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Pairing in nuclear matter and finite nuclei
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Effects of pairing with isospin T = 0 and T = 1 are systematically studied in a model, which is based on a
realistic nucleon-nucleon interaction and allows us to describe the transition from infinite nuclear matter to finite
nuclei. Special attention is paid to the development of the spin-orbit term in the mean field of nucleons in finite
nuclei. The spin-orbit term yields a drastic suppression of T = 0 proton-neutron pairing but does not lead to a
complete disappearance in finite nuclei. Arguments are presented as to why no clear evidence of T = 0 pairing
can be observed in the binding energies of finite nuclei.
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I. INTRODUCTION

For several decades, a lot of experimental evidence has
accumulated for pairing between nucleons of the same isospin
in nuclei. The pairing term is an important ingredient of
the nuclear mass formula to describe the odd-even mass
staggering in the binding energies of nuclei [1]. Also, other
nuclear properties such as deformation and moments of inertia
deduced from rotational bands can be described by allowing
for the isospin vector (T = 1) pairing in nuclear structure
studies based on Hartree-Fock plus BCS or Hartree-Fock
Bogoliubov calculations [2–5].

While the importance of proton-proton (pp) and neutron-
neutron (nn) pairing correlations is established, no clear ev-
idence has empirically been observed for corresponding pn
correlations [5–7]. At first sight, this is rather astonishing
since the proton-neutron interaction is more attractive than
the interaction between like nucleons and leads to the only
vacuum bound states of two nucleons in the deuteron channel
3SD1. Indeed, BCS calculations for infinite nuclear matter
[8–10] predict values for the gap in the 1S0 channel of the
order of 1 to 2 MeV, which is in reasonable agreement
with empirical data for nn and pp pairing in finite nuclei.
Corresponding calculations for pn pairing in the 3SD1 channel
yield much larger values for the pairing gap, which are of the
order of 10 MeV [11–19]. Therefore, one may expect that
pairing should also be seen in finite nuclei, in particular in
light nuclei with equal numbers of protons and neutrons.

Efforts have been made to determine the pn pairing in
nuclei by solving the corresponding Hartree-Fock Bogoliubov
equations [20] or to extract corresponding correlations from
wave function of shell-model calculations in one or two major
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shells [21,22]. Neither these theoretical studies nor the anal-
ysis of empirical data, as discussed above, provide any clear
evidence for strong pn pairing effects like those occurring in
infinite nuclear matter.

It has been argued [23–26] that the strong spin-orbit field
in light nuclei may spoil the isoscalar spin 1 pn pairing
correlations. Bertsch and Zuo demonstrated [24] that a spin
triplet pairing condensate may occur in large nuclei, where
the spin-orbit term tends to become smaller. Their study is
based on a Woods-Saxon description for the mean field of
the nucleons and a phenomenological contact interaction to
generate the pairing correlations.

The present study tries to investigate the development
of the spin-orbit term and T = 1 as well as T = 0 pairing
correlations in a model, which is based on a realistic nucleon-
nucleon (NN) interaction and allows for a continuous change
of the size of the nuclear system ranging from infinite nuclear
matter to light nuclei.

This model as well as the technique to determine the
pairing for spin singlet, T = 1, and spin triplet, T = 0, pairing
are presented in Sec. II of this paper. Results for isospin-
symmetric infinite matter, the dependence of the spin-orbit
term as well as the pairing gaps on the size of the system, and
results based on self-consistent Hartree-Fock calculations are
discussed in Sec. III. The conclusions from the present study
as well as possible extensions of this work are summarized in
the final section, Sec. IV.

II. PAIRING IN NUCLEAR MATTER AND NUCLEI

A. Basis states

One of the central goals of the present project is to develop
a computational scheme which allows us to describe a smooth
transition from infinite nuclear matter to finite nuclei. For
that purpose, the momentum eigenstates for free particles in
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a spherical box are considered as a common set of basis states
for the single-particle states in nuclear matter as well as finite
nuclei. These basis wave functions can be separated into radial
and angular parts,

�il jm(�r) = 〈�r|il jm〉 = Ril (r)Yl jm(ϑ, ϕ), (1)

where Yl jm represent the spherical harmonics including the
spin degrees of freedom by coupling the orbital angular mo-
mentum l with the spin to a single-particle angular momen-
tum j.

The radial part Ril of a particle moving free in a spherical
cavity with a radius R, the plane wave (PW) basis [27–29], is
then given by the spherical Bessel functions,

Ril (r) = Nil jl (kil r), (2)

for the discrete momenta kil , which fulfill

Ril (R) = Nil jl (kil R) = 0 => jl (kil R) = 0. (3)

The normalization constant in Eq. (2) is given by

Nil =
⎧⎨
⎩

iπ
√

2√
R3

for l = 0,

1
jl−1(kil R)

√
2√

R3
for l > 0.

(4)

It ensures that the basis functions are orthogonal and normal-
ized within the box,∫ R

0
d3r �∗

il jm(�r)�i′l ′ j′m′ (�r) = δii′δll ′δ j j′δmm′ . (5)

In the mean-field approximation for infinite nuclear matter,
these basis states will be considered as the single-particle
states of the system, occupying all states with momenta kil

below a Fermi momentum kF . If we represent the set of
quantum numbers il jm by letters a or b, this leads to single-
particle energies

εa = (h̄ka)2

2M
+

∑
b<F

〈�a�b|V |�a�b〉, (6)

where the sum is restricted to states b with kil below the Fermi
momentum kF under consideration, M stands for the mass of
the nucleon, and 〈ab|V |ab〉 are matrix elements of a realistic
NN interaction, which we will discuss below.

It is obvious that this treatment must be considered as an
approximation to infinite nuclear matter: The single-particle
energies εa are not continuous but discrete with spacings
depending on the size of the box R and the density profile
is quite different from homogeneous with ρ(R) = 0 due to
the chosen boundary condition. In the next section, we will
show to which extent this approach represents features of
homogeneous infinite matter.

The set of basis states �il jm can also be used to diagonalize
the Hamiltonian of a simple Woods-Saxon potential, which
consists of the kinetic energy and a Woods-Saxon potential of
the form

UW S (r) = U0

1 + e
(

r−r0
a0

) . (7)

The parameter a0 defining the skin thickness has been fixed to
a0 = 0.5 fm−1. A set of mean radii r0 has been considered

ranging from r0 = 2.5 to r0 = 20 fm. In order to simulate
quasinuclear systems in the range of 16O for each value of r0,
a corresponding depth of the potential U0 has been evaluated
which yields a single-particle energy of zero for the first
excited s1/2 state. In a second set of Woods-Saxon potential,
the depth parameter U0 has been fitted to ensure that the first
excited p states occur at zero energy. This should lead to
single-particle wave functions, which describe quasinuclear
systems close to 40Ca with a variety of radii ranging from
a realistic size to quasinuclei, which are very weakly bound
with single-particle wave functions close to plane waves.

The output of the calculations using these sets of Woods-
Saxon potentials are the resulting wave functions, which are
expressed in terms of expansion coefficients, cW S

nil ,∣∣	W S
nl jm

〉 =
∑

i

cW S
nil |�il jm〉. (8)

Notice that these expansion coefficients depend neither on the
projection quantum number m nor on the angular momentum
j since the Woods-Saxon potential of Eq. (7) is purely central
without any spin-orbit term.

Assuming that these Woods-Saxon wave functions can be
considered to represent the Hartree-Fock single-particle wave
functions of the quasinuclear system of a size determined by
the radius parameter r0 in Eq. (7), one may then evaluate the
corresponding single-particle energies

εW S
nl j = 〈

	W S
nl jm

∣∣t̂ ∣∣	W S
nl jm

〉
+

∑
(n′l ′ j′m′ )<F

〈
	W S

nl jm	W S
n′l ′ j′m′

∣∣V ∣∣	W S
nl jm	W S

n′l ′ j′m′
〉
. (9)

In this equation, t̂ stands for the kinetic energy and the sum
is restricted to states below the Fermi surface F for the
quasinuclear system considered. One should be aware that
these single-particle energies will depend on the total angular
momentum j of the single-particle state considered, reflecting
the effect of a spin-orbit term derived from the realistic NN
interaction V . These values will be used below to explore the
evolution of the spin-orbit term from the finite size of the
quasinuclear system considered.

The same set of basis states (1) can also be used to rep-
resent the corresponding single-particle states resulting from
self-consistent Hartree-Fock calculations∣∣	HF

nl jmτ

〉 =
∑

i

cHF
nil jτ |�il jmτ 〉. (10)

Since we will restrict our studies in this work to a spherical
description of nuclei, the expansion coefficients do not depend
on the projection quantum number m. However, they will
depend on the angular momentum j and on the isospin τ , if
we account for the Coulomb interaction in N = Z nuclei.

This basis of single-particles constrained to a spherical box
can be compared to the basis of appropriate harmonic oscilla-
tor states, which is more popular in nuclear structure studies.
The major advantage of the “box basis” as compared to the
harmonic oscillator for the present study is the possibility of
describing the transition from infinite matter to finite nuclei
within the same set of basis states. Another advantage of the
box basis is that it allows for a more realistic description
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of the continuum of single-particle states above the Fermi
surface of finite nuclei. A major disadvantage of the box basis
is the fact that typically a larger number of basis states is
required to obtain a reliable representation in the box basis
as compared to the oscillator basis. Another, more technical,
disadvantage is the fact that for the evaluation of matrix
elements of a realistic NN interaction, a transformation from
relative coordinates to a laboratory frame is required. The
evaluation of this transformation in terms of vector brackets
[30–32] required for the box basis is more demanding than the
corresponding Talmi-Moshinsky transformation [33,34] to be
used in the case of oscillator states.

B. Realistic NN interaction

It has already been mentioned that the box basis described
above generally requires a large number of basis states in
order to provide a reliable description of the nuclear wave
functions. This is true in particular if one employs traditional
realistic NN interactions like, e.g., the Argonne V18 [35] or
the CDBonn potential [36], which contain strong short-range
(respectively high-momentum) components to reproduce the
NN scattering data and the deuteron observables with high
accuracy.

A possible way out of this problem is to consider an inter-
action model, which separates the low-momentum (below a
cutoff �) and high-momentum components of a realistic NN
interaction by means of renormalization techniques [37–40].
If the cutoff � is chosen around � = 2 fm−1, the result-
ing low-momentum interaction Vlowk still describes the NN
scattering data up to the pion threshold and turns out to be
independent of the underlying realistic interaction V . Since
the high-momentum components, which correspond to the
short-distance behavior, of V have been removed, the resulting
Vlowk does not produce significant short-range correlations and
can be treated within the Hartree-Fock approximation [40].

In the present study, we will use a Vlowk interaction, which
has been derived from the CDBonn interaction by means
of the unitary-model-operator approach (UMOA) [41] using
a cutoff � = 2 fm−1. Employing such a Vlowk in nuclear
structure calculations, one does not reproduce the empirical
saturation features. The energy per nucleon in nuclear matter
increases with density in a monotonic way [10,40]. Calcu-
lations of finite nuclei predict radii which are much smaller
than the empirical data [42]. Similar features are observed if
one just uses the two-body part of modern chiral interaction
models [43]. The way out of this problem is to include three-
nucleon interactions or a density-dependent two-body interac-
tion which yields the empirical saturation point. Following the
approach of van Dalen et al. [29], the Vlowk is supplemented
in the Hartree-Fock calculations discussed below by a simple
contact interaction defined in the notation of the Skyrme
interaction

�V = �V0 + �V3, (11)

with

�V0 = 1
4 t0

[
2ρ2 − (

ρ2
n + ρ2

p

)]
(12)

and

�V3 = 1
24 t3ρ

0.5
[
2ρ2 − (

ρ2
n + ρ2

p

)]
, (13)

where ρp and ρn refer to the local densities for protons and
neutrons while the matter density is denoted as ρ = ρp + ρn.
The parameters of the contact interaction are t0 and t3, which
have been fitted in such a way that HF calculations using Vlowk

plus the contact term of Eq. (11) yield the empirical saturation
point for symmetric nuclear matter [29].

C. Pairing gap

The analysis of pairing correlations of the present project
is based on the method of evaluating self-consistent Green’s
functions (SCGF) [44]. Within this framework, one tries to
determine the Green’s function for two interacting nucleons
in a nuclear medium or the corresponding T matrix. Such
calculations have been plagued by so-called pairing insta-
bilities, which are related to the occurrence of quasibound
two-nucleon states in the nuclear medium [45,46].

Recently, Rubtsova et al. [19,47] developed a formalism in
which the two-particle Green’s function is evaluated in terms
of discrete eigenvalues and eigenfunctions of a two-particle
Hamiltonian. It includes particle-particle states (pp) but also
the hole-hole states (hh) and corresponds to the Hamiltonian
of the pphh Random Phase Approximation (RPA)(

H0
p + Vpp Vph

−Vhp H0
h − Vhh

)
. (14)

In this matrix, H0
p represents the single-particle part of the pp

Hamiltonian, which means that it can be written

H0
p =

∑
p1,p2

(ε̃p1 + ε̃p2)|p1 p2〉〈p1 p2|,

with the single-particle energies

ε̃p = εp − εF

rescaled by the Fermi energy εF . The corresponding definition
applies to the hh single-particle Hamiltonian H0

h while the
two-body part of the RPA Hamiltonian is defined in terms of
matrix elements of the form, e.g.,

Vph ⇐⇒ 〈p1 p2|V |h1h2〉,
and similarly for Vpp, Vhp, and Vhh. If, for the moment, we
restrict the discussion to pp and hh states of nuclear matter
with center-of-mass momentum Kcm = 0, the pp states are
identified as a two-particle state with momenta �k and −�k with
|�k| > kF . This means that the after a partial wave decomposi-
tion such a state is characterized by one wave number k which
is larger than the Fermi momentum kF for the pp states and
smaller than kF for the hole-hole states.

Rubtsova et al. demonstrated that after discretizing the mo-
mentum variable k a nontrivial solution of the BCS equation
for nuclear matter in a specific partial wave is signaled by a
pair of complex conjugated eigenvalues for the corresponding
pphh RPA Hamiltonian. Since the Hamiltonian in Eq. (14)
is non-Hermitian but real, it may have pairs of complex
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eigenvalues Eβ and E∗
β with conjugated eigenfunctions |�β〉

and |�∗
β〉. In fact, the imaginary part of these eigenvalues

|ImEβ | = �(kF ), (15)

with �(kF ) being the pairing gap at the Fermi surface. Fur-
thermore, it has been observed that the wave function of the
bound state is proportional to the function of the pairing gap

|〈k|�β〉| ∼ �(k),

which means that the bound state of the pphh RPA is rather
close to the solution of the BCS gap equation, which can be
written in the form(

H̃0
p + Vpp Vph

Vhp H̃0
h + Vhh

)(
〈p|χ〉
〈h|χ〉

)
= 0, (16)

with

H̃0
p =

∑
k>kF

2
√

(εk − εF )2 + �(k)2|k〉〈k|, (17)

and a corresponding definition for the hh part H̃0
h . The solution

of the homogeneous Eq. (16), χ , is to be interpreted as

|〈k|χ〉| = �(k)

2
√

(εk − εF )2 + �(k)2
. (18)

In fact, the representation of the BCS equation for nuclear
matter in Eqs. (16)–(18) leads to a very efficient way for the
solution of the nonlinear BCS equation: Assume that � = 0
and determine the eigenvalues of the matrix in Eq. (16). A
nontrivial solution for the gap function is only obtained if the
lowest eigenvalue is below zero energy [compare discussion
of Eq. (15)]. The complete function �(k) can be obtained
from an iterative solution of Eqs. (16)–(18) until the lowest
eigenvalue occurs at zero energy. This formulation of the
gap equation in terms of a bound state and the gap function
needed to shift this bound state to zero energy is close to the
discussion of pairing instabilities in Ref. [44].

This direct interpretation of the gap function �(k) defining
the quasiparticle energies Ek in terms of a bound state of
the pphh RPA Hamiltonian or the Hamiltonian in Eq. (16)
is only possible for the pp and hh states in nuclear matter
with vanishing center-of-mass momentum. In the general case
of finite nuclei, as well as in the basis pp and hh states, we
have to deal with two-particle states in the laboratory frame
using single-particle quantum numbers as in Eq. (8). Such
two-particle states are coupled to total angular momentum J
and isospin T , leading to

|	nl jm	n′l ′ j′m′ 〉JT . (19)

This means we do not separate pairing in different partial
waves. For proton-proton or neutron-neutron pairing, we will
consider the case with J = 0 and T = 1, while for proton-
neutron pairing in the isospin T = 0 case, we will consider
the case of J = 1 and T = 0. The occurrence of pairing
can be identified either by an imaginary part of eigenvalues
solving the pphh RPA equations (14). Assuming a constant
pairing gap � for all single-particle states, one can adjust this
pairing energy in the definition of the quasiparticle part of
the Hamiltonian (17) until the lowest eigenvalue of Eq. (16)
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FIG. 1. The density profile for the model of nuclear matter calcu-
lated in a spherical box of radius R = 15 fm, assuming various Fermi
momenta kF . The solid lines represent the density profiles calculated
for plane waves with boundary conditions according to Eq. (3) while
the dashed lines have been obtained using the alternating boundary
conditions discussed in the text. The arrows at the right axis indicate
the densities for homogeneous matter according to Eq. (20).

occurs at zero energy. Therefore, the pairing gap defined in
this way is the minimal gap parameter to be used in the
quasiparticle energies, defined in Eq. (17), which is needed
to stabilize the equation for the pphh T matrix against pairing
instabilities. In fact, the results for the pairing deduced from
Eqs. (15) and (16) turn out to be rather similar.

It should be noted that in the case of the vacuum (i.e.,
there are no hole states and the single-particle energies are
just kinetic energies), the diagonalization of the two-particle
Hamiltonian in the box basis of Eq. (19) with J = 1 and T = 0
yields the energy and wave function of the deuteron with very
good accuracy.

III. RESULTS AND DISCUSSION

A. Nuclear matter

This section has been written to demonstrate the successes
and limitations of the description of symmetric nuclear matter
confined to a spherical box as described above. One of the
obvious limitations is displayed in Fig. 1, which shows the
density profile of nuclear matter assuming various Fermi
momenta. The solid lines are obtained if one defines the
orthogonal basis for the plane waves according to Eq. (3).
The densities are not really constant but fluctuate around the
densities

ρ = 2

3π2
k3

F , (20)

which one would expect for homogenous nuclear matter with
the specific Fermi momentum kF . In particular, the drop
toward ρ = 0 at the boundary of the box, which is a direct
consequence of Eq. (3), seems to spoil the picture. Therefore,
it has been argued that one should employ a set of basis
functions, with alternating boundary conditions: While the
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FIG. 2. Single-particle energies of nuclear matter calculated in a
spherical box of radius R = 10 fm. The left panel shows the kinetic
energies tkin and the single-particle energies ε(k) calculated for a
Fermi momentum kF = 1 fm−1. The right panel shows values of εil

as a function of the Fermi momentum kF . Results for various orbital
angular momenta l are identified by the color of the line (energies
increase with increasing l). Solid, dashed, and dotted lines represent
the values for the lowest three momenta according to the boundary
conditions of Eq. (3).

boundary condition of Eq. (3) is used for states with even
orbital angular momentum l , the momenta for the states
with odd l are determined from the boundary condition that
the derivative of the corresponding Bessel function jl (kr)
vanishes at the boundary.

Indeed, the resulting density profiles, visualized in terms of
the dashed lines in Fig. 1, are a bit smoother and get rid of the
drop at the maximal radius. Since, however, our main interest
is devoted to the study of finite nuclei of variable size, we will
stick to basis of Eq. (3) also for our studies of infinite matter,
as it leads to a sequence of orbital angular momenta, which is
typical for finite systems.

This can be seen from right panel of Fig. 2, which shows
the single-particle energies for the lowest orbits calculated ac-
cording to Eq. (6) as a function of the Fermi momentum of the
system. One finds that these energies change rather smoothly
with kF . The lowest states are for orbital angular momenta
l = 0, 1, and 2, with the smallest momenta compatible with
the boundary condition of Eq. (3). The next state, shown in
terms of a dashed line, has again orbital angular momentum
l = 0 and can be regarded as a first excited s state in a finite
system. It should be noticed that there is no spin-orbit splitting
in the single-particle spectrum, if the radius of the box R is
chosen to be sufficiently large. This applies to our choice of
R = 10 fm, which we will consider here and in the following
discussion.

The left panel of Fig. 2 shows the single-particle spectrum
as a function of the momentum for nuclear matter with
kF = 1 fm−1 together with the kinetic energy spectrum. The
dependence on k is rather smooth and could be parameterized
in terms of a parabola defining an effective mass, as is often
done in the literature. One must be aware, however, that the
momenta compatible with the boundary conditions of Eq. (3)

0.5 1 1.5
Fermi momentum kF [ fm-1 ]

0

5

10

 Δ
 [ 

M
eV

 ]

FIG. 3. Pairing gaps � calculated for nuclear matter with var-
ious Fermi momenta kF . The triangles represent results for T = 0
pairing obtained from Eq. (16) while the square boxes represent the
corresponding imaginary parts of the pphh RPA eigenvalues [see
Eq. (15)]. Results for isospin T = 1 derived from Eq. (16) are shown
in terms of x signs. Note that the single-particle energies have been
approximated by kinetic energies.

are not equally spaced, as one can also see from the kinetic
energies of these states.

Results for pairing gap in nuclear matter are presented in
Fig. 3. For the case of proton-neutron pairing, the energy
gaps resulting from the imaginary part of complex eigenvalues
for the pphh RPA [see Eq. (15)] are visualized by black
squares while those resulting from Eq. (16) are represented by
triangles. The agreement between the predictions from these
two approaches is not as close as in the case of the correspond-
ing equations discussed by Rubtsova et al. [19]. This is not
really astonishing as the studies of Ref. [19] were restricted
to pairing in two-particle states with zero center-of-mass
momentum and a well-defined partial wave for the relative
motion, while in the present investigation the center-of-mass
momentum as well as the partial wave of relative motion
are not well-defined quantum numbers. As a consequence,
one typically obtains more than one pair of RPA eigenstates
with complex eigenvalues. The magnitude predicted for the
the proton-neutron pairing gap in nuclear matter as well as
the dependence of the gap on the Fermi momentum are in
reasonable agreement with each other as well as with the
corresponding results obtained, e.g., in Ref. [19]. Therefore,
in the following we will consider Eq. (16) to define the pairing
gap.

Figure 3 also displays results for the pairing gap � in
the case of neutron-neutron or proton-proton pairing. These
results for the T = 1 pairing gap are considerably smaller
than those for T = 0 pairing. This is in agreement with earlier
studies in nuclear matter and supports the expectation that the
more attractive NN interaction in T = 0 channels should pro-
duce stronger correlation effects than in the T = 1 case. The
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FIG. 4. Expansion coefficients of the bound states for T = 0 and
T = 1 pairing in nuclear matter with kF = 1 fm−1. The states of
the two-particle basis are represented by the average momentum k12

defined in Eq. (21).

fluctuations for the pairing gap in the T = 1 channel at larger
densities reflects the fact that the existence or nonexistence
of a pairing solution is quite sensitive to the energy spectrum
of the single-particle energies in the case of a weak pairing
effects.

In comparing the pairing in T = 0 and T = 1, one should
be aware that the quasibound states in these two channels
show rather different features. This can be seen from Fig. 4,
which displays the expansion coefficients of the lowest eigen-
states of the Hamiltonian in Eq. (16). In this figure, the
expansion coefficients ci of the eigenstates are identified by
a typical value for the momentum

k12 =
√

k2
1 + k2

2 , (21)

where k1 and k2 identify the momenta of the two single-
particle states in the basis of pp and hh states. For a Fermi mo-
mentum kF = 1 fm−1, this implies that pp and hh states very
close to the Fermi energy are identified by k12 = √

2 fm−1,
which is the value around which the maximal values for c2

i
occur in the T = 1 (dots) as well as in the T = 0 (triangles)
case. One also sees, however, that non-negligible values for
ci occur at larger values of k12 in the case of proton-neutron
states, which is not true for the case of nucleons with the same
isospin. One should be aware that the logarithmic scale in this
figure suppresses the value for most expansion coefficients,
which are of the order of 1000 in each channel for the present
study.

These expansion coefficients reflect the fact that the strong
tensor components of a realistic NN interaction in the 3S1-3D1

interaction yield high-momentum components in the quasi-
bound states for T = 0, which are absent in the case of T = 1
states. This feature is also reflected by the analysis displayed
in Fig. 5, which shows the dependence of the pairing gap
� on the cutoff in the single-particle momenta of particle
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FIG. 5. Value for the pairing gap � for T = 0 and T = 1 pairing
as a function of the cutoff momentum for the particle states are rep-
resented by solid lines while the number of basis states is indicated
by the corresponding dashed lines. All values are normalized with
respect to the result, both gap and number of basis states, at the
maximal cutoff kcut of 2.5 fm−1.

states which are considered for the basis of particle-particle
states. Note that in all the studies discussed in this project
we consider a basis of single-particle states up to a maximal
momentum of k = 2 fm−1. This turned out to be sufficient
for the low-momentum representation of a realistic interaction
Vlowk, which is used here. Larger cutoffs will be required if one
considers traditional realistic NN interactions.

Inspecting Fig. 5, one finds that a cutoff larger than 2 fm−1

is needed in the pp states to obtain stable results for T = 0
while a lower cutoff is sufficient for the case of T = 1 pairing.

All the studies discussed so far in this subsection have
used a spectrum of kinetic energies εk for the single-particle
states in Eq. (17). This has been done to allow for a direct
comparison with results obtained in Ref. [19]. The effect of a
more realistic single-particle spectrum calculated according to
Eq. (6) is displayed in Fig. 6. The quenching of the pairing gap
� with the single-particle spectrum, which in nuclear-matter
calculations is often represented by an effective mass, m∗ <

m, has also been observed in earlier studies.

B. Effects of finite size

A central aim of this study is to explore the effects of the
finite size of nuclei on the occurrence of pairing phenomena.
For that purpose, two sets of parameters of a simple Woods-
Saxon potential [Eq. (7)] have been generated. The first tries
to simulate quasinuclei close to the double magic nucleus
16O. For a set of radial parameters r0 in Eq. (7), the depth
of the potential, U0, has been adjusted such the energy of
the first excited s1/2 state occurs at zero energy. In a second
set, which will be referred to as quasi-40Ca nuclei, the depth
has been adjusted to obtain the first excited p state at zero
energy. Note that there is no spin-orbit term in the potential
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FIG. 6. Pairing gaps � calculated for nuclear matter with various
Fermi momenta kF . The symbols represent results for T = 0 pairing
obtained from Eq. (16). While the diamonds represent results ob-
tained for the corresponding HF single-particle energies, the triangles
were obtained approximating these energies by kinetic energies tk .

of Eq. (7), which means that the energies of p3/2 and p1/2

states are degenerated. The results for the depth of these sets
of potentials are displayed in Fig. 7.

Using the single-particle wave functions from such Woods-
Saxon potentials, one can then calculate the corresponding
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FIG. 7. Depth of Woods-Saxon potentials U0, defined in Eq. (7)
to simulate quasinuclear systems corresponding to 16O and 40Ca for
various radii as discussed in the text.
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FIG. 8. Single-particle energies of low-lying states in quasinu-
clear systems corresponding to 16O of different size. The energies
appear in the empirical order.

mean-field energies following Eq. (9). Results for the energies
of the low-lying single-particle states using the Woods-Saxon
wave function of the quasi-16O nuclei are displayed in Fig. 8.

From this figure, one can clearly see that the single-particle
energies for the states with bound-state wave functions are
getting more attractive with decreasing size of the nucleus,
while the energies for single-particle states with unbound
Woods-Saxon wave functions, as 0d5/2, 0d3/2, and the 1p
states, are rather insensitive to the size of the nuclear system
and stay around zero energy. This enhancement of the shell
structure for the bound states with decreasing size is what one
expects for quantum systems.

Special attention shall be paid to the sensitivity of the
spin-orbit term in the single-particle energies on the size of
the quasinuclei. The spin-orbit term in nuclei occurs in a very
natural way within the framework of a relativistic mean-field
approach [42,48]. In such models, the nuclear binding results
from a balance between a scalar field and a repulsive vector
field. Reducing the resulting Dirac equation to an equivalent
Schrödinger equation, one obtains a strong spin-orbit term,
which is proportional to the radial derivative of difference
between the scalar and the vector field. Therefore, in non-
relativistic mean-field studies, the spin-orbit term is added
also proportional to the radial derivative of the single-particle
potential [1].

The present study does not consider any phenomenolog-
ical spin-orbit term. The Woods-Saxon wave functions are
identical, e.g., for the 0p3/2 and 0p1/2 states. Therefore, the
spin-orbit term showing up in the 0p and 0d states of the
quasinuclear systems referring to 16O in Fig. 8 originates
solely from the realistic NN interaction.

This is also true for the spin-orbit energies

εls = ε j=l−1/2 − ε j=l+1/2,

displayed in Fig. 9 for the quasinuclear system of various
sizes, which corresponds to 40Ca. One can see that the
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FIG. 9. Spin-orbit term defined by the difference in energy be-
tween single-particle states with angular momentum j = l − 1/2
and j = l + 1/2 for orbital angular momenta l = 1, 2, and 3 for
quasinuclei 40Ca of various sizes.

spin-orbit term decreases with increasing size of the system
and disappears in the limit of infinite nuclear matter. As
already mentioned, this spin-orbit term is due to the NN
interaction. It turns out that the spin-orbit splitting is mainly
due to interaction in partial waves with total spin S = 1 and
orbital angular momentum L = 1 for the relative motion of
the interacting nuclei. If the interaction in the 3P0, 3P1, and
3P2-3F2 channels is ignored, spin-orbit energies of 0.61, 0.87,
and 0.70 MeV are obtained for l = 1, 2, and 3 in the case
of 40Ca and a Woods-Saxon radius of r0 = 3.5 fm. This is
much smaller than the corresponding energies of 6.20, 9.85,
and 10.56 MeV, which one obtains for the interaction in all
partial waves and are displayed in Fig. 9.

Results for the pairing gap of quasinuclei derived from
a solution of Eq. (16) are shown in Fig. 10 as a function
of the radius of the underlying Woods-Saxon potential. It
should be noted that the results for 16O as well as for the
open-shell nucleus 12C have been calculated using the wave
functions and single-particle energies for 16O discussed above
(see, e.g., Fig. 8). In the case of 12C, one would prefer of
course to use single-particle energies evaluated directly for
this nucleus. If, however, one calculates those single-particle
energies according to Eq. (9), assuming the states of the
0s1/2 and 0p3/2 shells to be occupied, one obtains a level
inversion in the sense that the single-particle energy of the
0p1/2 occurs below the 0p3/2 energy. This is a consequence of
the assumption of spherical approximation for the open-shell
nucleus 12C. In a more realistic calculation, one would allow
for a deformation of the nuclei. This is beyond the scope of
the present investigation and should be considered in a next
step.

The situation is essentially identical for the open-shell
nucleus 28Si using the Woods-Saxon basis as well as in the
Hartree-Fock calculations discussed in the next subsection.
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FIG. 10. Pairing gaps � calculated for various quasinuclear sys-
tems are presented as a function of the radius of the Woods-Saxon
potential. While for the two panels on the left side (16O and 12C) the
wave functions and energies resulting from the 16O set have been
used, the results for the other panels have been obtained using the
40Ca sets. Results for T = 0 and T = 1 pairing are displayed in terms
of squares and triangles, respectively.

Therefore, the pairing gaps displayed in Fig. 10 for 28Si have
been calculated using single-particle states as determined for
40Ca.

The dependence of the calculated pairing gaps on the size
of the system turns out to be very similar for the closed-shell
nuclei 16O and 40Ca presented in the upper half of Fig. 10. In
the case of T = 1 pairing, one can observe that the pairing gap
evaluated for homogeneous matter decreases and disappears
when h, the radius of the nuclear system, decreases. The
energy spacing between particle and hole states is getting
larger at small and realistic sizes of these nuclei and prevents
the occurrence of a pairing state in this channel.

The situation is different for T = 0 pairing in the closed-
shell nuclei. The proton-neutron interaction is more attractive
and collects contributions to the collective states over a larger
range (see discussion of Figs. 4 and 5 above). This may
explain that the pairing gap in the T = 0 case remains large
over a wide range of nuclear sizes and drops to zero only
at rather small values for the radius. The small enhancement
of the T = 0 pairing gap at medium values of RW S could be
caused by larger matrix elements of the interaction for states
which are more localized.

The situation differs for the open-shell nuclei 12C and 28Si
displayed in the lower part of Fig. 10. Since the energy gap
between particle and hole states is smaller for these open-shell
nuclei than for the closed-shell systems discussed before, the
pairing gap determined for T = 1 remains down to rather low
radii of the nuclear system. On the other hand, the pairing gap
calculated for T = 0 is smaller by a factor of 2 as compared
to typical values for the closed-shell nuclei. This reduction
is mainly due to the spin-orbit splitting. In the case of
16O, the two-particle configuration |0p3/2, 0p1/2, J = 1, T =
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FIG. 11. Level scheme for low-lying single-particle energies for
protons in 16O and 40Ca obtained in the Hartree-Fock approximation.
The sequence of levels corresponds to the empirical ordering.

0〉 provides an important contribution to the quasibound state
of Eq. (16), which defines the pairing gap. In the case of
16O, this configuration belongs neither to the particle-particle
nor to the hole-hole states, which reduces the attraction of
the quasibound states and consequently requires a small gap
parameter for the stabilization. It is remarkable that the gaps
required for T = 1 and T = 0 are very close to each other for
the open-shell nuclei.

C. Hartree-Fock approach

After discussing the change of the pairing gap as a function
of the size of the nuclear system, it is the aim of this subsection
to provide estimates for T = 0 and T = 1 pairing for realistic
examples of finite nuclei. For that purpose, the realistic Vlowk

interaction has been supplemented by a density-dependent
two-body interaction defined in Eq. (11) and the Coulomb
interaction. The parameters of the contact interaction were
adjusted already by van Dalen et al. [29] to reproduce the
saturation point for nuclear matter as well as binding en-
ergies and radii of nuclei ranging from 16O to 208Pb using
the Hartree-Fock approximation. This leads to energies per
nucleon of −7.91 MeV and −8.57 MeV for the nuclei 16O and
40Ca, respectively. These energies as well as the calculated
radii for the proton distribution (2.68 fm in the case of 16O
and 3.41 fm for 40Ca) are in very good agreement with the
empirical data.

Results of single-particle energies for the proton bound
states and a few low-lying states in the continuum are dis-
played in Fig. 11. These single-particle energies as well as the
corresponding wave functions are employed to evaluate the
pairing gaps according to Eq. (16). As discussed above,
the results of the Hartree-Fock calculations for 16O and 40Ca

TABLE I. Pairing gaps � for isospin T = 1 and T = 0 derived
from Eq. (16) using Hartree-Fock wave functions and energies. All
entries are in MeV.

T = 1 T = 0

12C 2.51 2.31
16O 0.0 2.35
28Si 1.78 1.10
40Ca 0.0 3.30

have also been used for the study of the open-shell nuclei 12C
and 28Si. Results of such calculations are listed in Table I.

These results demonstrate for the case of T = 1 pairing
that the energy gap in closed-shell nuclei is too large to allow
a formation of pairing correlations between like nucleons.
For open-shell nuclei, the proton-proton and neutron-neutron
interaction are strong enough to support the formation of
paired states. The estimates for the pairing gap are in qualita-
tive agreement with phenomenological studies. This supports
the strategy of the present investigation, to relate the pairing
phenomenon to the stabilization of the pphh RPA equation,
defining the spectral distribution of the two-particle Green’s
function.

In the case of two-particle states with T = 0, one obtains
nonvanishing pairing gaps for closed-shell nuclei as well as
open-shell nuclei. The two-nucleon interaction is stronger in
this channel and collects contributions from states well below
and high above the Fermi surface. Therefore, the collective
state of the pphh RPA Hamiltonian is not as sensitive to
details of the single-particle spectrum very close to the Fermi
surface. This implies that one cannot expect a clear signal for
the formation of T = 0 pairing from the mass of neighbored
nuclei comparable to the odd-even mass staggering in the case
of T = 1. Instead, the T = 0 two-nucleon correlations are
responsible for a depletion of hole-state occupations, which
is not restricted to the valence shell.

It is worth noting that our study yields T = 0 pairing gaps
for light open-shell nuclei with N = Z , which are comparable
with the corresponding T = 1 pairing gaps, while the studies
of Gezerlis, Bertsch, and Luo [24,25] obtain T = 0 pairing
only for heavier nuclei. We think that this difference is mainly
due to the difference in the NN interaction. While a contact
interaction has been used in Refs. [24,25], the present study
employs a realistic NN interaction, which yields rather differ-
ent quasibound states for T = 0 and T = 1 pairs (see above).

IV. CONCLUSIONS

In order to investigate the dependence of pairing correla-
tions on the size of the nuclear system, a set of quasinuclear
systems with equal number of protons, Z , and neutrons, N ,
in the mass range from A = 12 to A = 40 has been consid-
ered. By constructing corresponding quasinuclei with differ-
ent sizes, the change of pairing correlations in the transition
from homogeneous infinite matter to finite nuclei has been
explored.
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In this study, one observes the development of the spin-
orbit term in the mean field of nuclei. In the present framework
of nonrelativistic nuclear structure calculations using realistic
NN interactions, this spin-orbit term is mainly generated
from the interaction of two nucleons in partial waves with
spin S = 1 and an orbital angular momentum for the relative
motion of L = 1. The spin-orbit term disappears in the limit of
homogeneous matter and provides results for the splitting of
single-particle energies, ε j=l−1/2 − ε j=l+1/2, for quasinuclei
of realistic size, which are in qualitative agreement with
empirical data.

It is this spin-orbit splitting which suppresses the proton-
neutron pairing in open-shell nuclei drastically. While in
infinite nuclear matter the pairing gaps calculated for T = 0
are typically larger by a factor of 4 compared to the T = 1
pairing gap, the gap calculated for open shell nuclei of finite
size are slightly smaller for T = 0 as compared to T = 1.

The situation is different for the study of the closed-shell
nuclei 16O and 40Ca: The large gap in the single-particle
energies around the Fermi energy prevents the occurrence of
T = 1 pairing, while a nontrivial solution of the gap equation
is obtained for T = 0. This behavior reflects another qualita-
tive difference between T = 0 and T = 1 pairing. While the
bound state of T = 1 states is dominated by particle-particle
(pp) and hole-hole (hh) configurations of states rather close to
the Fermi level, the residual interaction in the T = 0 channel

leads to important contributions from configurations which
are far away from the Fermi level. This implies that one
should not expect a sudden breakdown of pn correlations
comparing nuclei with Z = N to those with Z = N ± 1. This
may explain that empirical data do not show a staggering of
binding energies comparable to the odd-even mass staggering,
indicating T = 1 pairing. Therefore, different tools such as
the study of pair transfer reactions should be used to observe
isoscalar pairing correlations.

The T = 0 pairing states derived from a realistic NN
interaction collect contributions from various major shells.
Therefore, one should not expect a shell-model calculation,
which is restricted to configurations within one major shell, to
show the corresponding correlations.

The studies presented in this paper assume spherical sym-
metry of the nuclei. This should be sufficient for the study
of qualitative features in the transition from infinite matter to
finite nuclei. For a more realistic study of pairing correlations
in finite nuclei, however, one should consider the effects of
intrinsic deformation.
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