
PHYSICAL REVIEW C 99, 034312 (2019)

Photodisintegration cross sections for resonant states and virtual states
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The s-wave photodisintegration cross sections observed just above the neutron breakup threshold energy are
calculated for resonant and virtual states by using a complex-scaled two-body model, which simulates the 9Be
nucleus with a 8Be + n s-wave channel. We investigate the differences between behaviors of the resonance
and virtual states in the photodisintegration cross sections near threshold energy in detail. It is shown that, in
the present two-body model, resonant states very near the threshold energy produce a peak structure in the
photodisintegration cross section that is similar that of the virtual state.
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I. INTRODUCTION

Nuclear states observed around threshold energies provide
us with interesting problems associated with the nuclear clus-
ter structure [1,2]. Most of them are also interesting astrophys-
ically from the viewpoint of nucleosynthesis. The Hoyle state
[3] of the excited 0+ state in 12C is one of the typical examples
in light nuclei. The first excited Jπ = 1/2+ state in 9Be [4],
which is an α + α + n Borromean nucleus, offers us a similar
problem. This state of 9Be has been observed as a sharp peak
above the 8Be + n threshold energy in the photodisintegration
cross section of γ + 9Be → α + α + n. The strength of the
peak has a strong influence on the reaction rate of the 9Be syn-
thesis. From such an astrophysical interest, new experiments
and their analyses were performed recently [5–7].

From theoretical studies, nuclear structure of this state of
9Be has been discussed from various points of view: 8Be + n
cluster model [8,9], α + α + n three-body model [10,11],
molecular orbit model of a valence neutron around two α

clusters [12–14], and so on. There is a long-standing contro-
versy whether the 1/2+ state is a resonant or a virtual state
[10,15–17]. Recently, we performed the calculations using
an α + α + n three-body model [18,19] together with the
complex scaling method (CSM) [20], which well reproduces
the recently observed photodisintegration cross section [5,6].
The results indicate that the 1/2+ state shows the s-wave
virtual-state character of 8Be + n, which plays an important
role in formation of the peak structure above the 8Be + n
threshold in the cross section [18,19].
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However, the virtual state cannot be directly obtained
as an isolated pole solution in the CSM [21,22], because
the scaling angle in the CSM cannot cover the position of
the virtual state pole on the negative imaginary axis of the
complex momentum plane [22]. In our previous work [23],
we proposed a new approach for the CSM to describe the
virtual state. We showed that the CSM is also useful to
distinguish a virtual state pole from the continuum using the
continuum level density (CLD), the scattering phase shift,
and the scattering length [23]. In the next step, we investigate
the differences between behaviors of the virtual state and
resonance in the photodisintegration cross sections.

For this purpose, we apply the CSM to the two-body
model, 8Be + n, used in our previous calculation for 9Be
[23], and further we discuss how the two-body unbound state
contributes to the photodisintegration cross section of 9Be.
This potential model well describes the p- and s-wave neutron
motions around the 8Be quasicluster, which correspond to the
ground and excited states of 9Be, respectively. We investigate
the E1 transition strength causing the photodisintegration by
changing the potential strength in the two-body system. We
precisely discuss the origin of the peak of the E1 strength near
the threshold in relation to the virtual and resonant states of
the 8Be + n system.

In the next section (II), we explain our model and method
briefly. In Sec. III, results of the E1 transition strength and
the photodisintegration cross sections are presented and dis-
cussed. Finally, in Sec. IV, we give a conclusion.

II. MODEL AND METHOD

A. A simple model in the complex scaling method

To understand the origin of a low-energy peak in the photo-
disintegration cross section just above the breakup threshold
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energy in 9Be, we investigate a simple schematic two-body
model which simulates the 8Be + n system. In this schematic
two-body model, as shown in Ref. [23], both clusters (8Be
and n) are assumed to be structureless and spinless, and the
relative motion between those clusters is described by the
following Schrödinger equation:

H�ν
Jπ = Eν�

ν
Jπ , (1)

where Jπ is the spin and parity, and ν is the state index.
The Hamiltonian H consists of the relative kinetic energy
T = − h̄2

2μ
∇2, where μ is the reduced mass, and potential V (r)

for relative motion:

H = − h̄2

2μ
∇2 + V (r). (2)

Here, we assume the simple two-body potential

V (r) = −V1exp(−ar2), (3)

and we put h̄2

2μ
= 1 (MeV fm2), V1 = −1.42 MeV, and a =

0.16 fm−2 so that the system has two bound states: one is
the s wave and the other is the p wave. In order to simulate
the 8Be + n system, we regard the first s-wave bound state
as the Pauli-forbidden state, and the p-wave bound state is
assigned to the ground state of 9Be.

The eigenvalue problem of Eq. (1) is solved under a bound-
ary condition of asymptotic outgoing waves for unbound
states. We employ the complex scaling method (CSM) [20]
which enables us to obtain the outgoing unbound states in
the L2-function basis set together with bound states [21,22].
In the CSM, the following complex-dilation transformation is
applied to the relative coordinate �r and momentum �k:

�r → �reiθ , �k → �ke−iθ , (4)

where θ is a scaling angle and 0 < θ < θmax. The maximum
value θmax is determined to keep analyticity of the poten-
tial. For example, θmax = π/4 for a Gaussian potential. This
transformation makes every branch cut rotated by −2θ on the
complex energy plane. Applying this transformation [Eq. (4)]
to Eq. (1), we can rewrite the complex-scaled Schrödinger
equation as

H θ�ν
Jπ (θ ) = E θ

ν �ν
Jπ (θ ). (5)

The complex-scaled Hamiltonian H θ and wave function
�ν

Jπ (θ ) are defined as U (θ )HU (θ )−1 and U (θ )�ν
Jπ , respec-

tively; see Refs. [21,22] for details. As L2-basis functions,
we employ Gaussian functions [24], and then the radial wave
function is expressed as

�ν
Jπ (θ ) =

N∑
n=1

cJπ ν
n (θ )φn(r), (6)

where {φn(r)} is the Gaussian basis function set. The expan-
sion coefficients cJπ ν

n and the complex energy eigenvalues E θ
ν

are obtained by solving the complex-scaled eigenvalue prob-
lem given in Eq. (5). The complex energies of resonant states
are obtained as Er = E res

r − i	r/2, when tan−1 (	r/2E res
r ) <

2θ .

B. Transition strength and cross section

Using the energy eigenvalues and eigenstates of the
complex-scaled Hamiltonian H θ , we define the complex-
scaled Green’s function Gθ (E ; r, r′) as

Gθ (E ; r, r′) = 〈r| 1

E − H θ
|r′〉 =

N∑
ν=1

�ν
Jπ (θ )�̃ν

Jπ (θ )

E − E θ
ν

. (7)

In the derivation of the right-hand side of Eq. (7), we use the
extended completeness relation [21,22]. Using the complex-
scaled Green’s function, we calculate the photodisintegration
cross section.

The cross section for the electric-dipole (E1) transitions
σ

γ

E1 is expressed as:

σ
γ

E1(Eγ ) = 16π3

9

(
Eγ

h̄c

)
dB(E1, Eγ )

dEγ

, (8)

where Eγ is the incident photon energy and B(E1) is an E1
transition strength. Using the CSM and the complex-scaled
Green’s function in Eq. (7), the E1 transition strength is
calculated as

dB(E1, Eγ )

dEγ

= − 1

π

1

2Jgs + 1
Im

[∑
ν

〈�̃gs||(Ôθ )†(E1)|∣∣�ν
Jπ (θ )

〉

× 1

E − E θ
ν

〈
�̃ν

Jπ (θ )
∣∣|Ôθ (E1)||�gs〉

]
, (9)

where �gs is the ground state wave function with spin Jgs, and
Ô(E1) is an E1 transition operator. The energy E is related to
Eγ as E = Eγ − Egs, where Egs is the binding energy of the
ground state measured from the threshold.

We can write Eq. (9) as

dB(E1, Eγ )

dEγ

= 1

2Jgs + 1
Im

∑
ν

{
M2

ν ρ̃ν (E )
}
, (10)

where matrix element M2
ν and level density ρ̃(E ) are defined

as

M2
ν =〈�̃gs||(Ôθ )†(E1)|∣∣�ν

Jπ (θ )
〉〈
�̃ν

Jπ (θ )
∣∣|Ôθ (E1)||�gs〉

(11)
and

ρ̃ν (E ) = − 1

π

1

E − E θ
ν

, (12)

respectively. It is noted that M2
ν and ρ̃ν are complex numbers,

and do not directly correspond to physical quantities.

III. RESULTS AND DISCUSSIONS

A. The shape of the cross section calculated just
above threshold energy

In the CSM, resonances are obtained as solutions with
complex eigenvalues in a wedge region clipped by the positive
energy line and the 2θ line in the fourth quadrant of the
complex energy plane. However, because of the restriction
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FIG. 1. The calculated photodisintegration cross section of the
9Be(1/2+), taken from Ref. [18], in comparison with experimental
data [5,6]. The black solid line represents the cross section calculated
by using the complex scaled α + α + n model with an attractive
three-body potential v3 = −1.02 MeV. The arrow indicates the
threshold energy of the 8Be(0+) + n channel.

to the scaling angle θ as 0 < θ < θmax = π/4 coming from
the analyticity of Gaussian potential, it is not possible to
solve virtual state solutions, which are defined as the poles
on the negative energy axis of the second Riemann sheet in
the complex energy planes. The virtual-state components are
considered to be buried in the continuum solutions obtained
on the 2θ line [23].

In Ref. [18], we studied the 1/2+ state of 9Be and the E1
photodisintegration cross section, applying the CSM to the
α + α + n three-body model. The results indicate that there is
no resonant solution with a small decay width corresponding
to the distinct peak observed just above the 8Be + n threshold
in the photodisintegration cross section of 9Be. However, the
calculation well reproduces the recent experimental data of
the energy distribution of the cross section as shown in Fig. 1
taken from Ref. [18]. In addition, by changing the attraction
of the inter-three-cluster force (v3 is defined in Eq. (6) of
Ref. [18]), the pole trajectory is calculated from a bound
state to an unbound state, and the result suggests that the first
excited 1/2+ state in 9Be is a 8Be + n virtual state but not a
resonant one.

In our recent work [23], applying a simple schematic two-
body model explained above, we have investigated a virtual
state in the CSM and the photodisintegration cross section.
Since virtual-state poles can be solved using the Jost function
method [25] explicitly, we are able to see that the virtual
state has a strong influence on the photodisintegration cross
sections. Seeing the scattering phase shift calculated from the
continuum solutions in the CSM, we also confirmed that
the virtual state is included in the continuum solutions. Using
the solutions of the CSM for the continuum states in the two-
body model simulating the 8Be + n system, we calculated the
photodisintegration cross section and obtained a similar peak
with the 9Be(1/2+) state at the low energy region, as shown in
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FIG. 2. The photodisintegration cross section due to the E1
transition calculated with the two-body potential model with the
strength V1 = −1.42 MeV. The arrow indicates the threshold energy.
This result is taken from Ref. [23].

Fig. 2 taken from Ref. [23]. Thus, we concluded that the two-
body model describing a virtual state reproduces the shape
of the photodisintegration cross section above the threshold
energy similarly to the α + α + n three-body calculation.

From Figs. 1 and 2, we see a specific energy distribution
of the photodisintegration cross section. Such an asymmetric
shape of the cross section is described by using the energy
dependence of the resonance parameters in the R-matrix the-
ory [15,16,26,27]. In the R-matrix theory, the cross section
for a spin-J state is approximately described with the single-
resonance formula

σ (γ , n) = (2J + 1)π

8

h̄2c2

Eγ

	γ 	n

(E − � − ER)2 + 1
4	2

, (13)

where 	γ and 	n are γ and neutron widths, respectively. To
explain the deviation from a symmetric Breit-Wigner form,
the energy dependence of parameters 	γ , 	n, and � is intro-
duced. Their parameters including ER and 	 are chosen so as
to reproduce the observed data, but it has been reported that
the results are not consistent with each other [15,17].

In our calculation of the two-body model, there is no pa-
rameter except for the potential strength V1 which determines
the structure of the excited state. However, the calculated
photodisintegration cross section, which includes all kinds of
contributions of the final states, well explains its observed
shape. Therefore, it is very interesting to investigate the origin
of the peak form of the cross section.

B. The origin of the peak structure

The origin of the peak in the energy region above the
threshold energy may be understood by looking into the
contributions of the components of the strength function.
The strength function given by Eq. (10) is decomposed into
the E1 matrix elements M2

ν and the level density ρ̃ν (E ) of
the final states. To see their energy dependences, in Fig. 3 we
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(a) (b) (c)

FIG. 3. Left: Matrix elements M2
ν (Re(Eν )), calculated by Eq. (11). The black and open circles represent the imaginary and real parts,

respectively. Middle: Real (cross) and imaginary (black circle) parts of the level density ρ(E ) calculated by Eq. (12). Right: The E1 strength
distribution given in Eq. (10). Dotted, broken, and solid lines are Re(M2

ν ) × Im(ρ(E )), Im(M2
ν ) × Re(ρ(E )), and their sum, respectively.

show the matrix element M2
ν of the ν state at the real part,

Re(Eν ), of the complex-scaled energy Eν and the level density
ρ̃(E ) = ∑

ν ρ̃ν (E ) at the continuous energy E together with
the strength function dB(E1, Eγ )/dEγ .

From the results, we can see that the real part of the matrix
element M2

ν and the imaginary part of ρ̃(E ) are dominant.
They have large values at low energies, though the former
goes to zero as Re(Eν ) → 0. The latter shows a large con-
centration at zero energy. As a result, the strength function
is described by Re(M2

ν ) × Im(ρ̃(E )) dominantly and shows
a peak near zero energy. Thus, the peak structure of the
photodisintegration cross section, shown in Fig. 2 and also
by the full line in the right-hand panel of Fig. 3, can be
understood from the properties of Re(M2

ν ) and Im(ρ̃(E )).
In our calculation, the cross section is approximately given

as σ ∝ ∑
ν Re(M2

ν ) × Im(ρ̃ν (E )), where Im(ρ̃ν (E )) is ex-
pressed as

Im(ρ̃ν (E )) = − 1

π

{
E θI

ν(
E − E θR

ν

)2 + (
E θI

ν

)2

}
(14)

by using the eigenenergy Eν = E θR
ν + iE θI

ν in the CSM and
shown in the middle panel of Fig. 3. We have studied that
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FIG. 4. The E1 strength functions for the photodisintegration
cross section calculated by using the wave functions of s waves for
different V2 values (V2 = 0–0.01 MeV) in the CSM.

∑
ν Im(ρ̃ν (E )) describes the level density ρ(E ), which is

shown to include a virtual state in the previous study [23].
It is considered that Re(M2

ν ) and Im(ρ̃ν (E )) may correspond
to numerator and denominator in Eq. (13) of the R-matrix
calculations, respectively.

Our calculation of Eq. (10) taking sum over ν includes
all of continuum states and also resonant states if they exist.
Therefore, our calculation using the CSM describes not only
a single resonance term shown in Eq. (13) but also virtual-
state and many-resonance terms in addition to a background
(continuum-state) term. And, the present result indicates that
the asymmetric sharp peak is reproduced by the virtual state
dominantly. It is interesting to investigate how the shape of the
peak changes when a resonant state appears near the threshold
instead of the virtual state.

C. Difference between virtual and resonant states
in shapes of the peak

We inquire into the difference between virtual and resonant
states in shapes of the peak just above the threshold energy.
Because the potential of Eq. (3) reproduces no s-wave reso-
nance, we add a long-range and weakly repulsive potential so
as to reproduce an s-wave resonant state with as little influence
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FIG. 5. Pole trajectory of the resonance state in a complex energy
plane by changing V2 potential strength.
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FIG. 6. The E1 transition strength for different values of V2

parameter.

on the states in the inside region as possible:

V (r) = −1.42 exp(−0.16r2) + V2 exp(−γ r2). (15)

Parameters V2 � 0.0 and γ = 0.01 fm−2 are taken for s
waves, while V2 = 0.0 for the p-wave ground state.

Changing the potential strength V2, we calculate the transi-
tion strength, and show the results in Fig. 4. For the range of
V2 = 0–0.01 MeV, the E1 strength functions show a similar
energy distribution with a peak at almost the same energy
of 0.01 MeV, though the peak height grows slightly as V2

increases from zero. The range of V2 = 0–0.01 MeV is con-
sidered to correspond to a transitional region from virtual to
resonant states. To confirm this situation, we calculate the
pole trajectory for V2 = 0–0.01 MeV using the Jost function
method [25].

As mentioned above, the Jost function method is applicable
to solve not only resonant but also virtual states in two-body
systems. We applied the Jost function method to calculate
the s-wave pole trajectory for V2 = 0–0.1 MeV. The results
are shown in Fig. 5. We see that poles for V2 = 0–0.03 MeV
are obtained on the negative energy axis, which mean virtual
states. For V2 = 0.004–0.01 MeV, poles move from the real
energy axis to a lower energy region of the complex energy
plan. A characteristic of poles in this region, which reproduce
the sharp peak of the E1 strength function shown in Fig. 4, is
that they are near zero energy.

When we further increase the potential strength V2 by 0.01
MeV steps, the pole trajectory indicates a resonance behavior
as shown in Fig. 5. At V2 = 0.01 MeV, the resonance energy

[Re(E )] is smaller than the width [2|Im(E )|]. At V2 = 0.1
MeV, we can solve the resonance pole energy as an isolated
solution in the CSM as well.

For V2 = 0.01–0.1 MeV, we calculate the E1 transition
strength and show the results in Fig. 6. It is seen that, at
V2 = 0.01 MeV, the peak is obtained at a low energy region
with a shape similar to that observed in Fig. 4. As V2 increases,
the sharp peak gradually moves from the low energy region
to higher energies, and the height of the peak decreases
smoothly. At V2 = 0.1 MeV, we see that the peak of the E1
transition strength becomes a usual Breit-Wigner type which
has a symmetric distribution around the resonance energy.

Coming back to the observed photodisintegration data for
9Be, as shown in Fig. 1, this energy distribution shows a strong
asymmetric shape largely deviating from the Breit-Wigner
type. Therefore, the E1 transition strength shown in Fig. 6 and
the pole distribution for V2 > 0.01 MeV are not acceptable.
This asymmetry implies the existence of a virtual state or a
resonance very close to the threshold.

IV. CONCLUSION

The photodisintegration cross section for the 1/2+ state
in 9Be, which was observed to have a peculiar enhancement
near the 8Be + n threshold energy, was discussed by using the
schematic two-body potential model simulating the 8Be + n
system. The origin of the peak is investigated in relation to
the unbound states of 9Be, such as virtual states, in the CSM.
The contributions of the components of the strength function
make clear that the real part of the matrix element and the
imaginary part of the level density are dominant.

The E1 strength functions for the photodisintegration cross
section of the virtual state have been shown to have a peak
just above the threshold energy, which is very similar to
that of resonant states near zero energy. Furthermore, it is
problematic that we observe such a resonance as an isolated
resonant state, because the width is much larger than the
resonance energy. However, if the s-wave neutron makes a
resonance in the case of 9Be, it is an open problem to explain
the resonance mechanism for an s-wave neutron to be trapped
in the inside region of the nucleus.
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