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We present a method to calculate spectroscopic properties of odd-odd nuclei within the framework of
the interacting boson-fermion-fermion model (IBFFM) based on the Gogny energy-density functional. The
(β, γ )-deformation energy surface of the even-even (boson-)core nucleus, spherical single-particle energies,
and occupation probabilities of the odd neutron and odd proton are provided by the constrained self-consistent
mean-field calculation within the Hartree-Fock-Bogoliubov method with the Gogny-D1M functional. These
quantities are used as a microscopic input to fix most of the parameters of the IBFFM Hamiltonian. Only a few
coupling constants for the boson-fermion Hamiltonian and the residual neutron-proton interaction are specifically
adjusted to reproduce experimental low-energy spectra in odd-mass and odd-odd nuclei, respectively. In this
way, the number of free parameters involved in the IBFFM framework is reduced significantly. The method
is successfully applied to the description of the low-energy spectra and electromagnetic transition rates in the
odd-odd 194,196,198Au nuclei.
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I. INTRODUCTION

The unified theoretical description of low-lying states in
even-even, odd-mass, and odd-odd nuclei is one of the major
goals of nuclear structure research. In even-even systems at
low energy, nucleons are coupled pairwise and the type of
couplings determines the low-lying collective structure of
vibrational and rotational states. The microscopic description
of low-lying collective states in even-even systems has been
extensively pursued with numerous theoretical methods [1–6].
However, the description of odd-mass and odd-odd nuclei is
more cumbersome, due to the fact that in those systems both
collective and single-particle motions have to be treated on the
same footing [1,7].

The interacting boson model (IBM) [3] has been remark-
ably successful in the phenomenological study of low-lying
structures in medium-mass and heavy even-even nuclei. In
its simplest version, the building blocks of the IBM are the
monopole s and quadrupole d bosons, which represent the
collective pairs of valence nucleons coupled to spin and parity
0+ and 2+, respectively [3,8]. The microscopic foundation of
the IBM starting from the nucleonic degrees of freedom has
been extensively pursued in the literature [8–13]. In particular,
a systematic method of deriving the IBM Hamiltonian from
microscopic input was developed in [12]. In this approach,
the deformation energy surface that is obtained from the self-
consistent mean-field (SCMF) calculation based on a given
energy-density functional (EDF) is mapped onto the expec-
tation value of the IBM Hamiltonian in the boson coherent

state [14]. This procedure completely determines the strength
parameters of the IBM Hamiltonian. Since the EDF frame-
work allows for a global mean-field description of intrinsic
properties of nuclei over the entire Segré’s chart, it has become
possible to determine in a unified way the parameters of the
IBM Hamiltonian basically for any arbitrary nucleus.

The method mentioned above was recently extended to
odd-mass systems [15] by considering the coupling between
bosonic (collective) degrees of freedom and an unpaired nu-
cleon within the framework of the Interacting boson-fermion
model (IBFM) [16]. In this extension, the even-even core
(IBM) Hamiltonian, the single-particle energies, and occu-
pation probabilities of the odd particle, which are building
blocks of the IBFM Hamiltonian, have been completely de-
termined based on the output of a SCMF calculation. Even
though a few strength parameters for the particle-boson cou-
pling are treated as free parameters, the method allows for an
accurate, systematic, and computationally feasible description
of various low-energy properties of odd-mass, medium-mass,
and heavy nuclei: e.g., signatures of shape phase transi-
tions [17–20], octupole correlations in neutron-rich odd-mass
Ba isotopes [21], and the structure of neutron-rich odd-mass
Kr isotopes [22].

In this work, we extend these studies to odd-odd nu-
clei by using the interacting boson-fermion-fermion model
(IBFFM) [16,23]. The IBFFM is an extension of the IBFM
that considers odd-odd nuclei as a system composed of an
IBM core plus an unpaired neutron and an unpaired proton.
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The IBM-core and particle-boson coupling Hamiltonians are
determined in a way similar to that employed for odd-mass nu-
clei [15]. The only additional parameters are the coefficients
of the residual neutron-proton interaction. They are deter-
mined to reasonably reproduce the experimental data for the
low-lying spectra of the considered odd-odd nuclei. The mi-
croscopic input used to determine part of the IBFFM Hamilto-
nian is obtained by constrained SCMF calculations within the
Hartree-Fock-Bogoliubov (HFB) method based on the Gogny
D1M EDF [24]. The two most relevant parametrizations of
the finite range Gogny force, namely D1S [25] and D1M [24],
have proved through the years to provide a reliable description
of many collective phenomena all over the periodic table
(see [26,27] for some examples). Our choice of D1M is based
solely on its better performance to describe binding energies.

As an application of the proposed methodology, we specif-
ically study the properties of the odd-odd 194,196,198Au nuclei.
Their low-lying structures are described by unpaired neutron
and proton holes coupled with the even-even core nuclei
196,198,200Hg. The IBM parameters for the even-even cores
were already obtained in Ref. [28] as part of a comprehen-
sive study of shape coexistence and low-lying structures in
the entire Hg isotopic chain within the configuration-mixing
IBM method based on the Gogny-D1M EDF. The results
obtained suggest that the nuclei 196,198,200Hg have weakly
oblate deformed to nearly spherical ground-state shapes. For
the neighboring odd-N nuclei 195,197,199Hg and odd-Z nuclei
195,197,199Au, there are plenty of experimental data to de-
termine the boson-fermion strength parameters. In addition,
the odd-odd Au nuclei in this mass region have previously
been extensively studied within the IBFFM framework: e.g.,
by means of numerical studies [29,30], or by pure-algebraic
approaches [31–33] in the context of nuclear supersymme-
try [34]. Those results will be a good reference to compare
with our less phenomenological results.

On the other hand, it is worthwhile to mention that mi-
croscopic nuclear structure models are also applied in the
spectroscopic studies of odd-mass and/or odd-odd nuclei
with the Gogny force. As an example, let us mention the
studies of various low-energy properties of odd-mass systems
at the mean-field level using full blocking [35] or the equal
filling approximation [36–38]. To our knowledge there is only
one study [39] of odd-odd nuclei focused on the ability to
reproduce the empirical Gallagher-Moszkowski (GM) rule.
As shown in this reference, the GM rule is not fulfilled
by the Gogny force and the failure is traced back to the
lack of additional proton-neutron interaction terms in the
interaction. This difficulty and the inability of any effective
interaction to reach spectroscopic accuracy for the spectra of
odd nuclei [40] point to the necessity of adding extra terms
with extra parameters that can be fitted locally to improve the
quality of the description of odd and odd-odd nuclei. This is
achieved in our model through the set of extra terms added
with parameters not fixed by the EDF input. Another source
of difficulties hampering to reach spectroscopic accuracy in
the description of odd nuclei with EDFs is the impact of
dynamical correlations such as those coming from symmetry
restoration [2]. In the last few years it has been possible to
include time-reversal symmetry and blocking effects along

with angular momentum and particle number projection [41],
but the complexity of the problem prevents its use beyond very
light systems like 24Mg [41,42].

This paper is organized as follows: In Sec. II we describe
the procedure to construct the IBFFM Hamiltonian based on
the SCMF calculation. In Sec. III, the spectroscopic properties
of the even-even Hg nuclei are briefly reviewed. In the same
section, the results for low-energy spectra in the odd-N Hg and
the odd-Z Au isotopes are discussed, followed by the results
of the spectroscopic calculations for the odd-odd Au nuclei.
Finally, a short summary and concluding remarks are given in
Sec. IV.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

In this work we use the version of the IBFFM that dis-
tinguishes between neutron and proton degrees of freedom
(denoted hereafter as IBFFM-2). The IBFFM-2 Hamiltonian
is expressed as

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + Ĥ ν
BF + Hπ

BF + V̂res. (1)

The first term in Eq. (1) is the neutron-proton IBM (IBM-
2) Hamiltonian [8] that describes the even-even core nuclei
196,198,200Hg. The second and third terms represent the Hamil-
tonian for an odd neutron and an odd proton, respectively. The
fourth and fifth terms correspond to the interaction Hamilto-
nians describing the couplings of the odd neutron and of the
odd proton to the IBM-2 core, respectively. The last term in
Eq. (1) is the residual interaction between the odd neutron and
odd proton.

For the boson-core Hamiltonian ĤB the standard IBM-2
Hamiltonian is adopted:

ĤB = ε(n̂dν
+ n̂dπ

) + κQ̂ν · Q̂π + κ ′L̂ · L̂, (2)

where n̂dρ
= d†

ρ · d̃ρ (ρ = ν, π ) is the d-boson number op-
erator, Q̂ρ = d†

ρsρ + s†
ρ d̃†

ρ + χρ (d†
ρ × d̃ρ )(2) is the quadrupole

operator, and L̂ = L̂ν + L̂π is the angular momentum operator
with L̂ρ = √

10(d†
ρ × d̃ρ )(1). The different parameters of the

Hamiltonian are denoted by ε, κ , χν , χπ , and κ ′. The doubly
magic nucleus 208Pb is taken as the inert core for the boson
space. The numbers of neutron Nν and proton Nπ bosons
equal the number of neutron-hole and proton-hole pairs, re-
spectively. As a consequence, Nπ = 1 and Nν = 5, 4, and 3
for the 196,198,200Hg nuclei, respectively.

The Hamiltonian for the odd nucleon reads

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1(a†

jρ
× ã jρ )(0) (3)

with ε jρ being the single-particle energy of the odd nucleon.
jν ( jπ ) stands for the angular momentum of the odd neutron
(proton). a(†)

jρ
represents the fermion annihilation (creation)

operator and ã jρ is defined as ã jm = (−1) j−maj−m. For the
fermion valence space, we consider the full neutron major
shell N = 82–126, i.e., 3p1/2, 3p3/2, 2 f5/2, 2 f7/2, 1h9/2, and
1i13/2 orbitals, and the full proton major shell Z = 50–82, i.e.,
3s1/2, 2d3/2, 2d5/2, 1g7/2, and 1h11/2 orbitals.
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For the boson-fermion interaction term Ĥρ
BF in Eq. (1), we

use the following form

Ĥρ
BF = 
ρQ̂ρ ′ · q̂ρ + �ρV̂ρ ′ρ + Aρ n̂dρ

n̂ρ, (4)

where ρ ′ �= ρ, and the first, second, and third terms are the
quadrupole dynamical, exchange, and monopole terms, re-
spectively. The parameters of the interaction Hamiltonian are
denoted by 
ρ , �ρ , and Aρ . As in the previous studies [43,44],
we assume that both the dynamical and exchange terms are
dominated by the interaction between unlike particles (i.e.,
between the odd neutron and proton bosons and between the
odd proton and neutron bosons). We also assume that for
the monopole term the interaction between like particles (i.e.,
between the odd neutron and neutron bosons and between
the odd proton and proton bosons) plays a dominant role.
In Eq. (4) Q̂ρ is the same bosonic quadrupole operator as in
the IBM-2 Hamiltonian in Eq. (2). The fermionic quadrupole
operator q̂ρ reads

q̂ρ =
∑
jρ j′ρ

γ jρ j′ρ (a+
jρ

× ã j′ρ )(2), (5)

where γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ and Qjρ j′ρ =
〈l 1

2 jρ ||Y (2)||l ′ 1
2 j′ρ〉 represents the matrix element of

the fermionic quadrupole operator in the considered
single-particle basis. The exchange term V̂ρ ′ρ in Eq. (4)
reads

V̂ρ ′ρ = −(s+
ρ ′ d̃ρ ′ )(2)

⎧⎨
⎩

∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ

: ((d+
ρ × ã j′′ρ )( jρ ) × (a+

j′ρ
× s̃ρ )( j′ρ ) )(2) :

⎫⎬
⎭ + (H.c.),

(6)

with β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ . In the second line of the
above equation the notation : (· · · ) : indicates normal order-
ing. In the monopole interactions, the number operator for the
odd fermion is expressed as n̂ρ = ∑

jρ
( − √

2 jρ + 1)(a+
jρ

×
ã jρ )(0).

In previous IBFFM calculations [45,46], the residual in-
teraction V̂res in Eq. (1) contained a quadrupole-quadrupole,
delta, spin-spin-delta, spin-spin, and tensor interaction. How-
ever, we find that only the delta and spin-spin-delta terms are
enough to provide a good description of the low-lying states
in the odd-odd nuclei considered here. Therefore, the residual
interaction used here reads

V̂res = 4πδ(rν − rπ )(u0 + u1σν · σπ ), (7)

with u0 and u1 the parameters. Furthermore, the matrix ele-
ment of the residual interaction V̂res, denoted by V ′

res, can be
expressed as [46]

V ′
res = (u j′ν u j′π u jν u jν + v j′ν v j′π v jν v jν )V J

j′ν j′π jν jπ

− (u j′ν v j′π u jν v jπ + v j′ν u j′π v jν u jπ )

×
∑

J ′
(2J ′ + 1)

{
j′ν jπ J ′
jν j′π J

}
V J ′

j′ν jπ jν j′π
, (8)

where

V J
j′ν j′π jν jπ = 〈 j′ν j′π ; J|V̂res| jν jπ ; J〉 (9)

is the matrix element between the neutron-proton pairs, and J
stands for the total angular momentum of the neutron-proton
pair. The bracket in Eq. (8) stands for the Racah coefficient.
Also in Eq. (8) the terms resulting from contractions are
ignored as in Ref. [47]. A similar residual neutron-proton
interaction is used in the two-quasiparticle rotor-model cal-
culation in Ref. [48].

B. Procedure to build the IBFFM-2 Hamiltonian

The ingredients of the IBFFM-2 Hamiltonian Ĥ in Eq. (1)
are determined with the following procedure.

(1) First, the IBM-2 Hamiltonian is determined by using
the methods of Refs. [12,13]: the (β, γ )-deformation
energy surface obtained from the constrained Gogny-
D1M HFB calculation is mapped onto the expectation
value of the IBM-2 Hamiltonian in the boson coherent
state [14]. This procedure completely determines the
parameters ε, κ , χν , and χπ in the IBM-2 Hamiltonian.
Only the strength parameter κ ′ for the L̂ · L̂ term
is determined separately from the other parameters,
by adjusting the cranking moment of inertia in the
boson intrinsic state to the corresponding Thouless-
Valatin [49] moment of inertia obtained by the Gogny-
HFB SCMF calculation at the equilibrium mean-field
minimum [13].

(2) Second, the strength parameters for the boson-fermion
coupling Hamiltonians Ĥ ν

BF and Ĥπ
BF for the odd-N Hg

and odd-Z Au nuclei, respectively, is determined by
using the procedure of [15]: Single-particle energies
and occupation probabilities of the odd nucleon are
provided by the Gogny-HFB calculation constrained
to zero deformation (see Ref. [50] for details); optimal
values of the parameters 
ν , �ν , and Aν (
π , �π , and
Aπ ), are chosen separately for positive and negative
parity, so as to reproduce the experimental low-energy
levels of each of the considered odd-N Hg (odd-Z Au)
nuclei.

(3) By following previous IBFFM calculations [23,45,46],
the same strength parameters 
ν , �ν , and Aν (
π , �π ,
and Aπ ) as those obtained for the odd-N Hg (odd-Z
Au) nuclei in the previous step are used for the odd-
odd nuclei. The single-particle energies and occupa-
tion probabilities are, however, newly calculated for
the odd-odd systems.

(4) Finally, the parameters in the residual interaction V̂res,
i.e., u0 and u1, are determined so as to reasonably
reproduce the low-lying spectra in the studied odd-
odd nuclei. The fixed values u0 = −0.3 MeV and
u1 = −0.033 MeV for positive parity, and u0 = −0.3
MeV and u1 = 0.0 MeV for negative-parity states, are
adopted. The ratio, u0/u1 ≈ 9, was also considered
in [48].

The values of the IBM-2 parameters employed in the
present work are shown in Table I. They are exactly the same
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TABLE I. The adopted parameters of the IBM-2 Hamiltonian ĤB

in Eq. (2). Theyz are taken from Ref. [28].

ε (MeV) κ (MeV) χν χπ κ ′ (MeV)

196Hg 0.710 − 0.517 0.836 0.613 0.0041
198Hg 0.675 − 0.470 1.333 0.166 0.0043
196Hg 0.636 − 0.328 0.891 0.684 0.0018

as those used in Ref. [28]. The fitted strength parameters for
the Hamiltonian Ĥ ν

BF (Ĥπ
BF), i.e., 
ν , �ν , and Aν (
π , �π ,

and Aπ ) are shown in Table II (Table III). The fixed value

ρ = 0.8 MeV is used for the strength parameter for the
quadrupole dynamical term for all the odd-mass and odd-odd
nuclei and for both parities. Other parameters do not differ
too much between neighboring isotopes. Tables IV, V, and VI
summarize the single-particle energies and occupation proba-
bilities obtained from the Gogny-HFB SCMF calculations for
the studied odd-N Hg, odd-Z Au, and odd-odd Au isotopes,
respectively. We note that the single-particle energies and
occupation probabilities for the odd-N Hg (Table IV) and odd-
Z Au (Table V) nuclei are almost identical to those computed
for the odd-odd Au nuclei (see Table VI).

Once all the parameters of the IBFFM-2 Hamiltonian
are obtained, it is diagonalized numerically in the ba-
sis |LνLπ (L); jν jπ (J ) : I〉, using the computer program TW-
BOS [51]. Lν (Lπ ) and L are the angular momentum for neutron
(proton) bosons and the total angular momentum for the even-
even boson core, respectively. Finally, I stands for the total
angular momentum of the coupled system.

C. Transition operators

Using the eigenstates of the IBFFM-2 Hamiltonian, we
can determine the electric quadrupole (E2) and magnetic
dipole (M1) properties of the odd-odd nuclei. In the present
framework, the E2 operator T̂ (E2) takes the following form:

T̂ (E2) = eB
ν Q̂ν + eB

π Q̂π − 1√
5

∑
ρ=ν,π

∑
jρ j′ρ

(u jρ u j′ρ − v jρ v j′ρ )

× 〈
j′ρ

∣∣∣∣eF
ρ r2Y (2)

∣∣∣∣ jρ
〉
(a†

jρ
× ã j′ρ )(2), (10)

where eB
ρ and eF

ρ stand for the effective charges for the boson
and fermion systems, respectively. The fixed values eB

ν =
eB
π = 0.15 eb, which are taken from Ref. [28], and eF

ν = 0.5
eb and eF

π = 1.5 eb are used.

TABLE II. Strength parameters of the Hamiltonian Ĥ ν
BF (in MeV)

employed for the odd-N nuclei 195,197,199Hg and odd-odd nuclei
194,196,198Au.


+
ν �+

ν A+
ν 
−

ν �−
ν A−

ν

194Au, 195Hg 0.80 0.0 − 0.10 0.80 2.00 − 0.80
196Au, 197Hg 0.80 0.0 0.0 0.80 1.50 − 0.40
198Au, 199Hg 0.80 0.0 − 0.20 0.80 1.20 − 0.35

TABLE III. Strength parameters of the Hamiltonian Ĥπ
BF (in

MeV) employed for the odd-Z nuclei 195,197,199Au and odd-odd nuclei
194,196,198Au.


+
π �+

π A+
π 
−

π �−
π A−

π

194,195Au 0.80 1.50 0.0 0.80 1.50 − 0.80
196,197Au 0.80 1.60 0.0 0.80 0.00 0.0
198,199Au 0.80 2.40 0.0 0.80 0.00 0.0

The M1 transition operator T̂ (M1) reads:

T̂ (M1)

=
√

3

4π

{
gB

ν L̂B
ν + gB

π L̂B
π − 1√

3

∑
ρ=ν,π

∑
j j′

(u jρ u j′ρ + v jρ v j′ρ )

× 〈
j′ρ

∣∣∣∣gρ

l l + gρ
s s|| jρ

〉
(a†

jρ
× ã j′ρ )(1)

}
. (11)

In this expression, gB
ν and gB

π are the g factors for the neutron
and proton bosons, respectively. The fixed values gB

ν = 0μN

and gB
π = 1.0μN [3,52] are used in this work. For the neutron

(proton) g factors, the usual Schmidt values gν
l = 0μN and

gν
s = −3.82μN (gπ

l = 1.0μN and gπ
s = 5.58μN ) are used. The

gs value for both the proton and neutron are quenched by 30%.
We note that the forms of the operators T̂ (E2) [Eq. (10)]

and T̂ (M1) [Eq. (11)] have been used in previous IBFFM-2
calculations [23,45,46].

As we show later, we have computed the B(E2) and
B(M1) transition rates, the spectroscopic quadrupole moment
Q(I ), and the magnetic moment μ(I ) for the odd-odd nuclei
194,196,198Au, using the computer code TWBTRN [51].

III. RESULTS AND DISCUSSION

A. Even-even Hg isotopes

In this section, we briefly discuss relevant results for the
even-even nuclei 196,198,200Hg, which were already presented
in Ref. [28]. We plot in Fig. 1 the Gogny-D1M and mapped
IBM-2 energy surfaces for the 196,198,200Hg nuclei. In Fig. 1,
the Gogny-D1M energy surface for the 196Hg nucleus exhibits
a single oblate minimum located at β ≈ 0.13. The oblate
minimum becomes less pronounced in 198Hg and, finally, the
200Hg nucleus exhibits a near spherical shape with a very

TABLE IV. Neutron single-particle energies ε jν (in MeV) and
occupation probabilities v2

jπ
used in the present study for the odd-N

nuclei 195,197,199Hg.

3p1/2 3p3/2 2 f5/2 2 f7/2 1h9/2 1i13/2

195Hg ε jν 0.000 0.921 1.033 3.819 4.283 1.537

v2
jν

0.248 0.515 0.554 0.944 0.951 0.702
197Hg ε jν 0.000 0.937 1.056 3.846 4.366 1.570

v2
jν

0.289 0.590 0.631 0.956 0.962 0.769
199Hg ε jν 0.000 0.957 1.078 3.877 4.449 1.605

v2
jν

0.338 0.670 0.713 0.967 0.973 0.834
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TABLE V. Proton single-particle energies ε jπ and occupation
probabilities v2

jπ
used in the present study for the odd-Z nuclei

195,197,199Au.

3s1/2 2d3/2 2d5/2 1g7/2 1h11/2

195Au ε jπ 0.000 0.907 2.624 5.163 0.840

v2
jπ

0.617 0.870 0.968 0.989 0.864
197Au ε jπ 0.00 0.888 2.592 5.153 0.834

v2
jπ

0.619 0.869 0.968 0.989 0.865
199Au ε jπ 0.000 0.865 2.559 5.133 0.817

v2
jπ

0.624 0.867 0.967 0.989 0.864

shallow oblate minimum at β ≈ 0.08. The mapped IBM-2
energy surfaces on the right-hand side in Fig. 1 reproduce
the basic features of the original Gogny-D1M ones around
the global minimum, but look rather flat in the region away
from the minimum. This is due to the restricted boson model
space [12], which only comprises a finite number of bosons.

The calculated and experimental [53] low-lying spectra
are shown in Fig. 2. The yrast levels for all the considered
even-even nuclei are described reasonably well. However,
the theoretical energy levels, in particular for 196,198Hg, look
more stretched than the experimental ones. For instance, our
calculation is not able to account for the excitation energy of
the low-lying 0+

3 level of 196,198Hg. This discrepancy could be
remedied by including in the IBM-2 model space the intruder
configurations that are associated with coexisting mean-field
minima. These configurations are, however, not considered
for the nuclei studied here [28], since their corresponding
Gogny-D1M energy surfaces only exhibit a single mean-field
minimum (see Fig. 1).

B. Odd-mass Hg and Au isotopes

Next, we discuss the spectroscopic properties of the
odd-mass nuclei, obtained within the neutron-proton IBFM
(IBFM-2). For the diagonalization of the IBFM-2 Hamil-
tonian, the computer code PBOS is used. The theoretical
and experimental low-energy spectra for the odd-N nuclei
195,197,199Hg are compared in Fig. 3. Especially for the
positive-parity states, which are based on the unique-parity
νi13/2 configuration, the present calculation provides an excel-
lent description of the experimental spectra for the considered
odd-N nuclei, although only three parameters are involved

FIG. 1. The Gogny-D1M HFB and mapped IBM-2 energy sur-
faces in the (β, γ )-deformation space for the 196–200Hg nuclei are
plotted up to 5 MeV from the global minimum. The energy difference
between the neighboring contours is 250 keV. The global minimum
is indicated by a filled square.

(see Table III). The calculation reproduces nicely the ground-
state band built on the 13/2+

1 state, which follows the �I =
2 systematic of the weak-coupling limit. For the 195,197Hg
nuclei, the calculation suggests that the negative-parity yrast
states near the ground state are based mainly on the odd
neutron in the 3p1/2 single-particle orbital coupled to the
IBM-2 core. In the case of the nucleus 199Hg, however, in
most of the yrast states in the vicinity of the ground state
three configurations 3p1/2, 3p3/2, and 2 f5/2 are more strongly
mixed than in 195,197Hg. Such a change in the structure of the

TABLE VI. Neutron and proton single-particle energies (in MeV) and occupation probabilities used in the present study for the odd-odd
nuclei 194,196,198Au.

3p1/2 3p3/2 2 f5/2 2 f7/2 1h9/2 1i13/2 3s1/2 2d3/2 2d5/2 1g7/2 1h11/2

194Au ε jν 0.000 0.913 1.013 3.804 4.238 1.502 ε jπ 0.000 0.915 2.640 5.165 0.840

v2
jν

0.254 0.521 0.555 0.945 0.950 0.699 v2
jπ

0.617 0.871 0.969 0.989 0.864
196Au ε jν 0.000 0.929 1.036 3.831 4.321 1.535 ε jπ 0.000 0.898 2.608 5.159 0.838

v2
jν

0.296 0.595 0.632 0.956 0.962 0.767 v2
jπ

0.618 0.869 0.968 0.989 0.864
198Au ε jν 0.000 0.949 1.059 3.861 4.405 1.570 ε jπ 0.000 0.877 2.575 5.145 0.827

v2
jν

0.346 0.675 0.714 0.967 0.972 0.831 v2
jπ

0.621 0.868 0.968 0.989 0.865
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FIG. 2. Theoretical and experimental low-energy excitation spectra for the even-even nuclei 196,198,200Hg. The experimental values are
taken from the NNDC compilation [53].

low-lying state from 195,197Hg to 199Hg reflects the evolution
of shapes in the corresponding even-even systems from 198Hg
(weakly oblate deformed) to 200Hg (nearly spherical).

In Fig. 4 we show similar plots for the odd-Z isotopes
195,197,199Au. In general, our calculation is in a very good
agreement with the experimental data. Our calculation sug-
gests that the IBFM-2 wave functions of the lowest positive-
parity states for the considered odd-Z Au nuclei are com-
posed, with a probability of more than 80%, of the 3s1/2 and
2d3/2 single-particle configurations, which are substantially
mixed with each other. On the other hand, the 2d5/2 and 1g7/2

configurations turn out to play minor roles in describing the
lowest-lying states.

We confirm that both the E2 and M1 properties of the
considered odd-mass nuclei are reasonably described with the
present approach.

C. Odd-odd Au isotopes

Let us now focus on the discussion of the results for the
odd-odd nuclei. The low-lying spectra computed with the
IBFFM-2 for the odd-odd 194,196,198Au nuclei are depicted in
Fig. 5, and compared with the experimental data [53].

1. 194Au

First, we observe that the present IBFFM-2 result for
the 194Au nucleus is in a very good agreement with the
experimental spectra, especially for the positive-parity states.
The main component (≈72 %) in the wave functions of
the lowest three positive-parity states, i.e., 5+

1 , 7+
1 , and 6+

1
states, is the (νp1/2 ⊗ πh11/2) neutron-proton pair coupled
to the boson core. For the negative parity, the energy levels
near the 1− ground state are reasonably reproduced in the
present calculation. The main components of IBFFM-2 wave
function of the 1− state are the (νp1/2 ⊗ πs1/2)J=1− (17%) and
(ν f5/2 ⊗ πs1/2)J=3− neutron-proton pairs (13%). However,
the calculation is not able to reproduce the experimental 11−,
12−, and 13− levels, which are below 1 MeV excitation. The
excitation energies for these states are predicted to be much

larger (> 3 MeV). Empirically, these higher-spin negative
parity states are mainly made of the pair composed of the
unique-parity orbitals, i.e., (νi13/2 ⊗ πh11/2) [53]. The corre-
sponding IBFFM-2 wave functions obtained in the present
work are, however, made of the coupling between the odd
neutron and proton in the normal-parity orbitals: for instance,
the main components of the predicted 11−

1 states are the
(νp1/2 ⊗ πs1/2)J=1− (35%), (ν f5/2 ⊗ πs1/2)J=3− (19%), and
(νp1/2 ⊗ πd5/2)J=3− (13%) neutron-protons pairs.

The experimental information about the electromagnetic
properties is rather scarce for 194Au. Nevertheless, we show
in Table VII the calculated B(E2) and B(M1) transition
rates and quadrupole Q(I ) and magnetic μ(I ) moments in
comparison with the available data. The predicted B(E2)
values seem to be qualitatively in a good agreement with
the data. The calculated B(M1) values are, however, too
large as compared to the experimental values. The sign
of the predicted Q(1−) moment is opposite to that given by the
experiment.

TABLE VII. Calculated and experimental B(E2) and B(M1)
transition rates (in Weisskopf units), and quadrupole Q(I ) (in eb
units) and magnetic μ(I ) (in μN units) moments for the odd-odd
nucleus 194Au. The experimental values are taken from Ref. [53].

Theory Experiment

B(E2; 6+
1 → 5+

1 ) 3.0 5(3)
B(E2; 7+

1 → 5+
1 ) 61 27(2)

B(E2; 8+
1 → 6+

1 ) 61 22(4)
B(E2; 8+

1 → 7+
1 ) 1.5 1.9(5)

B(M1; 6+
1 → 5+

1 ) 0.050 0.0010(4)
B(M1; 6+

1 → 7+
1 ) 0.020 0.0034(14)

B(M1; 8+
1 → 7+

1 ) 0.021 5×10−5(2)
Q(1−

1 ) +0.225 −0.240(9)
μ(1−

1 ) +1.790 +0.0763(13)
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FIG. 3. Same as Fig. 2, but for the odd-N nuclei 195,197,199Hg.

2. 196Au

From the comparison of energy levels of the odd-odd
nucleus 196Au, shown in Fig. 5, one concludes that the cal-
culation is able to reproduce both the experimental positive-
and negative-parity levels reasonably well. The calculated
low-lying positive-parity states for 196Au are similar in struc-
ture to those for 194Au: 67% and 66% of the predicted 5+

1
and 7+

1 states are dominated by the (νp1/2 ⊗ h11/2)J=5+ pair
component, respectively. The spin of the calculated lowest
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FIG. 4. Same as Fig. 2, but for the odd-Z nuclei 195,197,199Au.

negative parity state is I = 1−. This is at variance with
the experiment, although the experimental 1−

1 level is only
6 keV above the 2−

1 ground state. Furthermore, the present
calculation considerably overestimates the 2−

1 energy level.
The non-negligible components (> 10%) of the corresponding
IBFFM-2 wave functions for the 2−

1 and 1−
1 states are the

following: (νp1/2 ⊗ πd3/2)J=2− (24%), (νp1/2 ⊗ πs1/2)J=1−

(11%), and (ν f5/2 ⊗ πs1/2)J=2− (11 %) for the 2−
1 state, and

(νp1/2 ⊗ πs1/2)J=1− (38%) and (νp1/2 ⊗ πd3/2)J=1− (10%)
for the 1−

1 state.
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FIG. 5. Same as Fig. 2, but for the odd-odd nuclei 194,196,198Au.
The experimental values are taken from Refs. [53,54] (for
194Au), [53,55] (for 196Au), and [53] (for 198Au).

Table VIII exhibits the calculated and experimental elec-
tromagnetic properties. Regarding the B(E2) rates, our results
are in a reasonable agreement with the experiment. However,
similarly to 196Au the calculated B(M1) values are generally
much larger than the experimental values. A number of exper-
imental B(E2) and B(M1) transition rates from the 1− state at
the excitation energy of Ex = 298.5 keV are available [55].
However, there are also too many experimental 1− states

TABLE VIII. Same as Table VII, but for the nucleus 196Au. The
experimental values are taken from Refs. [53,55].

Theory Experiment

B(E2; 6+
1 → 5+

1 ) 2.1 >0.064
B(E2; 6+

2 → 5+
1 ) 7.7 >0.0068

B(E2; 7+
1 → 5+

1 ) 50 51(6)
B(E2; 7+

2 → 5+
1 ) 0.24 >0.064

B(E2; 8+
1 → 6+

1 ) 51 0.77(39)
B(E2; 8+

1 → 6+
2 ) 0.28 20(7)

B(E2; 8+
1 → 7+

1 ) 1.0 0.76×10−1(26)
B(E2; 8+

1 → 7+
2 ) 0.018 0.77(39)

B(E2; 3−
2 → 1−

1 ) 11 >6.5
B(E2; 4−

1 → 2−
1 ) 21 9.7(2.4)

B(E2; 4−
1 → 2−

2 ) 1.8 13.2(13.2)
B(E2; 4−

1 → 3−
1 ) 0.34 13.2(13.2)

B(M1; 6+
1 → 7+

1 ) 0.029 3.5×10−5

B(M1; 6+
2 → 6+

1 ) 0.077 >0.00016
B(M1; 6+

2 → 7+
1 ) 0.14 3.5×10−5

B(M1; 6+
2 → 7+

2 ) 0.050 >0.00016
B(M1; 7+

2 → 7+
1 ) 0.0053 3.5×10−5

B(M1; 8+
1 → 7+

1 ) 0.022 0.49×10−3(5)
B(M1; 3−

2 → 2−
1 ) 0.17 >0.0045

Q(2−
1 ) +0.495 0.81(7)

μ(2−
1 ) +0.197 +0.580(15)

below 298.5 keV, and it is not clear which theoretical 1− state
corresponds to the experimental one observed at Ex = 298.5
keV. For this reason, we do not compare our results with
the experimental B(E2) and B(M1) transitions rates from the
1−(298.5 keV) state.

3. 198Au

As one sees from the comparison between the theoretical
and experimental low-energy spectra for the odd-odd nucleus
198Au in Fig. 5, the description of the positive-parity states is
generally good. As in the case of 196Au, however, our calcu-
lation fails to reproduce the spin of the lowest negative-parity
state. The structure of the 2−

1 and 1−
1 wave functions for 198Au

turn out to be rather similar to those of 196Au, that is, (νp1/2 ⊗
πd3/2)J=2− (26%), (νp1/2 ⊗ πs1/2)J=1− (19%), and (νp1/2 ⊗
πs1/2)J=0− (12%) for the 2−

1 state, and (νp1/2 ⊗ πs1/2)J=1−

(41%) and (νp1/2 ⊗ πd3/2)J=1− (13%) for the 1−
1 state. The

previous IBFFM calculation of [29] obtains an excellent
description of both the positive- and negative-parity levels.
The IBFFM wave functions they obtained are predominantly
described by the (νp1/2 ⊗ πd3/2)J=2− component (>70 %) for
the 2−

1 state and (νp1/2 ⊗ πd3/2)J=1− (50 %) for the 1−
1 state.

The difference between our result and that of [29] could be
accounted for by the different single-particle energies used in
each study. In the present calculation, the 2d3/2 single-particle
orbital is about 0.9 MeV above the 3s1/2 (see Table VI). On
the other hand, in [29] the 2d3/2 orbital is below the 3s1/2

one and, consequently, the πd3/2 single-particle configuration
plays a more dominant role in low-energy region than in our
calculation.
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TABLE IX. Same as Table VII, but for the nucleus 198Au.

Theory Experiment

B(E2; 1−
2 → 2−

1 ) 6.7 2.2(7)
B(E2; 2−

3 → 4−
1 ) 0.049 >64

B(E2; 3−
1 → 1−

1 ) 8.3 >26
B(E2; 3−

1 → 2−
1 ) 2.1 >13

B(E2; 4−
1 → 2−

1 ) 13 35(18)
B(M1; 1−

2 → 0−
1 ) 0.015 0.0032(10)

B(M1; 1−
2 → 1−

1 ) 0.0049 0.00024(8)
B(M1; 1−

3 → 0−
1 ) 0.00067 7.4×10−5(24)

B(M1; 1−
3 → 1−

1 ) 0.00051 0.0017(5)
B(M1; 1−

4 → 0−
1 ) 8.2×10−5 >0.0084

B(M1; 1−
4 → 2−

1 ) 0.0021 > 9.9 × 10−6

B(M1; 1−
5 → 1−

1 ) 0.022 >0.00029
B(M1; 1−

5 → 1−
2 ) 0.042 >0.0042

B(M1; 1−
6 → 0−

1 ) 0.0013 >0.00025
B(M1; 1−

6 → 1−
4 ) 0.10 >0.015

B(M1; 1−
6 → 2−

1 ) 0.0010 > 5.6 × 10−5

B(M1; 2−
2 → 1−

1 ) 0.064 >0.00033
B(M1; 2−

2 → 2−
1 ) 0.024 >0.0037

B(M1; 2−
3 → 1−

2 ) 4.5×10−6 >0.00065
B(M1; 2−

3 → 1−
3 ) 0.024 >0.0048

B(M1; 2−
3 → 2−

1 ) 8.5×10−5 >0.00042
B(M1; 2−

4 → 1−
4 ) 0.0015 >0.015

B(M1; 3−
1 → 2−

1 ) 0.42 >0.0019
B(M1; 3−

2 → 2−
1 ) 0.0042 >0.0026

Q(2−
1 ) +0.373 +0.64(2)

μ(5+
1 ) +4.398 − 1.11(2)

μ(2−
1 ) +0.334 +0.5934(4)

In Table IX the calculated B(E2) values for 198Au are,
in general, in good agreement with the experiment. We also
present the calculated B(M1), but for most of the available
data only a lower limit for this quantity is known. The
calculated magnetic moment of the 5+

1 state, μ(5+
1 ), has

the opposite sign and is a factor of 4 larger in magnitude than
the experimental one. Similar results have been obtained for
the 194,196Au nuclei as we obtain μ(5+

1 ) ≈ 5μN . As already
mentioned, the 5+

1 states obtained in the present calculation
for the considered odd-odd Au nuclei are dominated by the
(νp1/2 ⊗ πh11/2)J=5+ neutron-proton pair configuration, and
the predicted μ(5+

1 ) moments are mostly accounted for by
this configuration, in particular, by the odd-proton part of the
M1 matrix element, which takes large positive value. On the

other hand, empirical studies for the low-lying level structure
of 194Au [54,56] assume the 5+

1 state and the band built on it
to be based mainly on the (νi−1

13/2 ⊗ πd−1
3/2)J=5+ configuration,

leading to the correct sign of the μ(5+
1 ) moment.

IV. SUMMARY AND CONCLUDING REMARKS

In this work, we extend the recently developed method of
Ref. [15] for calculating the spectroscopy of odd-mass nuclei
to odd-odd systems. The (β, γ )-deformation energy surfaces
of the even-even core nuclei, and spherical single-particle
energies and occupation probabilities of the odd neutron and
the odd proton, are calculated by the constrained HFB method
based on the Gogny D1M EDF. These quantities are then
used as microscopic input to build most of the different terms
of the IBFFM-2 Hamiltonian. The strength parameters for
the boson-fermion interaction terms in the IBFFM-2 Hamil-
tonian are taken from those of the neighboring odd-mass
nuclei. Two coefficients in the residual interaction between
odd neutron and proton are the only new parameters, and
are determined as to reproduce the low-energy levels of
each odd-odd nucleus. In this way, we are able to reduce
significantly the number of free parameters in the IBFFM-
2 framework. It is shown that the method provides a rea-
sonable description of low-energy spectra and electromag-
netic properties of the odd-odd nuclei 194,196,198Au. Even
though a few strength parameters in the boson-fermion and
fermion-fermion interactions are treated as free parameters,
the method developed in this paper, as well as in Ref. [15],
in which the even-even IBM-core Hamiltonian is determined
fully microscopically and only one or two unpaired nucleon
degrees of freedom are added via the particle-boson coupling,
allows for a simultaneous description of a large number of
even-even, odd-mass, and odd-odd medium-mass and heavy
nuclei.
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