHB code we also fix the (average) center-of-mass of
the nucleus at the origin with the constraint

〈Q̂10〉 = 0 (5)

on the center-of-mass operator Q̂10 to avoid a spurious motion
of the center of mass.
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The deformation parameters β2, β3, and γ are extracted
from respective multipole moments:

Q20 =
∫

d3rρ(�r) (2z2 − x2 − y2), (6)

Q22 =
∫

d3rρ(�r) (x2 − y2), (7)

Q30 =
∫

d3rρ(�r) z(2z2 − 3x2 − 3y2), (8)

via

β2 =
√

5

16π

4π

3ZR2
0

√
Q2

20 + 2Q2
22, (9)

γ = arctan
√

2
Q22

Q20
, (10)

β3 =
√

7

16π

4π

3ZR3
0

Q30, (11)

where R0 = 1.2A1/3. Note that Q22 = 0 and γ = 0 in axially
symmetric RHB calculations.

The β2 and γ values have a standard meaning of the
deformations of the ellipsoid-like density distributions only
for |β2| � 1.0 values. At higher β2 values they should be
treated as dimensionless and particle normalized measures of
the Q20 and Q22 moments. This is because of the presence
of toroidal shapes at large negative β2 values and of necking
degree of freedom at large positive β2 values (see Fig. 2
below).

Note that physical observables are frequently shown as a
function of the Q20, Q30, and Q22 moments. However, from
our point of view such way of presentation has a disadvantage
that the physical observables of different nuclei related to the
shape of the density distributions (such as deformations) are
difficult to compare because the Q20, Q30, and Q22 moments
depend on particle number(s).

For each nucleus under study, the deformation energy
curves in the −5.0 < β2 < 3.0 range are calculated in the
axial reflection symmetric RHB framework [4]; such large
range is needed for a reliable definition of the β2 value of
the lowest in energy minimum for axial symmetry (LEMAS).
This LEMAS becomes the ground state if the higher-order
deformations (triaxial, octupole) do not lead to the instability
of these minima.

To avoid the uncertainties connected with the definition
of the size of the pairing window [40], we use the separable
form of the finite-range Gogny pairing interaction introduced
in Ref. [41]. Its matrix elements in r-space have the form

V (r1, r2, r′
1, r′

2)

= − Gδ(R− R′ )P(r)P(r′) 1
2 (1 − Pσ ), (12)

with R = (r1 + r2)/2 and r = r1 − r2 being the center-of-
mass and relative coordinates. The form factor P(r) is of
Gaussian shape:

P(r) = 1

(4πa2)3/2
e−r2/4a2

. (13)

The parameters of this interaction have been derived by a
mapping of the 1S0 pairing gap of infinite nuclear matter
to that of the Gogny force D1S. The resulting parameters
are G = 728 MeV fm3 and a = 0.644 fm [41]. This pairing
provides a reasonable description of pairing properties in
heaviest nuclei (actinides and light superheavy nuclei) in
which pairing properties can be extracted from experimental
data [4,42,43].

III. THE EFFECTS OF THE BASIS TRUNCATION

Considering that the results published in Ref. [15] and
presented in this manuscript represent the first studies of
hyperheavy nuclei and toroidal shapes in such nuclei within
the covariant density functional theory, a special attention has
been paid to the investigation of the impact of the truncation
of the basis on the results of the calculations at different β2

values. The truncation of the basis is performed in such a way
that all states belonging to the major shells up to NF fermionic
shells for the Dirac spinors are taken into account. Note also
that the results of the calculations depend on the deformation
β0 of the oscillator basis. The detailed investigation of the
impact of the deformation of the basis on the results of
the calculations for the 466156 nucleus is presented for the
NF = 20 and NF = 30 fermionic shells in Figs. 1(c) and 1(d),
respectively. One can see that the deformation of basis β0 =
0.5β2 typically leads to the lowest in energy solutions. Here,
β2 stands for the deformation of the nucleus. This truncation
scheme is also characterized by the fastest convergence. A
similar situation has been observed also in other nuclei. Thus,
this deformation of the basis has been used in all calculations
of Ref. [15] and the present manuscript.

Figures 1(a) and 1(b) show the dependence of the results
of calculations on the number of fermionic shells NF for the
208Pb and 466156 nuclei. Note that the deformation of basis
β0 = 0.5β2 is used for both of these nuclei. In 208Pb, the
NF = 20 basis provides very accurate description of binding
energies in the physically interesting range of quadrupole
deformations. Only at β2 < −3.5 there is some difference
between the results obtained with NF = 20 and NF = 30.
However, this is not physically significant range of the β2

values since binding energies at these values exceed binding
energy of the ground state by at least 250 MeV.

However, in hyperheavy nuclei the required size of the
basis depends both on the nucleus and deformation range of
interest. The NF = 20 basis is sufficient for the description of
deformation energy curves in the region of −1.8 < β2 < 1.8
[see Fig. 1(b)]. The deformation ranges −3.0 < β2 < −1.8
and 1.8 < β2 < 3.0 typically require NF = 24 (low-Z and
low-N hyperheavy nuclei) or NF = 26 (high-Z and high-N
hyperheavy nuclei). Even more deformed ground states with
β2 ≈ −4.0 are seen in high-Z/high-N hyperheavy nuclei (see
Fig. 1(b) for the 466156 results and Fig. 1 in Ref. [15] for the
426176 results); their description requires NF = 30. Thus, in
our studies the truncation of basis is made dependent on the
nucleus and typical profile of deformation energy curves or
potential energy surfaces.
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FIG. 1. The dependence of total binding energy on the truncation of the basis and on the deformation of basis β0 in the 208Pb and 466156
nuclei. Total binding energies are shown as a function of the β2 values. Panels (a) and (b) show the dependence of total binding energies on
the number of fermionic shells NF for the deformation of basis β0 = 0.5β2. Panels (c) and (d) show the dependence of total binding energies
of hyperheavy 466156 nucleus on the deformation of basis β0 for NF = 20 and NF = 30, respectively.

Figure 2 illustrates the evolution of nuclear shapes along
the lowest in energy solution of hyperheavy 466156 nucleus
obtained in axial RHB calculations with NF = 30. Starting
from spherical shape at β2 = 0.0, the increase of prolate de-
formation leads to the emergence of hyperdeformed shapes at
β2 = 1.0, which evolve into the shapes consisting of two frag-
ments connected by neck at higher β2 values. The separation
of the fragments and the size of the neck increases/decreases
with increasing β2 values. Figures 1(b)–1(d) clearly indicate
increased dependence of the results on the parameters NF and
β0 of the basis for these shapes.

The evolution of the shapes for negative β2 values is shown
in Figs. 2(a)–2(e). Highly deformed oblate shape exists at
β2 = −0.5 deformation which transforms into biconcave disk
shape at β2 = −1.0. Further decrease of the β2 values leads to
toroidal shapes. Note that with the increase of absolute value
of β2 the radius of the toroid increases and the tube radius
decreases. Total energies and equilibrium deformations of
toroidal shapes with β2 ≈ −1.45, corresponding to local min-
imum seen in deformation energy curves of Figs. 1(b)–1(d),
are rather well described with NF = 20 and show almost no
dependence on the deformation of basis β0. On the contrary,
toroidal shapes with larger (in absolute sense) β2 values show

substantial increase of the dependence of total energies and
equilibrium deformations on NF and β0.

Thus, the present analysis clearly indicates that the NF =
20 basis is sufficient for a description of classical ellipsoidal
shapes and some toroidal shapes with relatively low absolute
values of β2 even in hyperheavy Z < 180 nuclei. On the
contrary, significantly larger basis is required for a description
of more exotic shapes such as toroidal ones with large absolute
β2 values and two-fragment ones connected by neck.

The equilibrium β2 values of the Z = 122–138 nuclei
presented in Fig. 2 of Ref. [15] have been calculated with
fermionic bases including up to NF = 26 fermionic shells.
The calculations for higher Z values require further increase of
the size of fermionic basis (up to NF = 30 in high-Z/high-N
nuclei). Such calculations are extremely time-consuming even
in axial RHB framework and thus have not been undertaken.
However, the type of the LEMAS can be established in the
calculations with NF = 20. This is because even with NF =
20 the toroidal shapes with β2 < −1.4 represent the lowest in
energy solutions at axial symmetry in the Z = 140–180 part
of nuclear landscape (see Fig. 3). This figure clearly shows
that classical ellipsoidal shapes are not energetically favored
in hyperheavy nuclei. However, because of the limited size of
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FIG. 2. Neutron density distributions of the 466156 nucleus at the indicated β2 values. They are plotted in the yz plane at the position of the
Gauss-Hermite integration points in the x direction closest to zero. The density colormap starts at ρn = 0.005 fm3 and shows the densities in
fm3. Based on the results of axial RHB calculations for the lowest in energy solution obtained with NF = 30 [see Fig. 1(b)]. Note that proton
density (not shown here) is roughly half of the neutron one.

the basis these β2 values have to be considered as lower limits
(in absolute sense). As illustrated in Fig. 1, further increase of
the size of fermionic basis will lead to the increase (in absolute

sense) of the β2 values of LEMAS and to more energetically
favored status of toroidal shapes as compared with ellipsoidal
ones.

 200  250  300  350  400
Neutron number  N

 140

 150

 160

 170

 180

Pr
ot

on
 n

um
be

r 
 Z

-3

-2.6

-2.2

-1.8

-1.4

FIG. 3. Proton β2 values of the lowest in energy solutions of the Z = 140–180 nuclei obtained in axial RHB calculations with NF = 20.
The calculations cover the region between two-proton and two-neutron drip lines.
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TABLE I. Charge radii rch (in fm) and neutron skins rskin (in fm)
of the density distributions shown in Fig. 4.

Z N DD-PC1 DD-ME2 NL3* PC-PK1

Pb 126 rch 5.513 5.518 5.509 5.519
rskin 0.202 0.193 0.288 0.257

120 172 rch 6.272 6.282 6.276 6.286
rskin 0.104 0.091 0.164 0.141

138 230 rch 6.759 6.765 6.799 6.811
rskin 0.198 0.188 0.283 0.249

156 310 rch 7.330 7.326 7.402 7.420
rskin 0.290 0.295 0.427 0.364

174 410 rch 7.927 7.930 8.071 8.087
rskin 0.440 0.466 0.616 0.520

IV. DENSITY PROFILES, CHARGE RADII, AND NEUTRON
SKINS OF SPHERICAL HYPERHEAVY NUCLEI

Three regions of spherical hyperheavy nuclei centered
around (Z ≈ 138, N ≈ 230), (Z ≈ 156, N ≈ 310), and (Z ≈
174, N ≈ 410), which are expected to be reasonably stable
against spontaneous fission and α-decay, have been predicted
in Ref. [15]. The largest region with the highest fission barriers
is centered at Z ≈ 156, N ≈ 310; the other two regions are
smaller with smaller fission barriers (see Fig. 6 in Ref. [15]).
The CEDFs DD-PC1 and DD-ME2 predict larger regions of
stability and substantially higher fission barriers (reaching
10 MeV in some nuclei) as compared with the NL3* and
PC-PK1 functionals. The large fission barriers obtained in the
density-dependent functionals will lead to substantial stability
of spherical hyperheavy nuclei against spontaneous fission.
This stability is significantly lower for the NL3* and PC-PK1
functionals.

The nuclear matter properties and the density dependence
are substantially better defined for density-dependent (DD*)
functionals as compared with non-linear NL3* and PC-PK1
ones [1]. As a consequence, in general, they are expected to
perform better for large extrapolations from known regions.
In this context, it is also important to look on other features
which may be critical in the discrimination of the predic-
tions of different functionals. Thus, this section is dedicated
to the analysis of charge radii, neutron skins and density
distributions of the nuclei located in the centers of this po-
tential islands of stability of hyperheavy nuclei. These are
368138, 466156, and 584174 nuclei. As a benchmark, we are
using the 208Pb and 292120 nuclei. The properties of latter
nucleus were studied in details in Ref. [39].

Charge radii rch and neutron skins rskin of these nuclei
are presented in Table I and related density distributions are
shown in Fig. 4. The predictions of different functionals for
charge radii of 208Pb differ by less than 0.01 fm (see Table I);
this is also seen in proton density distributions [see Fig. 4(a)].
On the contrary, the spread in the predictions of neutron
skin is significant reaching 0.095 fm. Density-dependent (DD)
functionals predict the lowest values for the neutron skin,
while the NL3* functional predicts the highest value and the
PC-PK1 results lie somewhere in between of the DD and
NL3* ones. These features are reflected also in the neutron
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FIG. 4. The evolution of proton and neutron densities with the
transition from the 208Pb nucleus to the region of hyperheavy nuclei.
The figure is based on the results of spherical RHB calculations;
the employed CEDFs are indicated. The 368138, 466156, and 466156
nuclei are located in the centers of the islands of stability of spherical
hyperheavy nuclei predicted in Ref. [15]. Note that it was verified
that proton and neutron densities of the nuclei in these regions are
very similar to the densities of above mentioned central nuclei.
For comparison, the densities of spherical 208Pb and 292120 nuclei
are presented. Note that latter nucleus is an example of substantial
central depression in density distribution (see Ref. [39] for details).

density distributions; they extend to higher radii in surface
area and have lower density in the central region in the NL3*
and PC-PK1 functionals as compared with the DD ones [see
Fig. 4(a)]. These differences between the functionals are real-
ized when the neutron matter is moved from the surface region
to the central and middle parts of the nucleus. Comparable
features are also seen in the 292120 nucleus [see Table I and
Fig. 4(b)].

However, these differences between the predictions of
the functionals become enhanced on going to the central
nuclei of the regions of potential stability of spherical
hyperheavy nuclei. The spreads in the predictions of charge
radii increase from 0.014 fm for the 292120 nucleus to 0.052,
0.094, and 0.16 fm for the 368138, 466156, and 584174 nuclei,
respectively. The largest charge radius is always produced
by the PC-PK1 functional, while the smallest either by
DD-PC1 or by DD-ME2. Note that latter two functionals give
comparable results.

The spreads in the predictions on going from 292120 nu-
cleus to higher Z/higher N nuclei increase also for neutron
skins (see Table I). For example, the difference in neutron
skin of the 584174 nucleus calculated with DD-PC1 and NL3*
reaches 0.176 fm. Similar to 208Pb and 292120 nuclei, density
dependent (DD) functionals predict the lowest values for the
neutron skin, while the NL3* functional predicts the highest
value and the PC-PK1 results lie somewhere in between of the
DD and NL3* ones.

These results clearly indicate that the accuracy of the
reproduction of charge radii and neutron skins by the CEDFs
could be an important criteria in favoring or disfavoring the
predictions of one or another functional for the islands of
stability of spherical hyperheavy nuclei. Among considered
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functionals, the DD-ME2 and DD-PC1 functionals provide
the best global description of charge radii (see Sec. X in
Ref. [4]). However, the situation with neutron skins is more
complex. Even for 208Pb there is a significant controversy
in the adopted experimental values of neutron skins (see
discussion in Sec. X of Ref. [4] and in Ref. [44]). For example,
the experiments based on hadronic probes provide neutron
skin in 208Pb around 0.2 fm or slightly smaller. However, these
experimental data are extracted in model-dependent ways.
Alternatively, a measurement using an electroweak probe
has been carried out in parity violating electron scattering
on nuclei (PREX) and it brings rskin = 0.33 ± 0.17 [44]. A
central value of 0.33 fm is particularly intriguing because it
is around 0.13 fm higher than central values obtained in other
experiments. Note that nonlinear CEDFs typically give rskin ≈
0.3 fm (see Table I). The electroweak probe has the advantage
over experiments using hadronic probes that it allows a nearly
model-independent extraction of the neutron radius that is in-
dependent of most strong interaction uncertainties [45]. Thus,
the results obtained in future PREX-2 experiment [45] would
be quite useful in helping to discriminate the predictions.

General features of proton and neutron density distribu-
tions of hyperheavy nuclei seen in Fig. 4 do not depend
on employed functional. Apart of neutron density in 368138
nucleus (which is almost the same in the center of nucleus and
at its surface), both types of densities are characterized by the
density depression in the central part of the nucleus. Here we
use the ratio ω = ρcent/ρsurf of the density at the center ρcent

to the maximum density at the surface ρsurf averaged over the
set of employed functionals to characterize this depression.
The central density depressions in neutron subsystems of the
466156 and 584174 nuclei are rather modest with ων = 0.814
and 0.86, respectively. Thus, neutron densities are close to flat
density distributions and could not be characterized as specific
for semi-bubble nuclei (in the language of Ref. [10]). How-
ever, central depressions are significantly more pronounced
in proton subsystems of hyperheavy nuclei with ωπ = 0.753,
0.651, and 0.534 for the 368138, 466156, and 584174 nuclei,
respectively. Thus, they are close to the ones expected for
semi-bubble nuclei (see Ref. [10]). Note that in a given
nucleus the proton density is roughly half of the neutron one.

It is interesting that central depression is more pronounced
in the 292120 superheavy nucleus (with ωπ ≈ ων ∼ 0.65) as
compared with higher-Z hyperheavy nuclei (see Fig. 4); the
only exception is proton subsystem of the 584174 nucleus.
The detailed analysis of Ref. [39] strongly suggests that such
central depression in the density distributions of the 292120
nucleus is mostly due to underlying shell structure: it emerges
due to the occupation of specific high–plx-sol-plxlow- j or-
bitals which place matter mostly in the surface/central re-
gion of the nucleus. Indeed, the occupation of the neutron
3d5/2, 3d3/2, and 4s1/2 orbitals on going from N = 172 to
N = 184 (the 304120 nucleus) destroys this central depression
(see Fig. 2 in Ref. [39]). However, on going to hyperheavy
nuclei the role of strong Coulomb force (which pushes the
matter to surface region) in creation of central depression in
density distributions is expected to become dominant [46]).
The fact that the densities of the nuclei are similar within
the regions of potentially stable spherical hyperheavy nuclei
suggests reduced role of shell effects.

V. SHELL CLOSURES IN THE ISLANDS OF STABILITY
OF SPHERICAL HYPERHEAVY NUCLEI

The stability of spherical hyperheavy nuclei is defined by
underlying shell structure. However, in general, the impact of
shell gaps decreases with the increase of particle numbers (see
discussion in Sec. III of Ref. [31]). Figure 5 shows proton and
neutron single-particle spectra of the 466156 nucleus at spher-
ical shape. Proton Z = 154 and neutron N = 308 shell gaps
with the sizes of approximately 2 MeV are clearly visible for
all employed functionals in this figure. Based on these spectra
it is tempting to call the 462154 nucleus as a doubly magic
hyperheavy nucleus. However, the analysis of two-particle
separation energies reveals more complicated situation. The
N = 308 shell closure reveals itself via substantial drop of
two-neutron separation energies at this particle number which
exists for all proton numbers [see Fig. 6(a)]. This drop is also
visible in calculated α-decay half-lives (see Figs. 4 and 5 in
Supplemental Material to Ref. [15]). However, the impact of
the Z = 154 proton shell closure on two-proton separation
energies is substantially smaller [see Fig. 6(b)] and it almost
does not exist for the N = 308 nuclei.
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ity of hyperheavy nuclei. They are obtained in the RHB calculations
with the DD-PC1 functional. The lines are labeled by respective
proton [panel (a)] and neutron [panel (b)] numbers.

Although we have not performed detailed analysis of the
separation energies for the DD-ME2, PCPK1, and NL3* func-
tionals, selected results for α-decay half-lives presented in
Fig. 6 of Supplemental Material to Ref. [15] allow to perform
the comparison with the DD-PC1 ones. Similar to DD-PC1
the N = 308 shell gap is expected to be seen in two-neutron
separation energies also for the DD-ME2 functional but its
impact is somewhat smaller as compared with DD-PC1. On
the contrary, the NL3* and PC-PK1 results presented for the
Z = 156 and Z = 160 isotopic chains in Fig. 6 of Supplemen-
tal Material to Ref. [15] do not reveal the impact of the N =
308 shell gap. These observations suggest that in the center of
the Z ≈ 156, N ≈ 310 island of stability of hyperheavy nuclei
total shell correction energies at spherical shape are more
negative for the DD-PC1 and DD-ME2 CEDFs as compared
with the NL3* and PC-PK1 ones. This explains why fission
barriers (and thus the size of the islands of stability) (see Fig. 6
in Ref. [15]) are larger for the DD-PC1 and DD-ME2 CEDFs
as compared with the NL3* and PC-PK1 ones.

Figures 7 and 8 show single-particle spectra for the 366138
and 580174 nuclei located in the vicinity of central nuclei of
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FIG. 7. The same as described in the caption of Fig. 5 but for the
366138 nucleus.

two regions of spherical hyperheavy nuclei. Although the N =
228 and N = 406 neutron gaps with the size of approximately
2 MeV are seen in these figures, there are no substantial proton
gaps at respective particle numbers. Similar to Fig. 6, these
neutron gaps are seen in two-neutron separation energies, but
two-proton separation energies are quite smooth as a function
of proton number and do not reveal proton gaps.

The features observed for proton subsystems of the nuclei
under discussion together with clear localization of the islands
of stability of spherical hyperheavy nuclei in the (Z, N ) plane
strongly suggests that the shell effects at deformed shapes
leading to negative shell correction energies at some deforma-
tion and thus to fission barriers play also an important role in
the stabilization of spherical hyperheavy nuclei in discussed
regions.

Some of discussed shell gaps appear as the gaps between
the members of the spin-orbit doublets. These are the N =
308 shell gap between the 2i13/2 and 2i11/2 orbitals in the
466156 nucleus [Fig. 5(b)], the N = 228 shell gap between the
2h11/2 and 2h9/2 orbitals in the 366138 nucleus [Fig. 7(b)] and
the N = 406 shell gap between the 2 j15/2 and 2 j13/2 orbitals
in the 580174 nucleus [Fig. 8(b)]. The energy splitting between
the spin-orbit partner orbitals depends on the profile of the
density distribution in the surface region (see Discussion in
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FIG. 8. The same as described in the caption of Fig. 5 but for the
580174 nucleus.

Ref. [47]). Indeed, the above mentioned gaps are similar
in the DD-PC1/DD-ME2 and NL3*/PCPK1 pairs of the
functionals reflecting the similarities and differences in their
density distributions (see discussion in Sec. IV). Note that the
gaps obtained in the DD-PC1/DD-ME2 functionals are larger
than those seen in the NL3*/PC-PK1 ones.

VI. THE STABILITY OF SPHERICAL HYPERHEAVY
NUCLEI WITH RESPECT TO OCTUPOLE

AND TRIAXIAL DISTORTIONS

Figure 6 in Ref. [15] summarizes the heights of the fission
barriers for the nuclei forming the islands of stability of spher-
ical hyperheavy nuclei. They represent the lowest in energy
barriers amongst those obtained on oblate and prolate sides
of spherical minimum in axial RHB calculations. However,
one should investigate the stability of spherical minimum
with respect to octupole and triaxial distortions to have a full
understanding of the situation. Such studies are very time-
consuming and thus we present their results obtained with
DD-PC1 CEDF only for the nuclei located in the centers of
the islands of stability of spherical hyperheavy nuclei.

Figure 9 shows the potential energy surfaces of these nuclei
in the (β2, β3) plane. One can see that in the 368138 and
584174 nuclei, the barriers on the oblate and prolate sides have
the lowest values at β3 = 0. The same is true also for the
barrier on the prolate side of spherical minimum in the 466156
nucleus. However, potential energy surface is soft in octupole
deformation in the region of the barrier located on the oblate
side of spherical minimum in this nucleus. Thus, the saddle of
the fission barrier is shifted from β2 = −0.196, β3 = 0.0 (as
obtained in axial RHB calculations without octupole deforma-
tion) to β2 = −0.198, β3 = 0.091 when octupole deformation

FIG. 9. Potential energy surfaces in the (β2, β3) plane of the central nuclei of the regions of potential stability of spherical hyperheavy
nuclei. Spherical minimum is indicated by a white semicircle. Equipotential lines are shown in steps of 1.0 MeV. Note that the results are
shown in different (β2, β3) deformation ranges.
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FIG. 10. Potential energy surfaces of the nuclei located in the centers of the regions of stability of spherical hyperheavy nuclei obtained in
the TRHB calculations with NF = 18. Note that the topology of potential energy surfaces is almost the same in the calculations with NF = 18
and NF = 20. Thus, to save computational time these figures are plotted with NF = 18. The energy difference between two neighboring
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with respect to the energy of the deformation point with largest (in absolute value) binding energy. Note that the results for the 548174 nucleus
are shown in a smaller deformation range (because of convergence problems at large β2 values) and different colormap is used for this
nucleus.

is included in the calculations. This also leads to the decrease
of the height of the barrier on the oblate side from 10.81 MeV
down to 9.83 MeV. However, this decrease has very little
impact on the total stability of this nucleus with respect to
octupole deformation since resulting value of 9.83 MeV is
only 120 keV lower than the height EB = 9.95 MeV of the
barrier on the prolate side. Note that the barrier on the prolate
side is the lowest one in the axial RHB calculations without
octupole deformation. Thus, one can conclude that above
discussed nuclei are relatively stable with respect to octupole
distortions.

It is also necessary to mention that potential energy sur-
faces shown in Fig. 9 do not suggest that cluster radioactivity
from spherical 368138 and 466156 hyperheavy nuclei plays an
important role. Super-asymmetric fission channel leading to a
cluster radioactivity shows itself as a narrow fission path in the
(β2, β3) plane separate from main fission path (see example in
Fig. 1 of Ref. [48]). No such path is visible in Figs. 9(a) and
9(b). However, because of convergence problems one cannot

define whether cluster radioactivity is important in the 584174
nucleus.

Figure 10 shows the potential energy surfaces obtained
in the TRHB calculations. In the 584174 nucleus, the axial
saddles are located at β2 = 0.17, γ = 60◦ (the barrier on the
oblate side of spherical minimum) and at β2 = 0.197, γ = 0◦
(the barrier on the prolate side of spherical minimum). Their
heights are 6.389 and 7.709 MeV, respectively. The potential
energy surface is somewhat soft in triaxial deformation so that
the saddle of fission barrier is shifted to β2 = 0.16, γ = 36◦
when the triaxiality is included in the calculations. However,
the impact of triaxiality on the height of fission barrier is rather
modest leading to its decrease (as compared with the lowest
axial barrier located on oblate side) by only 0.26 MeV. Similar
features are also seen in the 368138 and 466156 nuclei. The
reduction in the height of fission barrier is 0.71 and 0.58 MeV
in these nuclei. However, as compared with the heights of
5.88 and 10.81 MeV of the lowest axial barrier (located at the
oblate side of spherical minimum), these are relatively modest
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reductions which do not decrease the stability of nuclei in a
substantial way.

These features could be understood in the following way.
The topology of potential energy surfaces of the nuclei under
study are similar to those of volcanos. The central area around
spherical minimum is similar to caldera, the rim of which is
represented by the fission barrier. The area beyond the rim (fis-
sion barrier) is fast down-sloping as a function of quadrupole
deformation β2. The saddles of axial fission barriers (on oblate
and prolate sides of spherical minimum) are located at modest
quadrupole deformation of β2 ≈ 0.2. As a result, the distance
between these two saddles in the (β2, γ ) plane is relatively
small, so that large changes in binding energy due to triaxiality
for nearly constant β2 values could not develop. As a conse-
quence, the lowest fission barrier around spherical minimum
obtained in axial RHB calculations is a good approximation
to the barrier obtained in the TRHB calculations. The TRHB
results discussed here clearly indicate that spherical minima
of the nuclei under study are relatively stable with respect to
triaxial distortions.

VII. PAIRING INTERACTION IN HYPERHEAVY NUCLEI

The magnitude of pairing interaction could be accessed
via two calculated quantities: average pairing gap and pairing
energy [37]. There are several definitions of average pairing
gaps in literature (see discussion in Sec. IV of Ref. [4]). The
pairing gap

�uv =
∑

k ukvk�k∑
k ukvk

, (14)

which is related to the average of the state dependent gaps over
the pairing tensor, is used in the present study. The analysis of
Ref. [4] showed that the �uv gap is a better measure of pairing
correlations as compared with other definitions for average
pairing gap.

The pairing energy in the RHB calculations is defined via

Epairing = − 1
2 Tr(�κ ), (15)

where � and κ are pairing field and pairing tensor, re-
spectively [37]. Note that Epairing mixes particle-particle and
particle-hole channels of the model. As a consequence, its
absolute value is typically by an order of magnitude larger
than the gain in binding due to pairing correlations which
is equal to the difference of binding energies obtained in
the calculations with and without pairing correlations (see
Refs. [49,50]).

Figure 11 shows the evolution of neutron and proton
pairing energies Epairing and pairing gaps �uv as a function of
β2 for the lowest in energy solution in the 466156 nucleus. The
oscillating behavior of these quantities as a function of β2 is
due to the change of the density of the single-particle states in
the vicinity of the Fermi level with deformation (see detailed
discussion in Ref. [40]). In regions of high-level (low-level)
density it is easier (more difficult) for the quasiparticles to
spread around the Fermi surface, and therefore the size of the
pairing correlations depends strongly on the level density. As
a consequence, the low (high) values of the |Epairing| and �uv
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FIG. 11. Neutron and proton pairing energies Epairing (a) and pair-
ing gaps �uv (b) as a function of β2 for the lowest in energy solution
in the 466156 nucleus, obtained with NF = 30 and the deformation of
basis β0 = 0.5β2, shown in Fig. 1(d).

corresponds to low (high) density of the single-particle states
in the vicinity of the Fermi level (see Ref. [40]). Indeed, in the
nucleus under consideration there is a substantial reduction of
neutron |Epairing| and �uv values near spherical shape which
is attributable to the presence of large N = 308 shell gap (see
Fig. 5). Note also that there is a collapse of neutron pairing
correlations at toroidal shapes in the β2 range from −4.2
up to −3.95. This range corresponds to the minimum of the
deformation energy curve at toroidal shapes and its vicinity
[see Fig. 1(d)]. The local minima in potential energy surfaces
correspond to low density of the single-particle states in
the vicinity of the Fermi level [51,52]; at the above-quoted
deformations this density is low enough to trigger the collapse
of pairing correlations in the RHB calculations. However,
this collapse of pairing in neutron subsystem is not critical
since the treatment of pairing by more sophisticated methods,
which preserve exact particle number, would only lead to
moderate additional binding due to pairing at quoted above
deformations.

Particle number dependencies of proton and neutron pair-
ing energies at spherical shape of the nuclei forming the
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FIG. 12. Neutron (a) and proton (b) pairing energies Epairing for spherical minima of the nuclei forming the (Z ≈ 156, N ≈ 310) island of
stability of spherical hyperheavy nuclei.

(Z ≈ 156, N ≈ 310) island of stability of spherical hyper-
heavy nuclei are shown in Fig. 12. Apart of the N = 308
isotopes, the absolute values of neutron pairing energies
|Epairing| are larger than 4 MeV. In the N = 308 isotones, they
are smaller than 4 MeV and there is a collapse of neutron
pairing due to large size of the N = 308 shell gap in the
nuclei with Z = 158–174. The treatment of pairing by the
methods which include exact particle number projection (see,
for example, Ref. [53]) will restore the pairing correlations
in these nuclei. However, in no way it will affect the con-
clusions of the present work and of Ref. [15]. In reality, it
is expected that such methods most likely will increase the
fission barriers around spherical minimum because of addi-
tional binding due to pairing at spherical shape. Proton pairing
energies are displayed in Fig. 12(b); only in the Z = 154,

N = 292–298 nuclei their absolute values are below 4 MeV.
However, there is no proton pairing collapse in any of the
nuclei shown in this figure. In other nuclei, proton pairing
energies are quite large with |Epairing| > 6.0 MeV and for the
Z � 168 nuclei the |Epairing| values exceed 20 MeV.

Figure 13 shows the evolution of proton and neutron
pairing energies as a function of the β2 and γ deformations
in the 466156 nucleus. Similar to the calculations in axially
symmetric case, there are substantial oscillations of the
pairing energies as a function of deformation parameters
which are due to underlying changes in the single-particle
level density in the vicinity of the Fermi level. However, the
topology of these oscillations is more complex because of
the presence of two deformation parameters. Note that no
pairing collapse is observed at any deformation point covered
by these TRHB calculations.

VIII. THE IMPACT OF OCTUPOLE DEFORMATION ON
THE STABILITY OF PROLATE SUPERDEFORMED

MINIMA

It is well known fact that outer fission barriers exist in
superheavy nuclei for many CEDFs when the calculations are
restricted to axial reflection symmetric shapes [54,55]. This is
illustrated in Fig. 14 which shows the competition in energy of
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nucleus.
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FIG. 14. Deformation energy curves of selected even-even superheavy nuclei obtained in axial RHB calculations performed with NF = 26.
Arrows A and B indicate prolate superdeformed β2 ≈ 0.6 and oblate β2 ≈ −0.5 local minima, respectively.

two local minima, namely, prolate superdeformed minimum
with β2 ≈ 0.6 and oblate one with β2 ≈ −0.5. Although the
prolate superdeformed minima are the lowest in energy, their
stability depends on the properties of outer fission barriers. It
turns out that in absolute majority of the Z > 120 super- and
hyperheavy nuclei such local minima either do not exist or the
heights of outer fission barrier are less than 2 MeV. The latter

is not sufficient for the stabilization of prolate superdeformed
minimum (see discussion in Ref. [55]). Note also that such
local prolate minima do not exist in the results of axial
reflection symmetric RHB calculations for hyperheavy nuclei
with Z > 140 (see examples shown in Fig. 1 of Ref. [15]).

For the cases in which the heights of outer fission barriers
are higher than 2 MeV in axial reflection symmetric RHB

FIG. 15. Potential energy surfaces in the (β2, β3) plane for the nuclei shown in Fig. 14. Equipotential lines are shown in steps of 1.0 MeV.
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FIG. 16. Deformation energy curves of even-even Z = 138 hyperheavy nuclei obtained in axial RHB calculations with DD-PC1 functional
and the NF = 26 basis. The nuclei located between two-proton and two-neutron drip lines are shown in step of �N = 4. The curves are plotted
only for negative β2 values since prolate solutions are unstable. The deformation energy curves are normalized in such a way that the minimum
of total energy for negative β2 values corresponds to zero energy.

calculations (as those shown in Fig. 14), we have performed
the calculations in axial octupole deformed code RHB-OCT
developed in Ref. [27]. The results of such calculations are il-
lustrated in Fig. 15. One can see that the inclusion of octupole
deformation leads to the instability of the prolate superde-
formed β2 ≈ 0.6 minima with respect to octupole deforma-
tion. In the 316,320124 nuclei this instability will lead to asym-
metric fission, while the competition of symmetric and asym-
metric fissions is possible in the 296,300122 nuclei. The sys-
tematic calculations for the cases in which the heights of outer
fission barriers are higher than 2 MeV in axial reflection sym-
metric calculations clearly show that the inclusion of octupole
deformation leads either to complete disappearance of outer
fission barrier (as seen in the cases of 296122 and 316,320124
nuclei in Fig. 15) or to a significant reduction of the heights
of outer fission barriers to the values which are substantially
lower than 2 MeV (as seen for the 300122 nucleus in Fig. 15).
Thus, the prolate superdeformed minima are expected to be

unstable in all Z > 120 nuclei. Note that outer fission barriers
in super- and hyperheavy nuclei could also be affected by
triaxiality (see Ref. [55]). However, the present analysis shows
that prolate minima in the Z > 120 nuclei are already unsta-
ble in axially symmetric calculations. This is a reason why
nuclear landscape in the Z = 122–130 nuclei is dominated by
the oblate ground states (see Fig. 3 in Ref. [15]).

IX. SYSTEMATIC ANALYSIS OF THE RESULTS OF
CALCULATIONS FOR THE Z = 138 ISOTOPIC CHAIN

To illustrate the variation of the properties of the nuclei
with neutron number, a detailed analysis of the results of the
calculations for the Z = 138 isotopic chain is presented in this
section.

Deformation energy curves of even-even Z = 138 hyper-
heavy nuclei obtained in axial RHB calculations are shown in
Fig. 16. The minimum of deformation energy curve is located
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FIG. 17. Proton and neutron chemical potentials as a function of the β2 values for the solutions displayed in Fig. 16. Blue dashed lines
show the continuum threshold.

at β2 ≈ −4.0 for proton-rich nuclei with N = 186–190. This
minimum appear at β2 ≈ −2.5 for the N = 194–230 nuclei.
Further increase of neutron number leads to the growth (in
absolute sense) of the β2 values: the nuclei with N = 246–262
have minima at β2 ≈ −3.0. The minima of the deformation
energy curves are located at β2 ≈ −3.5 for neutron-rich nuclei
with N = 266–326. As discussed in details in Ref. [15], the
nuclei have toroidal shapes in such minima. The competing
local minima with β2 ≈ −0.8 (which corresponds to oblate
ellipsoidal shape, see Ref. [15]) are located at high excitation
energies of 10–30 MeV. This excitation energy depends on the
nucleus but its maximum is reached at N = 286–290 and min-
imum at N ≈ 206. Note the complex pattern of deformation
energy curves at low deformation with a number of coexistent
local minima.

Similar to few nuclei discussed in Ref. [15], these minima
in deformation energy curves with toroidal shapes are
potentially unstable with respect to the transition to prolate
shape via γ -plane and subsequent fission since prolate shapes

with corresponding quadrupole deformations are located at
lower energies (compare dashed lines [which represent mirror
reflection of the positive β2 part of deformation energy curve
onto negative β2 values] with solid ones in Figs. 1(c) and
1(d) of Ref. [15]). However, as discussed in Ref. [15] and in
Sec. X below, some of these minima could be stable.

Proton and neutron chemical potentials for the solutions,
displayed in Fig. 16, are shown in Fig. 17. They behave
differently as a function of β2. Neutron chemical potential on
average is almost flat as a function of β2. The magnitude of
the fluctuations of the λn(β2) values with respect to average
values decreases on approaching two-neutron drip line. On the
contrary, there is a pronounced slope in the λp(β2) values: they
on average decrease with increasing absolute value of β2. Note
that this slope is especially pronounced in proton-rich nuclei.
As a consequence, in the nuclei with N = 186–210 there is the
range of the β2 values in which the proton chemical potential
is positive (see top row of Fig. 17) and the shape of the nucleus
in respective local minimum is oblate ellipsoidal. Even-even
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FIG. 18. Three-dimensional potential energy surfaces with their two-dimensional projections (contour plots) for the solutions with
minimum at β2 ≈ 2.3, β4 ≈ +1.5, γ = 60◦ in indicated nuclei. Based on the results of the TRMF+BCS calculations of Ref. [15]. These
solutions are excited ones in axial calculations, but they are the lowest in energy stable solutions in triaxial calculations. The red line shows
static fission path from the minimum indicated by open white circle; the saddle point is shown by black solid circle. The energy difference
between two neighboring equipotential lines in contour plot is 0.5 MeV.

nuclei with λp > 0 are typically expected to be unstable with
respect to proton emission.2

On the contrary, for the N = 186–210 nuclei proton
chemical potential is negative below β2 ≈ −1.5 and it
becomes more negative with the increase of absolute value
of β2. As a consequence, toroidal shapes in these nuclei are
expected to be stable with respect to particle emission. This

2The discussion of the two-proton drip line in terms of proton
chemical potential has its own meaning. Strictly speaking the two-
proton drip line is reached when two-proton separation energy S2n

becomes negative. Alternatively (but less strictly) the position of
the two-proton drip line is defined via the proton chemical potential
λp = dE/dZ as a point (nucleus) of the transition from negative λp

(bound nuclei) to positive λp(unbound nuclei) values. This definition
depends on the employed pairing model. In addition, it presents a
linear approximation in a Taylor expansion and, therefore, it ignores
nonlinear effects like shape changes on going from the (Z − 2, N )
to the (Z, N ) nucleus and their contribution to S2p. However, even
in the case of two-neutron drip line (which extremely sensitively
depends on the fine details of the calculations), this definition leads
in approximately two-thirds of the cases to the same two-neutron
drip line as obtained in the definition of the two-neutron drip line via
the separation energies [5]. In the remaining one-third of the cases,
it leads to a two-neutron drip line which is two neutrons short of the
two-neutron drip line defined via the separation energies; the nucleus
which is unbound (as defined via the chemical potential) has in most
of the cases a low positive value of λn ≈ 0.05 MeV. These results
were obtained in Ref. [5] from the calculations of Refs. [3,4] by
analyzing the two-neutron drip line positions of 60 isotopic chains
for four different CEDFs.

feature in the behavior of the proton chemical potential as a
function of β2 leading to instability (stability) of ellipsoidal
(toroidal) shapes in the same nucleus with respect to particle
emission is a source of unusual shift in the position of two
proton-drip line toward more proton rich nuclei (as compared
with general trend seen in the (Z, N ) plane for the Z < 120
nuclei) which is clearly visible in Fig. 24 below. Note that
such shift is absent for two-neutron drip line most likely
because of above mentioned flatness of neutron chemical
potential as a function of β2.

X. TOROIDAL SHAPES: STABILITY AND SHAPE
EVOLUTION ALONG THE FISSION PATH

The investigations of Ref. [15] showed that some toroidal
shapes could be stable with respect to triaxial distortions.
Figure 18 shows potential energy surfaces of the 354134 and
348138 nuclei around minima of such configurations located
at β2 ≈ 2.3, β4 ≈ +1.5, γ = 60◦. The saddle points of the
first fission barriers of these configurations are located at 4.4
and 8.54 MeV, respectively. However, physical reasons for
such stability of toroidal shapes have not been discussed in
Ref. [15].

To understand these reasons the evolution of toroidal
shapes along the fission path of the configuration in the
354134 nucleus (shown in Fig. 18) is displayed in Fig. 19.
The toroid and its tube are fully symmetric at the mini-
mum [Figs. 19(a)–19(c)]. The deviations from axial sym-
metry lead to the distortions which are already seen at
γ = 50◦; the toroid is stretched out in the direction of the
axis of symmetry and squeezed in perpendicular direction
[Fig. 19(f)]. However, the tubes of the toroid still remain
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FIG. 19. The evolution of toroidal shapes along the fission path in the 354134 nucleus shown on left panel of Fig. 18. Neutron density
distributions are shown at indicated (β2, γ )-deformations along this fission path. To give a full three-dimensional representation of the density
distributions, they are plotted in the xy, yz, and xz planes at the positions of the Gauss-Hermite integration points in the z, x, and y directions
closest to zero, respectively. The density colormap starts at ρn = 0.005 fm−3 and shows the densities in fm−3.

cylindrical [Figs. 19(d) and 19(e)]. Figures 19(g)–19(i) show
the density distributions at the deformations corresponding
to the saddle point. One can see further increase of the
asymmetry of torus and the decrease of the area of toroid hole.
Thus, one can conclude that the barrier against fission emerges
because these deviations from symmetrical shape of toroid
cost the energy.

Further decrease of the γ and β2 deformations leads to
increasing distortion of the geometry of toroid [Fig. 19(l)] the

outer shape of which looks now similar to parallelogram and
the shape of toroid hole comes closer to square. In addition,
Figs. 19(j) and 19(k) reveal visible deviations from cylindrical
shape of the tube of toroid. However, these changes reduce the
total energy of the configuration as compared with the one at
the saddle point.

Above discussed changes in shapes and total energies
along the fission path are the consequences of a delicate bal-
ance of liquid drip and shell correction energy contributions.
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XI. THE IMPACT OF TRIAXIAL DEFORMATION
ON THE FISSION BARRIERS OF NEUTRON-RICH

SUPERHEAVY NUCLEI

Although oblate minima of high-Z (Z > 120) superheavy
and low-Z hyperheavy nuclei are relatively stable with respect
to axial reflection symmetric and asymmetric deformations
(see Ref. [15] and Sec. VIII in the present manuscript), that is
not necessarily the case with respect to triaxial deformation.
The impact of triaxiality on the fission paths and the differ-

ences in the stability of super- and hyperheavy elements is
illustrated in Fig. 20 on the example of superheavy 268Sg and
332Ds nuclei and hyperheavy 360130 and 432134 nuclei.

Both in super- and hyperheavy nuclei the potential energy
surfaces (PES) represent the canyon in which some local
valleys and hills are located. However, there are two princi-
pal differences between super- and hyperheavy nuclei. The
canyon is quite narrow in superheavy nuclei which prevents
the formation of local minima at large oblate deformation and
limits the role of triaxial deformation. One can see that normal

FIG. 20. Three-dimensional potential energy surfaces with their two-dimensional projections (contour plots) for the nuclei with the ground
states having ellipsoidal shape. They have been obtained in the TRHB calculations with NF = 18. The red line shows static fission path from
respective minimum, while black dashed line the γ = 0◦ axis. The energy difference between two neighboring equipotential lines in contour
plot is 0.5 MeV.
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deformed minima are prolate in superheavy 268Sg and 332Ds
nuclei and fission paths from these minima is located not far
away from the γ = 0◦ axis. In addition, the bottoms of the
canyons in PES are on average flat.

On the contrary, in hyperheavy nuclei the walls of the
canyon with very rapid raise of energy with deformation are
located at larger separation (so only right wall is seen in the
bottom panels of Fig. 20) as compared with superheavy nuclei
and the mountain centered around β2 ≈ 0 is formed in this
canyon. The slope of the mountain in the direction of the
β2-deformation at γ = 0◦ is very high. This indicates higher
instability of hyperheavy nuclei against fission as compared
with superheavy ones. The larger separation of the canyon
walls leads to an increased role of triaxiality in hyperheavy
nuclei: local minima are formed either at oblate superde-
formation (see example of the 360130 nucleus in Fig. 20)
or at very large γ -deformation (see example of the 432134
nucleus in Fig. 20). In addition, the fission paths from these
minima proceed at larger γ -deformations as compared with
superheavy nuclei. Not only the fission through the γ -plane
gets more energetically favored, but also the fission path
through γ -plane becomes much shorter than the one through
the γ = 0◦ axis (see also the discussion in Ref. [15]).

The general conclusion is that the barriers along the fis-
sion paths emerging from the oblate minima located within
the −1.0 < β2 � 0.0 range decrease with increasing proton
number (see Ref. [15]). As a result (see discussion in Sec. XII
below), the fission barriers for oblate ellipsoidal shapes be-
come consistently lower than 2 MeV above some (Z, N ) line
in nuclear landscape so the nuclei in ellipsoidal shapes cease
to exist for these particle numbers.

However, to delineate this borderline additional informa-
tion on the impact of triaxiality on the fission barrier heights
of the superheavy Z = 106–118 nuclei located between two-
proton and two-neutron drip lines is needed. So far, such
information is available only for actinides and superheavy
nuclei with Z � 120 and N � 184 [29,55–59]. These nuclei
are either prolate or spherical in their ground states and thus
the impact of triaxiality is limited: the lowering of inner fission
barriers in actinides due to triaxiality is typically on the level
of 1–3 MeV. This reduction is substantially smaller as com-
pared with the one typically seen in hyperheavy nuclei [15].

Unfortunately, even nowadays fully systematic triaxial
RHB calculations are extremely computationally demanding.
Thus, to get at least a rough outline of the impact of low fission
barriers on potential topology of nuclear landscape, we have
performed triaxial RHB calculations for selected nuclei with
Z = 106, 110, 114, and 118 and with N = 152 + �N , where
�N = 0, 10, 20, . . . and only the nuclei between two-proton
and two-neutron drip lines are considered here. Note that in
some nuclei there are two fission barriers. If the outer fission
barrier is lower than 2 MeV in axial RHB calculations, it
is ignored and the TRHB calculations are focused on the
inner fission barrier. If the outer fission barrier is higher
than 2 MeV, then we first perform TRHB calculations to
see whether triaxiality lowers outer fission barrier below
2 MeV. If that is not a case, then we carry out RHB-OCT
calculations to see whether octupole deformation lowers outer
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FIG. 21. Inner fission barrier heights EB
triax obtained in the TRHB

calculations (a) and the decrease of the fission barrier height due to
triaxiality �E gain (b) as a function of neutron number N .

fission barrier below 2 MeV. The results of such calculations,
which provide information on the highest fission barrier in
the nuclei under consideration, are summarized in Table II.
Together with the results of the TRHB calculations presented
in Refs. [15,28] for superheavy Z = 122 and hyperheavy
Z = 126, 130, and 134 nuclei they allow in an approximate
way to delineate the impact of fission on the boundaries of
nuclear landscape3 in Sec. XII.

Note that these are the first ever triaxial calculations for
fission barriers in neutron-rich (N > 200) superheavy nuclei
and as such they can be very useful for understanding the role
of fission in the r-process calculations. The fission of heavy
systems affects this process via fission recycling [60,61].
However, so far the fission barriers for such nuclei were
calculated only in theoretical frameworks restricted to axial
symmetry [62–64].

The results for inner fission barrier heights EB
triax and the

decrease of the height of inner fission barrier due to triaxiality
�Egain, presented in Table II, are summarized in Fig. 21.
The EB

triax values show oscillatory behavior as a function
of neutron number N with maxima seen at N ≈ 162 and
N ≈ 222 (at N = 172 and 232 in the Z = 118 nuclei) and
minima at N = 192 and N ≈ 252 (at N = 202 and 272 in

3The boundaries of nuclear landscape in heavy nuclei with ellip-
soidal shapes in the ground states are defined by spontaneous fission
and not by the particle emission as in lower Z nuclei (see Ref. [15]
and the discussion in Sec. XII). This fact has been ignored in many
studies of nuclear landscape in neutron-rich actinides and superheavy
nuclei (such as Refs. [2,4]) since the boundaries of nuclear landscape
were defined via two-neutron and two-proton separation energies.
The reasons for such a choice are obvious: such calculations require
only binding energies of the ground states which are relatively easy
to compute. On the contrary, the calculations of fission barriers in
triaxial DFT codes are by approximately three orders of magnitude
more numerically time-consuming.
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TABLE II. The heights of the fission barriers along the fission paths from different minima obtained in axial and triaxial RHB calculations.
Columns 3–5 show the results of the axial RHB calculations. Here βmin, βsaddle, and EB

ax are the equilibrium quadrupole deformation of the
global minimum, the quadrupole deformation and the energy of the saddle along respective fission path. The results of the triaxial RHB
calculations are provided in columns 6–8. Note that the allowance of triaxial deformation could shift the position of the local minimum in the
deformation plane and in absolute majority of the cases shifts the positions of the saddle points. Thus, (β, γ )min, (β, γ )saddle, and EB

triax show the
deformations of the minima, the deformations of saddle points and their energies obtained in triaxial RHB calculations. The neutron numbers
of the nuclei in which superdeformed minimum with β2 ≈ 0.5 is lower than normal-deformed or spherical ones are marked by an asterisk.
With exception of these nuclei, the values in parentheses show either the deformation of superdeformed minimum or the deformation of the
saddle of outer fission barrier or the height of outer fission barrier. Note that these values are shown only when the lowest height of the outer
fission barrier obtained in the TRHB and RHB+OCT calculations is higher than 2 MeV. Column 3 shows the �E gain = EB

ax − EB
triax quantity,

which is the decrease of the height of respective fission barrier due to triaxiality.

Z N Axial RHB Triaxial RHB

βmin βsaddle EB
ax (β, γ )min (β, γ )saddle EB

triax �E gain

1 2 3 4 5 6 7 8 9
106 (Sg) 152 0.29 0.57 10.09 0.29, 0 0.62, 12.4 7.04 3.05

162 0.26 0.65 10.70 0.26, 0 0.68, 8.4 7.48 3.32
172 0.14 0.69 5.31 0.14, 0 0.71, 3.5 2.95 2.36
182 −0.05 (0.49) 0.27 (0.73) 4.25 (3.42) 0.05, 60.0 (0.49, 0) 0.47, 23.6 (0.81, 8.0) 3.70 (2.47) 0.55 (0.95)
192 0.39 0.59 2.42 0.40, 0 0.61, 6.3 2.20 0.22
202 0.28 0.59 4.27 0.29, 9.5 0.66, 13.2 3.73 0.54
212 0.25 0.54 7.23 0.25, 0 0.69, 10.3 4.99 2.24
222 0.25 0.55 8.53 0.250, 0 0.70, 8.7 4.49 4.04
232 0.23 0.65 6.73 0.23, 0 0.62, 10.4 4.63 2.10
242 0.13 (0.45) 0.25 (0.65) 3.77 (5.08) 0.13, 0 (0.45, 0) 0.25, 0 (0.60, 6.9) 3.77 (2.37) 0.0 (2.71)
252 −0.06 (0.45) 0.25 (0.69) 6.40 (5.68) 0.06, 59.1 (0.45, 0) 0.42, 26.7 (0.69,10.3) 3.86 (3.20) 2.54 (2.48)

110 (Ds) 162 0.24 0.66 8.98 0.242,0 0.65, 6.9 6.20 2.78
172 0.15 (0.46) 0.30 (0.70) 3.97 (5.75) 0.15, 0 (0.45, 0) 0.30, 0.0 (0.74, 5.6) 3.92 (3.24) 0.05 (2.51)
182 −0.14 0.26 3.92 0.139, 60 0.36, 35.6 2.54 1.38
192 0.41 0.58 2.52 0.417,0 0.62, 5.8 2.52 0.0
202 0.38 0.56 4.56 0.385,0 0.73, 14.4 2.90 1.66
212 0.26 0.51 5.95 0.262,0 0.54, 15.7 4.28 1.67
222 0.24 0.54 7.02 0.243,0 0.36, 28.5 5.90 1.12
232 0.22 0.60 6.27 0.220,0 0.61, 7.0 4.51 1.76
242 0.14 (0.47) 0.27 (0.66) 3.92 (5.06) 0.17, 0 (0.46, 0) 0.27, 0 (0.68, 6.0) 3.92 (2.51) 0.0 (2.55)
252 0.44 0.70 4.79 0.444,0 0.72, 11.6 2.27 2.52

114 (Fl) 162 0.23 (0.52) 0.40 (0.66) 5.95 (6.00) 0.23, 0 (0.54, 0) 0.40, 0 (0.57, 5.1) 5.95 (3.85) 0.0 (2.15)
172 0.15 (0.50) 0.32 (0.73) 5.22 (4.76) 0.15, 0 (0.51, 0) 0.32,0 (0.73, 6.0) 5.22 (3.33) 0.0 (1.43)
182 −0.14 0.26 4.26 0.14, 60 0.41, 38.5 2.72 1.54
192 −0.38 0.15 3.79 0.40, 42 0.42, 33.4 1.35 2.44
202 0.38 0.54 2.79 0.38, 0 0.54, 3.7 2.71 0.08
212 0.27 0.49 4.27 0.28, 0 0.40, 23.1 3.31 0.96
222 0.24 0.41 5.56 0.24, 0 0.36, 26.3 4.95 0.61
232 0.21 0.35 4.68 0.21, 0 0.35, 0 4.68 0.0
242 0.14 0.27 3.73 0.142,0 0.27,0 3.73 0.0
252* 0.458 (0.0) 0.72 (0.23) 3.31 (4.68) 0.459,0 (0.0, 0) 0.63, 8.0 (0.46, 23.9) 2.27 (1.40) 1.04 (3.28)

118 (Og) 172 0.0 0.34 5.11 0.000,0 0.49, 28.2 4.47 0.64
182* 0.57 (−0.27) 0.84 (0.26) 4.02 (5.32) 0.58,0 (0.27, 60) 0.66, 9.5 (0.42, 36.4) 2.41 (3.57) 1.61 (1.75)
192 −0.39 0.15 5.79 0.40, 74 0.33, 43.3 2.37 3.42

202 −0.43 0.07 6.24 0.43, 60 0.46, 45.0 1.31 4.93
212 0.29 0.44 3.03 0.30, 11 0.64, 21.3 2.45 0.58
222 0.24 0.39 5.19 0.24, 0 0.37, 27.2 4.18 1.01
232 0.22 0.35 4.89 0.22, 0 0.35, 0 4.56 0.33
242 −0.20 0.31 3.70 0.21, 60.0 0.47, 32.4 2.88 0.82
252 −0.19 0.19 5.06 0.20, 60 0.41, 38.5 2.98 2.08
262 −0.23 0.15 4.95 0.24, 59.9 0.32, 41.6 0.80 4.15
272 −0.49 −0.01 5.98 0.49, 59.6 0.48, 51.7 0.44 5.54
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FIG. 22. (a) Proton quadrupole deformations β2 of the lowest in energy minima for axial symmetry (LEMAS) obtained in axial RHB
calculations with the DD-PC1 functional. Based on the results presented in Fig. 17(c) of Ref. [4] and Fig. 3 of Ref. [15]. Only the nuclei whose
LEMAS have ellipsoidal-like shapes are included here; those who have toroidal shapes in LEMAS (see Fig. 3 in Ref. [15]) are neglected. The
color map in the β2 = −0.4–0.5 range is equivalent to the one of Fig. 17(c) of Ref. [4] for consistency with previous results. (b) The same
as panel (a) but with the nuclei, in which neither inner nor outer (if exist) fission barrier(s) have the height(s) higher than 2 MeV, excluded.
Here the results of the calculations for fission barmvriers presented in Table 1 of supplemental material to Ref. [15] and in Table II of the
present manuscript are used for approximate deliniation of the boundaries of the region of nuclear chart in which fission barriers satisfy above
mentioned condition. (c) The same as panel (b) but with two-proton and two-neutron drip lines (shown by solid lines), defined from separation
energies, for toroidal nuclei added. They are based on the results of axial RHB calculations with NF = 26.
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the Z = 118 nuclei). More erratic behavior is seen for the
�Egain values; note that the triaxiality has no effect on the
heights of inner fission barriers for �Egain = 0 MeV. In some
nuclei the triaxiality lowers inner fission barrier by more than
4 MeV. These features seen in EB

triax and �Egain curves are the
consequences of underlying shell structure and its evolution
with proton and neutron numbers (see discussion in Ref. [29]).
A general trend of the lowering of the height of inner fission
barrier with the increase of proton number is clearly seen in
Table II and Fig. 21(a).

Table II clearly indicates three regions of instability based
on the fission barrier heights; in these regions the height of
the highest fission barrier is below 2 MeV. These are two
islands of instability centered around (Z ≈ 114, N ≈ 192)
and (Z ≈ 118, N ≈ 202), which are shown in Fig. 22(b). In
addition, very neutron-rich nuclei near and above N = 252 in
the Z = 114 isotopic chain as well as near and above N = 262
in the Z = 118 isotopic chain are unstable with respect to
fission. Such instability against fission is also seen in very
neutron-rich hyperheavy nuclei (see Supplemental Material
to Ref. [15]). These factors together lead to a substantial
reduction of the region of potentially stable elliposoidal-like
nuclei in the N � 258 region (compare panels (a) and (b) in
Fig. 22).

XII. EXTENSION OF NUCLEAR LANDSCAPE
TO HYPERHEAVY NUCLEI

One of the important goals of the present manuscript is
the extension of nuclear landscape to the limits of extreme Z
values. There are numerous studies of the limits of nuclear
landscape at the neutron and proton drip lines for the Z <

120 nuclei carried out in different theoretical frameworks
(see Refs. [2–4,65–67] and, in particular, the compilation
presented in Sec. VIII of Ref. [4]). The studies of Refs. [2–4]
also define systematic theoretical uncertainties in the position
of two-proton and two-neutron drip lines. On the contrary,
nothing was known about the nuclear landscape in hyper-
heavy nuclei and its limits before our previous publication in
Ref. [15]. The goal of this section is to present a comprehen-
sive summary on the structure and limits of nuclear landscape
with special emphasis on the region of hyperheavy nuclei.

The results of Ref. [15] and the present study clearly
show that critical distinction between the parts of nuclear
chart are related to the dominance of two different types
of shapes: ellipsoidal-like and toroidal ones. Note that con-
cave disk shapes, appearing at large oblate deformation, be-
long to ellipsoidal-like shapes. Figure 1(a) shows the re-
gion of nuclear chart which is dominated by ellipsoidal-
like shapes. Note that for Z < 120 LEMAS obtained in
reflection-symmetric RHB calculations typically correspond
to the ground states since only few nuclei in their ground states
are affected by γ -deformation (see Ref. [68] for the results
obtained in microscopic+macroscopic method) and octupole
deformation shows up in the ground states of the nuclei in few
localized regions [27,68,69].

The situation changes in the Z > 120 nuclei which are
typically soft with respect to triaxial deformation up to the

point that many ground states possess triaxial deformation
(see Table 1 in the Supplemental Material of Ref. [15] and
Table II in the present manuscript). This softness also leads to
a substantial reduction of the heights of the fission barriers
in many nuclei. If the barrier height is less than 2 MeV,
the nucleus is typically considered unstable against fission
(see discussion in Ref. [55]). If we take this fact into account,
the region of nuclear chart with ellipsoidal-like shapes will
be considerably reduced at high-Z values; this is illustrated in
Fig. 1(b). Note that in some nuclei eliminated on transition
from Figs. 1(a) to 1(b) the local minima (which are otherwise
excited ones) with toroidal shapes could become the lowest
in energy solutions if ellipsoidal-like shapes are unstable with
respect to fission. Finally, two-proton and two-neutron drip
lines for toroidal shapes are added in Fig. 1(c).

While there is the coexistence of ellipsoidal-like and
toroidal shapes in the Z = 120–140 part of nuclear chart (see
Figs. 1 and 3 in Ref. [15]), with increasing proton number
beyond Z = 140, the LEMAS always have toroidal shapes
(see discussion in Sec. III and in Ref. [15]). The nuclear
chart extended up to Z = 180 displays the two-proton and
two-neutron drip lines for toroidal nuclei outlining the poten-
tial limits of nuclear landscape (Fig. 24).

The transition from ellipsoidal to toroidal shapes is driven
by Coulomb repulsion and has a lot of similarities to Coulomb
frustration phenomenon seen in nuclear pasta phase of neutron
stars. Figure 23 shows the calculated Coulomb energies ECoul

as a function of the β2 values. One can see that in all nuclei the
largest Coulomb energy is calculated at spherical shape which
is the most compact shape for a given volume. The deviation
from sphericity decreases the Coulomb energy and for a given
absolute value of β2 this effect is especially pronounced for
negative β2 values. Moreover, the magnitude of ECoul and
its slope with deformation for negative β2 values drastically
increases with increasing proton number (see Fig. 23). This is
also quantified in Fig. 23 by the �ECoul quantity which is the
reduction of the Coulomb energy due to the transition from
spherical shape to typical toroidal one. The �ECoul increases
from 346 MeV in 208Pb to 721, 874, and 1126 MeV in the
354134, 466156, and 426176 nuclei, respectively. This clearly
tells that toroidal shapes are more energetically favored by
Coulomb interaction than spherical (or ellipsoidal-like) ones.
However, only in hyperheavy nuclei the Coulomb energy
becomes strong enough to trigger the transition to toroidal
shapes in the lowest in energy solutions of axial RHB cal-
culations (see Fig. 1 in Ref. [15]).

It is clear that nuclear landscape shown in Fig. 24 is not
complete because it does not take into account the poten-
tial instabilities of toroidal shapes with respect to different
types of distortions. Although it was shown in Ref. [15] that
some toroidal nuclei are potentially stable with respect to
triaxial distortions, this was illustrated only for two nuclei.
The underlying mechanism of their stability is discussed in
Sec. X. The problem is that with increasing proton number
the extreme sizes of fermionic basis (up to NF = 30 for nuclei
at Z = 156 and beyond, see discussion in Sec. III) are required
for the description of toroidal nuclei. Neither triaxial nor axial
reflection asymmetric calculations are possible nowadays for
such sizes of bases.
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FIG. 23. Calculated Coulomb energy as a function of the β2

values. The results are displayed for four indicated nuclei; the total
deformation energy curves of these nuclei are shown in Fig. 1 of
Ref. [15]. Orange vertical dashed line indicates spherical shapes.
Horizontal dashed lines of different color start at the positions
of respective Coulomb energy curves at β2 = −4.0 and end at
vertical orange dashed line. The numbers above these horizontal
lines indicate the difference �ECoul = ECoul(β2 = 0.0) − ECoul(β2 =
−4.0) (in MeV, rounded to closest value), which is the reduction
of the Coulomb energy due to the transition from spherical shape
to toroidal shape with typical β2 = −4.0 values seen at the min-
ima of deformation energy curves of the 466156 and 426176 nuclei
(see Figs. 1(c) and 2 in Ref. [15]).

The investigations of Ref. [20] suggest that toroidal shapes
are expected to be unstable with respect to so-called sausage
deformations which make a torus thicker in one section(s) and
thinner in another section(s). They are expected to lead to
multifragmentation.4 However, these investigations are per-
formed in the liquid drop model which neglects potential
stabilizing role of the shell effects. In addition, they do not
extend beyond the region of superheavy nuclei. To clarify
the situation the DFT studies of potential stability of toroidal
shapes with respect to triaxial distortions similar to those
performed for 354134 and 348138 nuclei in Ref. [15] (see
also Sec. X in the present manuscript) are needed for higher
Z values. Unfortunately, as mentioned above they are not
possible nowadays because of extreme sizes of bases.

If the toroidal shapes are unstable (and, from our point
of view, the likelihood of this scenario is high in high-

4There are also some experimental indications of the role of mul-
tifragmentation in toroidal nuclei, but they are restricted to a single
86Kr + 93Nb reaction [70].

Z nuclei), then the spherical shapes become the ground
states in the islands of potential stability of spherical hy-
perheavy nuclei (see Ref. [15]). These islands centered
around (Z ≈ 138, N ≈ 230), (Z ≈ 156, N ≈ 310), and (Z ≈
174, N ≈ 410) are shown in Fig. 24.

The analysis of Figs. 22 and 24 clearly indicates that the
classical structure of the nuclear landscape in which spherical
shell closures at different particle numbers play a defining role
disappears in the Z > 120 nuclei. This is because the ground
states are either oblate or toroidal in axial RHB calculations.

The extrapolation to unknown regions is definitely associ-
ated with theoretical uncertainties [71] which are especially
large for the position of two-neutron drip line [1–5] and
fission barriers [28,72]. In the CDFT framework, systematic
theoretical uncertainties due to the form of the CEDF are
substantially larger than statistical errors [8]. So far, such
systematic uncertainties have been estimated only for fission
barriers in the regions of potentially stable spherical hyper-
heavy nuclei and for the sizes of these regions (see Fig. 6
in Ref. [15]). Their more global evaluation is extremely time
consuming and at this stage, when we try to understand the
general features of hyperheavy nuclei, is not necessary. These
uncertainties will definitely affect the stability of ellipsoidal
shapes with respect to fission and, as a consequence, the
boundary of the transition from ellipsoidal to toroidal shapes
and the two-proton and two-neutron drip lines for toroidal
nuclei. However, they will not affect the general features.

XIII. CONCLUSIONS

In conclusion, the detailed investigation of the properties
of hyperheavy nuclei has been performed in the framework
of covariant density functional theory. The following conclu-
sions have been obtained:

(i) The stability of spherical hyperheavy nuclei located
in the centers of the (Z ≈ 138, N ≈ 230), (Z ≈
156, N ≈ 310), and (Z ≈ 174, N ≈ 410) islands of
stability with respect to triaxial and octupole distor-
tions has been established in the RHB+OCT and
TRHB calculations.

(ii) Proton and neutron densities, central depressions in
these densities, charge radii, and neutron skins of the
nuclei located in the centers of these islands of stabil-
ity have been investigated in detail. Obtained results
clearly indicate that the accuracy of the reproduction
of charge radii and neutron skins by the CEDFs could
be an important criteria in favoring or disfavoring the
predictions of one or another functional for the islands
of stability of spherical hyperheavy nuclei. Among
considered functionals, the DD-ME2 and DDPC1
functionals provide the best global description of
charge radii and predict the highest fission barriers in
these regions. The results obtained in future PREX-2
experiment on neutron skin in 208Pb [45] would be
quite useful in helping to discriminate the predictions
of different functionals for the islands of stability of
spherical hyperheavy nuclei.
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FIG. 24. The same as described in the caption of Fig. 22 but with extended proton and neutron ranges and added regions of relatively stable
spherical hyperheavy nuclei shown in gray. Note that in the same nucleus two-neutron drip lines for spherical and toroidal shapes are different.
This is a reason why some regions of stability of spherical nuclei extend beyond two-neutron drip line for toroidal shapes.

(iii) Underlying shell structure of the nuclei located in
the centers of these islands of stability has been
investigated in detail. Large neutron shell gaps at
N = 228, 308, and 406 have a sizable impact on two
neutron-separation energies. However, large proton
gap appear only at Z = 154 in the (Z ≈ 156, N ≈
310) island of stability of spherical hyperheavy nu-
clei. As a result, this is the largest island of stability
of spherical superheavy nuclei found in the calcula-
tions. No significant proton gaps are seen in other
two islands of stability. Taking into account clear
localization of the islands of stability of spherical
hyperheavy nuclei in the (Z, N ) plane these features
strongly suggest that the shell effects at deformed
shapes leading to negative shell correction energies
at some deformation and thus to fission barriers play
an important role in the stabilization of spherical
hyperheavy nuclei.

(iv) The shape evolution of toroidal shapes along the fis-
sion path and the stability of such shapes with respect
to fission have been studied. In considered cases, the
analysis shows the transition from symmetrical toroid
(at the local minimum) to the asymmetric one (at the
saddle point). This transition cost the energy which is
a physical reason for the formation of fission barrier
and, thus, for the stability of such shapes.

(v) The topology of potential energy surfaces for ellip-
soidal shapes of the super- and hyperheavy nuclei
has been compared. In both types of the nuclei the
PES has the form of the canyon in which some
local valleys and hills are located. The canyon is
quite narrow in superheavy nuclei which prevents the
formation of local minima at large oblate deformation
and limits the role of triaxial deformation. On the
contrary, this canyon is much wider in hyperheavy

nuclei with a mountain, centered at β2 ≈ 0, formed
in it. This leads to the formation of local minima at
oblate superdeformation, increased role of triaxiality
and higher instability of hyperheavy nuclei against
fission as compared with superheavy ones.

(vi) The extension of nuclear landscape to hyperheavy nu-
clei with proton numbers up to Z = 180 has been per-
formed. With increasing proton number beyond Z ≈
130 the transition from ellipsoidal-like nuclear shapes
to toroidal shapes takes place in axial RHB calcula-
tions. The ellipsoidal ground states are affected by
above-mentioned increased instability against fission.
Many hyperheavy nuclei with toroidal shapes (as the
lowest in energy solutions in axial RHB calculations)
are expected to be unstable toward multifragmenta-
tion. However, it is difficult to quantify their stability
or instability since the description of toroidal shapes
requires the basis which is typically significantly
larger than the one employed for the description of
ellipsoidal-like shapes. This makes the calculations
with octupole or triaxial deformation included im-
possible for toroidal shapes with extreme β2 values.
Nevertheless, three islands of stability of spherical
hyperheavy nuclei are predicted. The nuclei in these
islands will become the ground states in the case of
instability of relevant toroidal states.

Detailed investigation of possible mechanisms of the cre-
ation of spherical and toroidal hyperheavy nuclei represents
an interesting topic but goes beyond the scope of the present
manuscript. The nuclei in the (Z ≈ 138, N ≈ 230), (Z ≈ 156,

N ≈ 310), and (Z ≈ 174, N ≈ 410) islands of stability of
spherical hyperheavy nuclei have neutron to proton ratios
of N/Z ≈ 1.67, N/Z ≈ 1.99, and N/Z ≈ 2.36, respectively.
Thus, they cannot be formed in laboratory conditions and the
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only possible environment in which they can be produced is
the ejecta of the mergers of neutron stars [73]. In a similar
fashion, the regions of neutron stars with nuclear pasta phases
[74–76] may be a breeding ground for the formation of
toroidal nuclei in the ejecta of the merger of neutron stars.
The two-proton drip line for toroidal nuclei is characterized
by neutron to proton ratio of N/Z ≈ 1.25. Thus, the stability
and/or multifragmentation of toroidal nuclei located in the
vicinity of two-proton drip line could possibly be studied in
nucleus-nucleus collisions of stable nuclei or the nuclei lo-
cated close to the beta-stability line. This is similar to what has
alrelsady been done in the 86Kr + 93Nb reaction at incident
energies ranging from 35 to 95 MeV/nucleon in Ref. [70].

Any extrapolation beyond known regions of nuclear chart
in which the functionals have been fitted is associated
with theoretical uncertainties [2,4,5]. This is especially true
for the present study with its significant extrapolations in
proton and neutron numbers. Despite the fact that our study
is mostly based on the DD-PC1 CEDF which, according to
the results of global studies, is considered to be the best
relativistic functional, in no way the extrapolations based on it
should be considered as completely safe. This is also true for
any relativistic or nonrelativistic functional. However, when
calculated effects are substantially larger than the expected
theoretical uncertainties one can speak about reliable theo-
retical predictions. For example, the predicted transition from
ellipsoidal to toroidal shapes with increasing proton number is
a solid prediction. Note that according to Ref. [17] it appears
also in Gogny DFT as exemplified by the calculated results for
two hyperheavy nuclei. However, the borderline in the (Z, N )
plane between these two types of the shapes is expected to
depend on the details of the functional since it is defined by the

fission properties which are subject of appreciable theoretical
uncertainties [28]. However, the lowering of the fission barrier
heights for ellipsoidal shapes with increasing proton number
Z , which defines this boundary, appears both in relativistic and
nonrelativistic models (see Sec. XI in the present paper and
Refs. [15,19]). In addition, the size of the regions of possible
stability of spherical hyperheavy nuclei and the stability of the
nuclei in these regions depend on the functional (see Ref. [15])
and on the details of underlying shell structure (see Sec. V
in the present paper). The latter is the subject of appreciable
theoretical uncertainties when extrapolations are performed to
unknown regions in the (Z, N ) plane which are located far
away from known part of nuclear chart in which the func-
tionals have been fitted [5]. In addition, there could be hidden
biases in the CDFT which could affect model predictions. In
such a situation, detailed investigations of hyperheavy nuclei
in the framework of nonrelativistic density functional theories
based on the Skyrme and Gogny forces would be extremely
useful for an understanding of general structure of hyperheavy
nuclei, the transition from ellipsoidal to toroidal shapes with
increasing proton number and possible existence of the islands
of stability of spherical hyperheavy nuclei. They will also
allow to compare the predictions obtained in relativistic and
nonrelativisitc models.
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