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α clustering in nuclei is considered with the quartet model (QM) where four valence nucleons (the quartet)
move on the top of the core (daughter) nucleus. In the QM approach, it is assumed that the intrinsic wave function
of the quartet is changed from the pure cluster configuration to the shell-model configuration when it crosses
some critical radius and enters into the core nucleus. The QM approach could give not only the level scheme,
the electromagnetic transition, and the nuclear radius but also the α-cluster formation probability. Numerical
results are calculated for 20Ne, 44Ti, and 212Po, where a quartet moves on top of a double magic nucleus. Good
agreement with experimental data and previous theoretical studies is obtained. The QM approach is a useful
complement to the present phenomenological and microscopic models and could help deepen our understanding
of α clustering across the nuclide chart.
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I. INTRODUCTION

The study of α clustering could date back to Rutherfold’s
discovery of α decay, and nowadays it is still an important
direction in modern nuclear physics. Previous studies show
that α clustering could appear across the nuclide chart, from
light- and medium-mass elements to heavy and superheavy
elements. Various phenomenological and microscopic models
have been proposed in the literature to describe various as-
pects of α clustering; see, e.g., Ref. [1–7] for comprehensive
reviews. Among them, the binary cluster model [8] and the
quartetting wave function approach [9] are of special interest
to the present work.

The binary cluster model is a famous model originating
from Gamow et al.’s explanation of α decay in terms of quan-
tum tunneling and marking the first application of quantum
mechanics in the subatomic scale [10,11]. Here, by “binary
cluster model,” we refer to a class of phenomenological mod-
els that regard the parent nucleus as a two-body system made
of a tightly bound α particle and the core (daughter) nucleus.
In literature, these models are also sometimes called the
local potential approach [12] or simply the cluster model [6].
With the α-core nuclear potential chosen properly to be, e.g.,
the WS + WS3 potential [13] or the Woods-Saxon-Gaussian
(WSG) potential [14], the binary cluster model is able to
provide a systematic description of the level scheme, electro-
magnetic transition, and nuclear radius for α-cluster structures
of various α + closed-shell nuclei across the nuclide chart.
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In spite of these impressive phenomenological achievements,
the binary cluster model by itself cannot give a meaningful
estimation of the α-cluster formation probability [15], which
is a key quantity to measure the strength of α clustering, as
it has presumed that the parent state is composed solely of
the α-cluster state from the very beginning. In other words,
the α-cluster formation probability given by the binary cluster
model should always be 100%, which is not realistic.

On the other hand, the quartetting wave function approach
was proposed in 2014 as a microscopic model to describe
α clustering [9], in which the parent nucleus is modeled
by a compound system made of the core nucleus and four
valence nucleons. The key feature of the quartetting wave
function approach is that it allows a reliable estimation of the
α-cluster formation probability with low computational costs.
Unlike the binary cluster model, the four valence nucleons
{n↑, n↓, p↑, p↓} in the quartetting wave function approach
are assumed to form a tightly bound α particle only outside
some critical radius determined by the Mott density and
would merge into the shell-model states inside the critical
radius. In the following, these four valence nucleons will be
called a quartet. The quartetting wave function approach has
been adopted to study the ground-state α-cluster formation
probabilities in various heavy and superheavy elements such
as 212Po and its isotopes, as well as the light nucleus 20Ne, and
the results agree well with previous microscopic calculations
and empirical rules [16–20]. These studies also inspired the
very recent proposal of the cluster-daughter overlap as a
probe of ground-state α-cluster formation in medium-mass
and heavy even-even nuclei in Ref. [21].

In this work, following the quartetting wave function ap-
proach, we would like to propose the quartet model (QM)
as a phenomenological model for α clustering and compare
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it with the binary cluster model. The QM approach attempts
to provide a unified phenomenological description of various
important properties of α clustering in α + closed-shell nuclei
across the nuclide chart, including not only the level scheme,
the electromagnetic transition, the nuclear radius as discussed
above for the binary cluster model, but also the α-cluster
formation probability.

The following parts of this paper are organized as follows.
In Sec. II, we present the framework of the QM approach. In
Sec. III, as a proof of concept, the α-cluster structures of 20Ne,
44Ti, and 212Po are studied with the QM approach. Section IV
ends this paper with conclusions and remarks.

II. QUARTET MODEL

This section presents the theoretical formalism for the
α + closed-shell nucleus, which is modeled by a quartet (four
valence nucleons {n↑, n↓, p↑, p↓}) moving on the top of the
closed-shell core nucleus D in the QM approach. We assume
the core D to be inert in our discussions; i.e., its state does
not depend on the variables of the quartet. The parent wave
function can be given by

� = A {� (Q)(r1, . . . , r4)� (D)(ξD)}. (1)

Here, ri (i = 1, . . . , 4) points from the center of mass (c.m.)
of the core nucleus to the valence nucleon. ξD corresponds
to the intrinsic degree of freedom of the core nucleus. The
quartet and core wave function � (Q)(ri ) and � (D)(ξD) are
assumed to be internally antisymmetrized respectively, and A
is the interfragment antisymmetrization operator between the
quartet and the core nucleus. In Eq. (1), the wave functions
� and � (D)(ξD) are normalized. Following Ref. [9], the
quartet wave function � (Q)(ri ) is decomposed into the c.m.
component and the intrinsic component

� (Q)(r1, . . . , r4) = χ (R)φ(Q)(R, ξQ). (2)

Here, χ (R) is the c.m. component of the quartet wave func-
tion, and φ(Q)(R, ξQ) is the intrinsic component of the quar-
tet wave function, with R = (r1 + r2 + r3 + r4)/4 being the
quartet c.m. coordinate and ξQ being the collection of three
intrinsic coordinates of the quartet, which could be chosen
to be, e.g., the Jacobi coordinates. The above decomposition
is unique up to an arbitrary phase factor only, once the
normalizations of �, � (D), and φ(Q) are set down. With the
help of Eq. (2), the parent state is rewritten as

� =
∫

dr χ (r)�r(ξQ, ξD, R), (3)

where {�r} forms a basis labeled by the continuous
subscript r,

�r(ξQ, ξD, R) = A {� (D)(ξD)φ(Q)(R, ξQ)δ(r − R)}, (4)

and χ (r) is the expansion coefficient. Based on these, the
Schrödinger equation for ϕ(r) ≡ N 1/2χ (r) is given by

N −1/2H N −1/2ϕ(r) = Eϕ(r). (5)

H and N are integral operators obeying, e.g., N f (r) ≡∫
dr′N (r, r′) f (r′), and the corresponding kernels are given by

H (r, r′) = 〈�r|H |�r′ 〉 and N (r, r′) = 〈�r|�r′ 〉. Compared

with χ (r), the new wave function ϕ(r) has the advantage to
be normalized

(ϕ|ϕ) = (χ |N |χ ) = 〈�|�〉 = 1, (6)

thus allowing the standard probability interpretation of quan-
tum mechanics. Here, the angle brackets denote matrix ele-
ments with integrations over the physical coordinates ξD, ξQ,
and R, while the round brackets denote matrix elements with
integrations over the parameter coordinate r. It is easy to no-
tice that the above formalism is reminiscent of the resonating
group method (RGM) [22] and the orthogonality condition
model (OCM) [23], with the intrinsic part φ(Q) describing
the more general quartet configuration rather than the pure
α-cluster configuration. The first application of the RGM for
the α decay was given by Fließbach [24], who investigated
antisymmetrization and normalization if the α cluster overlaps
with the core nucleus. The intrinsic wave function of a quartet
may change its form in dependence on the c.m. position R,
from the α-like cluster state to an uncorrelated shell-model
state. The Hamiltonian operator N −1/2H N −1/2 is generally
nonlocal. For practical calculations, it is convenient to approx-
imate it by a local one,

N −1/2H N −1/2 ∼ H (QM) ≡ − h̄2

2μα

∇2
r + W (r). (7)

Here, W (r) is the effective potential which could be deter-
mined phenomenologically by fitting, e.g., the observed level
schemes of various α-cluster states, and μα is the two-body
reduced mass. The local-potential approximation is adopted
widely in the phenomenological studies of nuclear cluster
structures and heavy-ion collisions, and good agreements
to the experimental data are achieved. As a result, Eq. (5)
becomes

− h̄2

2μα

∇2
r ϕ(r) + W (r)ϕ(r) = Eϕ(r). (8)

The intrinsic wave function of the quartet φ(Q)(R, ξQ) is de-
termined by the Schrödinger equation as shown in Ref. [9]. In
free space, where the effects of the nuclear medium are absent,
the solution is the well-known α cluster. In the high-density
limit, the effective interaction between the constituents of the
quartet becomes weak because of Pauli blocking owing to
the surrounding nuclear medium. We do no t have a solution
of the wave function for the intrinsic motion here but make
a phenomenological ansatz which is a superposition of both
components, the α-cluster wave function and the product
ansatz for the uncorrelated motion of the quartet nucleons,
with coefficients depending on the c.m. position R. Explic-
itly for the finite nuclei, the intrinsic quartet wave function
φ(Q) generally consists of the shell-model component φSM

that considers the effects of the low-lying shell-model orbits
and dominates in the small |R|, and the cluster component
φClus that considers the effects of the high-lying shell-model
orbits and dominates in the large |R|. As is known from the
homogeneous nuclear matter, the intrinsic wave function of
the quartet changes abruptly its character at the Mott density
ρMott = 0.02917 fm−3 where the bound state merges with the
continuum [9]. Inspired by this picture, to determine further
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the α-cluster formation probability, we make the simplifica-
tion that

φ(Q)(R, ξQ) =
{
φSM(R, ξQ), |R| < Rcrit,

φClus(ξQ), |R| > Rcrit.
(9)

Here, Rcrit is the critical radius that separates approximately
the shell-model-dominant region from the cluster-dominant
region and is a free parameter to be determined later on.
In other words, we assume that there is an abrupt change
of the intrinsic structure of the quartet when it crosses the
critical radius; i.e., the quartet is identified with the α particle
only outside the critical radius and merges with the shell-
model state inside the critical radius. This abrupt change is a
convenient approximation corresponding to the local density
approximation frequently used in many-particle physics to
describe inhomogeneous systems. For the later convenience,
we also introduce the cluster basis {�̃r} corresponding to the
pure cluster configuration,

�̃r(ξQ, ξD, R) = A {� (D)(ξD)φClus(ξQ)δ(r − R)}, (10)

as well as the overlap integral operator Ñ and the corre-
sponding kernel Ñ (r, r′) = 〈�̃r|�̃r′ 〉. According to Eq. (9),
for |r| > Rcrit and |r′| > Rcrit, we have

�r = �̃r, N = Ñ , N (r, r′) = Ñ (r, r′). (11)

The α-cluster formation probability Pα could then be obtained
by [25]

Pα ≡
∫

dr 〈�|�̃r〉 Ñ −1 〈�̃r|�〉 (12)

=
∫

r<Rcrit

dr 〈�|�̃r〉 Ñ −1 〈�̃r|�〉

+
∫

r>Rcrit

dr 〈�|�̃r〉 Ñ −1 〈�̃r|�〉 (13)

≈
∫

r>Rcrit

dr 〈�|�̃r〉 Ñ −1 〈�̃r|�〉 (14)

=
∫

r>Rcrit

dr|ϕ(r)|2. (15)
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FIG. 1. The comparison of the WSG potential between the quar-
tet and 16O with the real parts of various optical potentials, including
the Michel potential [28] and the Kumar potential [29].

In Eq. (12), we project the parent state onto the α-clustering
subspace. The operator Ñ −1 is needed here to take care
of the nonorthonormality of the cluster basis {�̃r}. From
Eq. (13) to Eq. (14), we have dropped out the first term
that corresponds to the shell-model contribution to Pα , as the
α-cluster configuration is expected generally to be taken care
of by the high-lying shell-model configurations rather than
the low-lying ones spanned typically by single-particle orbits
within the major shell only. This is also consistent with early
studies on the shell-model approach to α decay, which show
that it is typically smaller than the cluster contribution by
about one order of magnitude. For instance, in Refs. [25,26],
it is shown for the ground state of 212Po = 208Pb + α that
the α-cluster formation probability given by the low-lying
shell-model components only [approximately given by the
first term of Eq. (13) in this work] is only about 3.7 × 10−2,
which is significantly smaller than the realistic α-cluster

FIG. 2. Plots of the density profiles for the doubly magic nuclei
16O, 40Ca, and 208Pb taken from Ref. [30] and summarized in the
Appendix. RMott denotes the benchmark value of the critical radius
determined by matching the tails of the density profiles with the Mott
density for the homogeneous nuclear matter ρMott = 0.02917 fm−3,
which is about one fifth of the nuclear saturation density.

034305-3



DONG BAI, ZHONGZHOU REN, AND GERD RÖPKE PHYSICAL REVIEW C 99, 034305 (2019)

formation probability Pα = 0.3 [corresponding to Eq. (12) in
this work] as given by the cluster-configuration shell model.
It is reasonable to assume that similar relations hold also for
20Ne and 44Ti, which are investigated in our work. Also, the
relation ϕ(r) = N −1/2 〈�r|�〉 and Eq. (11) have been used
to obtain Eq. (15). As Eq. (11) holds only outside the critical
radius under the assumption given by Eq. (9), the first term
in Eq. (13) generally cannot be reduced to the integration of
|ϕ(r)|2 inside the critical radius.

III. EXAMPLES

In Sec. II, we have worked out the theoretical formalism
for the QM approach. To apply the QM approach in realistic
studies, we have to make further decisions on how to choose
the effective potential W (r) and the critical radius Rcrit. In
this section, we would like to study various properties of α

clustering in 20Ne = α + 16O, 44Ti = α + 40Ca, and 212Po =
α + 208Pb to demonstrate the usefulness of the QM approach.
For these targets, we choose the effective potential W (r) to
be the WSG nuclear potential in addition to the Coulomb
potential and the centrifugal potential [14]

W (r) = VN (r) + VC (r) + VL(r), (16)

VN (r) = − V0

1 + exp[(r − RD)/a]
{1 + α exp[−β(r − RD)2]},

(17)

VC (r) =
{

ZαZce2

r , r � RD,
ZαZce2

2RD

[
3 − (

r
RD

)2]
, r < RD.

(18)

VL(r) = h̄2

2μαr2
L(L + 1). (19)

Explicitly, we take the following parameters for the WSG
potential in Eq. (17):

V0 = 203.3 MeV, a = 0.73 fm, α = −0.478,

β = 0.054 fm−2, RD(20Ne) = 3.25 fm,

RD(44Ti) = 4.61 fm, RD(212Po) = 6.73 fm. (20)

Compared with the original Woods-Saxon potential, which is
designed to describe the mean field on a nucleon moving in the
nucleus, the WSG potential introduces an additional Gaussian
term which describes the modification if the nucleons form an
α particle [14]. We consider it here as a phenomenological
part in analogy to the optical potential to achieve a better

FIG. 3. The α-cluster formation probability Pα vs the critical radius Rcrit for the ground-state bands of 20Ne, 44Ti, and 212Po. In Fig. 3(a), the
black solid line corresponds to the results for the L = 0 state, while the dashed lines with increasing segment lengths correspond to the results
for L = 2 − 8, respectively. The data points in Fig. 3(a) denote the AMD results on Pα taken from Ref. [32], with the L = 0 data point labeled
by the empty up triangle, the L = 2 data point labeled by the empty down triangle, the L = 4 data point labeled by the filled up triangle, the
L = 6 data point labeled by the filled down triangle, and the L = 8 data point labeled by the empty square. In Fig. 3(b), the black solid line
corresponds to the results for the L = 0 state, while the dashed lines with increasing segment lengths correspond to the results for L = 2 − 12,
respectively. The data points in panel (b) denote the AMD results on Pα taken from Ref. [33], with the L = 0 data point labeled by the empty
up triangle, the L = 2 data point labeled by the empty down triangle, the L = 4 data point labeled by the filled up triangle, the L = 6 data
point labeled by the filled down triangle, the L = 8 data point labeled by the empty square, and the L = 10 data point labeled by the empty
diamond. In panel (c), the black solid line corresponds to the results for the L = 0 state, while the dashed lines with increasing segment lengths
correspond to the results for L = 2 − 18, respectively.
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agreement with experimental data. The microscopic origin of
the WSG potential is quite complicated and is an important
question to be answered in future works. As discussed in
Ref. [9], it might be related to the complexity of the nuclear
forces of the nucleons, as well as the Pauli blocking felt
by the quartet when it penetrates the core nucleus, which is
generally a nonlocal effect exchanging the nucleons in the
core nucleus and those in the quartet. Noticeably, the use of
an additional Gaussian correction to the mean field is also
proposed in Ref. [27], which aims to describe the α decay
at the microscopic level. In the local density approximation,
such an additional term is obtained within the quartetting
wave function approach [9] and is solely depending on the
local density ρD(R). The WSG potential is also featured by its
universality; i.e., it could provide satisfactory descriptions for
the α-cluster structures in 20Ne, 44Ti, and 212Po using almost
the same parameter set with only the radius parameter RD

being modified correspondingly. It is also important to have
a physical understanding of this property.

In Fig. 1, we compare the WSG potential with the real parts
of various optical potentials between the α particle and 16O
obtained by analyzing the nuclear reaction data. It is found
that in the surface region (r > 3.5 fm), the WSG potential
matches well with the Michel potential [28] and the Kumar
potential [29], which provides extra support for the validity of
the WSG potential.

A second input is the critical radius Rcrit, which is con-
sidered here as an empirical parameter. It is varied around
the benchmark value determined by matching the tail of
the core-nucleus density profile with the Mott density for
the homogeneous nuclear matter ρMott = 0.02917 fm−3. To
determine the benchmark value of Rcrit, we take the density
profiles for the doubly magic nuclei 16O, 40Ca, and 208Pb from
Ref. [30], which are also summarized in the Appendix. In
Fig. 2, we plot the density profiles for these core nuclei, where
the benchmark values of the critical radii determined by the
Mott density of the homogeneous matter are denoted by RMott.
Explicitly, we have RMott = 3.34 fm for 16O, RMott = 4.50 fm
for 40Ca, and RMott = 7.74 fm for 208Pb.

To solve the Schrödinger equation for the c.m. motion of
the quartet ϕ(r), using the effective potential W (r) given by
Eq. (16), we have to obey the Pauli principle inside the core
nucleus. In principle, we can introduce an effective Pauli re-
pulsive potential as in the quartetting wave function approach,
which, when combined with the nuclear potential, could give
a nice potential pocket at the nuclear surface. Here, we adopt
another method by using the Wildermuth condition [31] to
impose additional requirements on the node number in the
physical wave function. For 20Ne, it is required that the
physical quartet wave functions satisfy G ≡ 2n + L = 8, with
n being the number of nodes in the radial wave function and
L being the orbital angular momentum. For 44Ti and 212Po,
we have G = 12 and G = 18, respectively. Such an ansatz has
been adopted by various studies and is able to give reliable
results [13,14].

Given the effective potential W (r), the level scheme and
the c.m. wave functions of the quartet structure could be
obtained by solving the Schrödinger equation, Eq. (8), nu-
merically. Rigorously speaking, the α-cluster states above

TABLE I. The QM results for 20Ne on the energy spectrum, the
reduced quadrupole transition strength, the rms intercluster separa-
tion, and the α-cluster formation probability, along with the exper-
imental values and AMD results for comparison. The experimental
values of the energy spectrum and electromagnetic transitions are
taken from Refs. [37,38]. The AMD values of the α-cluster formation
probabilities are taken from Ref. [32].

Jπ Eexp Eth B(E2↓)exp B(E2↓)th Ri Pα (AMD) Pα (QM)
[MeV] [MeV] [W.u.] [W.u.] [fm]

0+ 0.000 1.196 4.14 0.70 0.61
2+ 1.634 2.320 20.3 ± 1.0 18.3 4.13 0.68 0.60
4+ 4.248 4.529 22.0 ± 2.0 23.7 4.04 0.54 0.55
6+ 8.776 7.706 20.0 ± 3.0 19.3 3.83 0.34 0.42
8+ 11.951 11.764 9.03 ± 1.3 9.9 3.50 0.28 0.18

the disintegration thresholds are Gamow resonances [10,11]
(see also Ref. [6] for a pedagogic introduction), and the
quasibound-state approximation is adopted in the calculation
of various structural properties, such as the energy spectrum,
the α-cluster formation probability, etc. To get further in-
formation on the α-cluster formation probability, the critical
radius Rcrit which is considered as an empirical parameter
has to be fixed. In the above, we have decided the Mott
radius for 20Ne, 44Ti, and 212Po as the benchmark value
of the critical radius. Here, we propose to use some mod-
ified values for Rcrit in the real calculations. Suppose fL(r)
is the radial component of the c.m. quartet wave function
ϕL(r) = fL(r)/rYLM (ϑ, φ) with the angular momentum L that
is normalized by

∫
dr| fL(r)|2 = 1. The α-cluster formation

probability could be obtained by Pα (Rcrit ) = ∫ ∞
Rcrit

dr| fL(r)|2.
In Fig. 3, we consider the relation between the α-cluster
formation probability Pα and the critical radius Rcrit for the
ground and excited states of 20Ne, 44Ti, and 212Po, where
the data points correspond to the antisymmetrized molecular
dynamics (AMD) results for 20Ne and 44Ti [32,33]. The
AMD approach is a microscopic framework for nuclear clus-
ter physics, which treats the dynamics of nucleons without
making any presumption on the existence of cluster struc-
tures [34–36]. By adapting to the AMD results, the critical
radius for 20Ne and 44Ti are determined to be Rcrit = 1.2RMott.
The deviation from the Mott radius of the homogeneous

TABLE II. The same as Table I, except that the target nucleus is
44Ti. The experimental data are taken from Refs. [13,37]. The AMD
result is taken from Ref. [33].

Jπ Eexp Eth B(E2↓)exp B(E2↓)th Ri Pα (AMD) Pα (QM)
[MeV] [MeV] [W.u.] [W.u.] [fm]

0+ 0.000 0.7673 4.65 0.40 0.36
2+ 1.083 1.349 13.0 ± 4.0 13.2 4.63 0.36 0.35
4+ 2.454 2.432 30.0 ± 6.0 17.7 4.58 0.33 0.31
6+ 4.015 3.874 17.0 ± 3.0 16.9 4.48 0.25 0.25
8+ 6.509 5.526 >1.5 13.8 4.36 0.21 0.16
10+ 7.671 7.178 15.0 ± 3.0 9.3 4.21 0.06 0.072
12+ 8.039 8.528 <6.5 4.5 4.07 0.05 0.016
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TABLE III. The same as Table I, except that the target nucleus is
212Po. The experimental values are taken from Refs. [39,40].

Jπ Eexp Eth B(E2↓)exp B(E2↓)th Ri Pα (QM)
[MeV] [MeV] [W.u.] [W.u.] [fm]

0+ 0.000 −0.072 5.76 0.16
2+ 0.727 0.111 4.4 5.75 0.16
4+ 1.132 0.451 3.9 ± 1.1 6.1 5.71 0.14
6+ 1.355 0.906 2.3 ± 0.1 6.3 5.67 0.12
8+ 1.476 1.439 2.2 ± 0.6 5.9 5.61 0.09
10+ 1.834 2.006 5.2 5.54 0.06
12+ 2.702 2.550 4.4 5.57 0.03
14+ 2.885 2.996 3.4 5.41 0.01
16+ 3.232 2.3 5.38 0.004
18+ 2.921 3.089 5.39 0.0006

nuclear matter is not unexpected as their mass numbers are
relatively small and the finite-size effects may be large. For
212Po, on the other hand, we take Rcrit = RMott, as its mass
number is quite large, which makes its physical properties
be closer to those of the homogeneous nuclear matter. The
numerical results of the α-cluster formation probabilities for
the ground and excited states with the spin-parity Jπ could

be found in Tables I, II, and III. The numerical results are
consistent with the AMD results for 20Ne and 44Ti, as well as
previous estimations on the ground-state α-cluster formation
probability of 212Po [16].

Figures 4, 5, and 6 show explicitly the radial component
fL(r) of the c.m. wave function ϕ(r) for the ground and
excited states of 20Ne, 44Ti, and 212Po, and highlight, in
particular, the region where the intrinsic α-cluster state is
formed. The Wildermuth condition could be checked explic-
itly by counting the number of the nodes in these radial wave
functions for different orbital angular momenta. For instance,
the radial wave function for the ground state of 20Ne in
Fig. 4(a) has four nodes just as required by the Wildermuth
condition. These wave functions describe the c.m. motion of
the quartet, and should be distinguished from the c.m. wave
function in the traditional cluster model and the α-cluster
formation amplitude in the cluster-configuration shell model.
The QM approach shows the inner oscillation of the radial
wave function, which could be of interest for studying the
electromagnetic transitions and nuclear radii.

Having the c.m. component of the quartet wave func-
tion, we can also calculate the reduced quadrupole transition
strength B(E2↓) and the rms intercluster separation for the

FIG. 4. The radial components of the quartet wave functions for the ground-state band of 20Ne. The critical radius is taken to be Rcrit =
1.2RMott.
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FIG. 5. The same as Fig. 4, except that the target nucleus is 44Ti.

ground and excited states of 20Ne, 44Ti, and 212Po. The nu-
merical results could also be found in Tables I, II, and III.
The reduced quadrupole transition strength B(E2↓) (in the
the Weisskopf unit 1 W.u. = 0.746

4π
A4/3e2 fm4 with A being the

mass number of the parent nucleus) is obtained by [13,14]

B(E2↓) = 15β2
2

8π

L(L−1)

(2L+1)(2L−1)

∣∣∣∣∫ ∞

0
dr r2 fL−2(r)∗ fL(r)

∣∣∣∣2

,

(21)

β2 = e
ZcA2

α + ZαA2
c

(Aα + Ac)2
. (22)

Here, Aα , Zα , Ac, and Zc are the mass numbers and the charge
numbers for the α cluster and the core nucleus, respectively.
The numerical values of B(E2↓) for the WSG potential
have been reported in Ref. [14] and are reproduced here for
completeness. The root-mean-square (rms) intercluster sep-
aration Ri (in the unit of fm) is obtained by Ri =√∫ ∞

0 dr r2| fL(r)|2 . It is found that the QM results agree well
with the experimental values. These numerical results, along
with the results of the energy spectrum and the α-cluster
formation probability, provide evidence for the usefulness of
the QM approach.
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FIG. 6. The same as Fig. 4, except that target nucleus is 212Po and the critical radius is Rcrit = 1.2RMott.
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Furthermore, we also investigate the relation between the
α-core overlap and the α-cluster formation probability. In a
recent work [21], two of the authors (D.B. and Z.R.) introduce
a dimensionless parameter D = Ri/(Rc + Rα ) to quantify the
degree of the α-core overlap, where Ri is the rms intercluster
separation introduced above, and Rc and Rα denote the size
of the core nucleus and the α particle and could be chosen
to be their rms point radii. With this parameter, a large
(small) α-core overlap would correspond to a small (large)
D value. It is found that there could be approximately a
positive-correlated linear relation between Pα and D in the
vicinity of the touching point for the α cluster and the core
nucleus. A similar analysis is carried out for the ground-
state bands of 20Ne, 44Ti, and 212Po within the framework
of the QM approach. The results are summarized in Fig. 7,
from which the linear relation between Pα and D could be
seen explicitly and could be viewed as another support to
Ref. [21].

FIG. 7. The α-cluster formation probability vs the α-core overlap
measured by the parameter D for 20Ne, 44Ti, and 212Po.

IV. CONCLUSIONS

In this work, we propose the QM approach as a model
to study α clustering. It combines various features of both
the binary cluster model and the quartetting wave function
approach, and aims to provides a unified description of various
properties of α clustering, including the energy spectrum,
electromagnetic transition, nuclear radius, α-cluster formation
probability, etc. In the QM approach, it is assumed that the
intrinsic wave function of the quartet becomes the standard
α particle when the intercluster separation is larger than
the critical radius and merges with the shell-model state of
the core nucleus when the intercluster separation is smaller
than the critical radius. Then, within the local potential ap-
proximation, the relative motion between the quartet and the
core nucleus could be solved explicitly. To demonstrate the
usefulness of the QM approach, we study the α clustering in
nuclei where an α particle moves on top of a double-magic
core nucleus, in particular 20Ne, 44Ti, and 212Po. The effective
nuclear potential is chosen to be the WSG potential proposed
recently in Ref. [14], and the effects of the Pauli principle
on the relative motion of the quartet and the core nucleus
are handled by the Wildermuth condition. The relation to the
microscopic quartetting wave function model [9] may be the
subject of future investigations. With the WSG parameters
and the critical radius chosen properly, the QM approach is
shown to be able to give theoretical results that agree well
with the experimental data and the previous theoretical results
given by AMD simulations. Particularly, we give explicitly the
theoretical predictions of the α-cluster formation probabilities
in the excited states of the 212Po ground-state band, which
could be a useful reference for future studies. Furthermore, we
also verify the linear relation between the α-cluster formation
probability and the α-core overlap measure by the parameter
D proposed recently in Ref. [21] within the framework of the
QM approach. It is well known that α clustering could also
manifest itself in more exotic ways like α-condensate states
in 12C and other heavier self-conjugate nuclei [41–46], and
it is an important open direction to extend the QM approach
to provide a reliable description of them as well. Also, the
physical properties of the recent observed α emitters 104Te and
108Xe [47,48] could also be investigated by the QM approach,
and this is left for future works. Furthermore, it is important
to make connections between the quartet model and other
theoretical models of α clustering in literature. For instance,
the region above the critical radius could also be obtained in a
natural way by using a surface pocket-like potential matched
to the Coulomb barrier as shown in Ref. [49]. In summary,
we believe that the QM approach could be a valuable com-
plement to the existing models and tools and could help
deepen our understanding of α clustering across the nuclide
chart.
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APPENDIX: DENSITY PROFILES

In this Appendix, we provide the explicit form for the
density profiles of the doubly magic nuclei 16O, 40Ca, and
208Pb, which are recompiled from results of Ref. [30] by
assuming that the matter density profile is approximately
proportional to the charge density profile:

ρ16O(r) = 0.165362(1 − 0.00749817r2)/{1 + exp[1.94932(r − 2.608)]} fm−3, (A1)

ρ40Ca(r) = 0.169854(1 − 0.0113518r2)/{1 + exp[1.70648(r − 3.766)]} fm−3, (A2)

ρ208Pb(r) = 1.75538 × 10−6 exp[−0.519031(r − 8.7)2] + 0.00214574 exp[−0.519031(r − 7.6)2]

+ 0.00508279 exp[−0.519031(r − 6.6)2] + 0.0611586 exp[−0.519031(r − 6)2]

+ 0.0650727 exp[−0.519031(r − 5.1)2] + 0.0506147 exp[−0.519031(r − 4.2)2]

+ 0.0411758 exp[−0.519031(r − 3.5)2] + 0.0677456 exp[−0.519031(r − 2.7)2]

+ 0.000150248 exp[−0.519031(r − 2.1)2] + 0.063191 exp[−0.519031(r − 1.6)2]

+ 0.0450145 exp[−0.519031(r − 0.7)2] + 0.0265771 exp[−0.519031(r − 0.1)2]

+ 0.0265771 exp[−0.519031(r + 0.1)2] + 0.0450145 exp[−0.519031(r + 0.7)2]

+ 0.063191 exp[−0.519031(r + 1.6)2] + 0.000150248 exp[−0.519031(r + 2.1)2]

+ 0.0677456 exp[−0.519031(r + 2.7)2] + 0.0411758 exp[−0.519031(r + 3.5)2]

+ 0.0506147 exp[−0.519031(r + 4.2)2] + 0.0650727 exp[−0.519031(r + 5.1)2]

+ 0.0611586 exp[−0.519031(r + 6)2] + 0.00508279 exp[−0.519031(r + 6.6)2]

+ 0.00214574 exp[−0.519031(r + 7.6)2] + 1.75538 × 10−6 exp[−0.519031(r + 8.7)2]. (A3)
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