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Analysis of nuclear structure in the nuclear chart and improvement to the gross theory of β decay
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The gross theory, a global method for the calculation of nuclear β decay, is improved using single-particle
treatment. We analyzed the β-decay channel for the entire region of nuclides and found that the allowed transition
is suppressed systematically in the neighborhood of heavier doubly magic nuclei. This is mainly due to the
shift of neutron and proton single-particle levels in one major shell, which leads to a change in the spin and
parity between parent and daughter nuclei. Under this consideration, the nuclear matrix elements for the allowed
transition in the gross theory are suppressed in the above condition. In the vicinity of the doubly magic numbers
of neutron-rich nuclides, such as nuclei with Z = 50 and 82, the calculated half-lives are longer than those
reported in previous work, where only parity mismatch was considered. In superheavy neutron-rich nuclei with
N = 184, the half-lives are predicted to be longer due to the same mechanism.
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I. INTRODUCTION

β decay is attributed to weak interaction. β decay in
neutron-rich nuclei is one of the key processes in r-process
nucleosynthesis and nuclear reactors. Regarding r-process
nucleosynthesis, a neutron star merger comparable to a su-
pernova explosion has recently been discussed as a candidate
site. At such sites, the r-process could reach a heavier and
neutron-rich nuclear mass region that includes superheavy
nuclei.

To theoretically estimate the β-decay rate in such a wide
nuclear mass region, some β-decay models have been pre-
sented. The gross theory is a method for calculating the β-
decay rate for such purposes. It is based on the sum rule of the
β-decay strength function and treats the transitions to all final
nuclear levels in a statistical manner. It has been successful
in describing β decay for the entire range of nuclear masses
[1–8]. Recently, we have developed a model based on the
parity exchange of single-particle levels of the ground state
[9] and systematically improved the calculated half-lives near
heavier neutron-rich doubly magic nuclei, including neutron-
rich silver-tin isotopes, for which Lorusso et al. [10] reported
discrepancies in half-lives obtained from experiments and the
previous gross theory. The essence of the improvement is the
suppression of the allowed transition under parity mismatch in
the ground-to-ground states. This improvement would extract
the main part of hindrance of the allowed transition; however,
this treatment was insufficient. In this paper, we treat the
suppression of the allowed transition under the full condition
of forbidden transitions by considering the spin and parity of
the ground state of nuclei.
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We first surveyed all transitions, including excited states,
using a Woods-Saxon-type single-particle potential and esti-
mated the nuclear mass region in which there is no allowed
transition in the ground states and low excited states. We
periodically found nuclei with no allowed transitions in the
chart. We then improved the gross theory by introducing a full
spin-parity condition; in previous work, only parity mismatch
was adopted. In Sec. II, we describe the β decay and the
method of the gross theory. In Sec. III, we present the results
of a survey of nuclei with no allowed transitions based on
the single-particle level. The results of β-decay half-lives are
given in Sec. IV. A summary is presented in Sec. V.

II. β DECAY AND GROSS THEORY

The decay constant of β decay is expressed as the sum of
all transition modes as

λ = λF + λGT + λ1st . . . , (1)

where λF and λGT are the allowed transitions and λ1st is
the first-forbidden transition. In this paper, we regard the
forbidden rank as �. The decay constant can be written as

λ� = m5
ec4

2π4h̄7

(
mec

h̄

)2�

g2
∫ 0

−Qβ

|M�|2 f�(−E )dE , (2)

where g is the coupling constant, written as

g =
{

gV (V-type)

gA (A-type),
(3)

and gA/gV = 1.25. E is the transition energy measured from
the parent state. The integral is performed from −Qβ to 0,
with the β-decay Q value, Qβ . f�(−E ) is the integrated Fermi
function, which represents the distortion of the wave function
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FIG. 1. Schematic view of the one-particle strength function of
the allowed transition. The yellow solid line indicates the one-
particle strength function of the Fermi transition, DF(E , ε), and the
purple dashed line indicates that of the Gamow-Teller transition,
DGT(E , ε). The strength function of the Fermi transition has a peak
at the isobaric analog state; the peak for the Gamow-Teller transition
shifts to higher energy and is a few MeV above the energy of the
isobaric analog state.

due to the Coulomb force. To obtain the decay constant, we
need the integrated Fermi function and the nuclear matrix
elements. The former is rather easy to estimate, whereas the
latter generally requires more complicated calculation due to
the many-body treatment and complexity of the nuclear force.
The sum rule of all the intensities of the β decay must be
guaranteed for each nucleus. Considering this property for all
nuclei, we can utilize the sum rule of the β decay. The gross
theory is one of the ways to estimate the half-lives of β decay
from this viewpoint.

The gross theory of β decay was originally devised by
Takahashi and Yamada and has since been revised by other
authors [1–8]. The squared nuclear matrix element in the gross
theory is written as

|M�(E )|2 =
∫ εmax

εmin

D�(E , ε)W (E , ε)
dn1

dε
dε, (4)

where ε is the one-particle energy of the decaying nucleons.
D�(E , ε) is the one-particle strength function, which satisfies
the sum rule and the energy-weighted sum rules of β-decay
intensity as one nucleon. W (E , ε) is a weighting function
that reflects the Pauli exclusion principle. dn1/dε is the one-
particle energy distribution of the decaying nucleons.

Figure 1 shows a schematic view of the allowed strength
function. For the Fermi transition, the strength function,
DF(E , ε), forms a sharp peak at the energy of the isobaric
analog state (IAS) and has a long-tailed distribution over all
E . For the Gamow-Teller transition, the strength function,
DGT(E , ε), has a peak at a few MeV above the energy of
IAS and a broad-tailed distribution. The one-particle strength
functions are chosen as a simple functional form of Z , N ,
and A. The form is considered through experimental (p, n)
reactions.

Figure 2 shows schematic diagrams of the nuclear matrix
element of the β− decay. The left figure shows the decay
transition between levels in the general form. Each transition

DΩ(E, ε)

Neutron Proton

W (E, ε)

dn1

dε

Qβ

εmax

εmin

Gross theory General form 

continuum (c)

continuum (c)

ground (g)

ground (g)

ProtonNeutron

FIG. 2. Schematic diagram of the nuclear matrix element of β−

decay. Left: general form of β−-decay transition. Right: β−-decay
transition in the gross theory. Arrows indicate selected transition
channels, which give the nuclear matrix elements.

gives the nuclear matrix elements of β− decay, shown as
arrows. When the energy level of a neutron is higher than
that of a proton, the neutron decays into a proton. The right
figure shows the nuclear levels in the gross theory. Discrete
levels other than the Fermi level are replaced by continuum
levels (filled region). Consequently, the discrete levels have
two cases, namely the Fermi level of neutron states (parent)
and that of proton states (daughter), in the gross theory. The
continuum levels can be expressed as the level density. In
the gross theory, the level density is obtained from the Fermi
gas model. The one-particle strength function is also plotted
(curved line), which is the same as that shown in Fig. 1.

A nuclear matrix element can be divided into four compo-
nents (four arrows in Fig. 2):

|M�(E )|2 = a1|M�g→g(E )|2 + a2|M�g→c(E )|2

+ a3|M�c→g(E )|2 + a4|M�c→c(E )|2. (5)

Here, g and c stand for the ground-state and the continuum
levels, respectively. The coefficients a1–4 are parameters and
generally unity. The values may change for transition types
and also nuclear states. We neglect the incoherent components
[11].

In our previous work, we introduced an allowed-transition
hindrance into the nuclear matrix elements by using the parity
mismatch of the ground-to-ground (g-g) transition estimated
from the Wood-Saxon-type single-particle potential [9]. In
the treatment, the matrix elements are suppressed without
the continuum-to-continuum (c-c) type of the matrix element
when parity mismatch occurs in the transition of g-g states,
which is regarded as a forbidden transition. This treatment
systematically improved the calculated half-lives near heavier
neutron-rich doubly magic nuclei, especially the half-lives
of neutron-rich silver-tin isotopes beyond N = 82, for which
Lorusso et al. [10] reported discrepancies in half-lives ob-
tained from experiments and the previous gross theory.

Parity mismatch is one of the principal conditions for
hindrance to the allowed transition; however, this is insuffi-
cient because the change of spin that occurs in the transition
is not considered. In this study, we treat the suppression
of each transition type, such as the allowed transition (e.g.,
first-forbidden transition), with the spin and parity condition
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instead of parity mismatch. We also consider the low excited
levels in addition to the ground-state level.

III. SINGLE-PARTICLE LEVEL

The transition types of β decay depend on the spin par-
ity between parent and daughter nuclei. To systematically
estimate them in the entire nuclear mass region, we adopt a
modified Woods-Saxon-type single-particle potential [12].

Figure 3 shows the decay scheme of 208Tl127 in single-
particle levels as an example. In pure single-particle levels, the
nucleus 208Tl127 has five decay channels. The single-neutron
level of the ground state is 2g9/2 with even parity, and the
single-proton level of the ground state is 3s1/2 with even
parity. Thus, the differences of spin and parity are �J = 4 and
�π = +, respectively, and the corresponding channel of the
g-g state is the fourth-forbidden transition. Furthermore, there
are four first-forbidden transitions. In our previous work, we
only considered the parity change, and thus we did not treat
this nucleus as having forbidden transitions.

By using the single-particle potential, we surveyed the
distribution of β decay modes in the nuclear chart.

Figure 4 shows the β-decay modes determined by the
change of spin and parity of the g-g states for spherical or
small deformed nuclei in the entire nuclear mass region.
It can be seen that the allowed transition appears in the
region up to Z ≈ 40 and becomes scarce in the region be-
yond Z ≈ 50 near stable nuclei. If the proton number of the
nuclei is increased to Z ≈ 20 or more, stable nuclei must
have N > Z . Consequently, heavier stable nuclei, such as
132Sn and 208Pb, may have different major shells between
neutrons and protons. In the vicinity of 132Sn, which has Z =
50 and N = 82, the β-decay mode below Z = 50 changes
from the second-forbidden transition (+) to the first-forbidden
transition (negative parity change, −) when the number of
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FIG. 3. Decay scheme of 208Tl127 in single-particle levels. The
thin purple line represents even (positive) parity, and the thin green
line represents odd (negative) parity. The black arrows indicate all
transition channels for β decay. Single-particle levels were estimated
from Ref. [12].

neutrons exceeds N = 82 in the nuclei. In the vicinity of
208Pb, which has Z = 82 and N = 126, the β-decay mode
below Z = 82 changes from the first-forbidden transition (−)
to the fourth-forbidden transition (+) when the number of
neutrons exceeds N = 126 in the nuclei. In this way, the heavy
and superheavy nuclei tend to lack the allowed transition due
to a shift in the major shells between neutrons and protons.

This estimation can be applied for spherical or small
deformed nuclei. Deformed nuclei have more levels due to
their more complicated configurations. Therefore, we limit
the analysis to nuclei with a small deformation parameter of
α2 = 0.05, as done in Ref. [9].

When we estimate the total half-life of β− decay, the con-
tribution from the excited states of a proton should be consid-
ered because the decay constant is expressed by integrals over
energies ranging from −Qβ to 0, as in Eq. (2). For 208Tl127,
there are no allowed transitions in the five decay channels that
include excited states, as shown in Fig. 3. Figure 5 shows
nuclei with no allowed transitions of β− decay even in the
excited states, as was the case for 208Tl127. In the figure, nuclei
in which the allowed transition is suppressed are located in
regions of almost doubly magic nuclei: (1) the northeast side
from 48Ca, (2) along N = 50 between Z ≈ 32 and 40, (3) the
northeast side from 132Sn, (4) the south side from 208Pb, (5)
along N = 184 between Z ≈ 100 and 118, (6) along N = 228
between Z ≈ 114 and 120, and (7) along N = 308.

Among these regions, there are typical doubly magic nu-
clei, such as 132Sn in region (4), 208Pb in (5), and 298Fl in
(6). Figure 6 shows these single-particle levels. For 132Sn, the
neutron single-particle levels above N = 82 have odd parity,
and most of the proton levels between 82 and 50 have even
parity. Consequently, the decay channels of nuclei on the
northeast side from 132Sn82 are almost nonallowed transitions
because there is a parity mismatch. For 208Pb126 and 114Fl184,
each Fermi surface of a neutron and that of a proton for these
nuclei are relatively shifted in one major shell. This is the
case for the shift of one major shell between 82 and 126 and
between 114 and 184. Energy differences between the Fermi
surface of a neutron and that of a proton are small due to this
shift. Therefore, these nuclei have no allowed transitions.

For nuclei in the neutron-rich region in the chart, the
spacing of the Fermi surfaces between neutrons and protons
is larger. Therefore, there are many energy levels between
Q values, including levels in which allowed transitions take
place. Consequently, nuclei with nonallowed transitions are
located near the β-stable region, not far from the β-stability
line. If we extend the survey to a much heavier region, we
find some regions of nonallowed transitions located at N ≈
228 and 308. These neutron numbers were estimated to be
closed shells [11].

Returning to β decay, we consider the above properties of
single-particle levels to calculate the half-lives in the gross
theory. Instead of using parity mismatch, as done in our pre-
vious work [9], we adopt the condition of the change of spin
and parity in the g-g transition between a neutron and a proton.
As the treatment of higher-rank-forbidden transitions is rather
complicated, we simply divide the cases into two types. If the
spin and parity of the g-g transition are matched to the allowed
transition, the calculation is the same as that in the original
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FIG. 4. β-decay mode in the g-g states for spherical or small deformed nuclei. The spin and parity of the ground state were estimated from
the modified Woods-Saxon potential [12]. Filled squares (black): β-stable or long-lived nuclides (experiment). Open squares (black): β-stable
nuclides according to the Koura-Tachibana-Uno-Yamada (KTUY) mass model [13]. Filled squares (gray): nuclides predicted to exist by the
KTUY mass model.

gross theory. If the spin and parity of the g-g transition are
matched to each forbidden transition, the allowed transition is

suppressed for the g-g, g-c, and c-g components of the nuclear
matrix element.
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circles) those for which the g-g transition is odd-forbidden and (filled circles) those for which the g-g transition is even-forbidden. Purple open
squares are the spherical nuclei of the KTUY mass model. Other symbols are the same as those in Fig. 4.
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the modified Wood-Saxon potential [12].

If the spin and parity of the g-g transition are matched to the
first-forbidden transition, the intensity of the allowed transi-
tion must be suppressed. The suppression can be related to the
coefficients a1−4 in Eq. (5). In this study, we simply treat the
suppression by adopting a1,2,3 = 0 and a4 = 1 in Eq. (5) for
the allowed transition; otherwise, a1−4 = 1. The c-c transition
may include various states that match the allowed transition
even though the g-g transition is the forbidden matching. The
estimation of the ratio for each nucleus is more complicated.
Therefore, we simply use a4 = 1 only for the c-c component.
For the case of the second-forbidden transition, the coeffi-
cients of both the allowed and first-forbidden transitions are
treated as above. For the case of the high-rank-forbidden

transition, all the lower rank transitions, including the allowed
transition, are suppressed in the same manner.

In the calculation of the β decay of the gross theory in this
work, we only consider the change of the ground-state spin
and parity. The contribution from excited states is currently
not considered in the model. As shown in Fig. 5, nuclei
without the allowed transition in excited states are located
near the β-stable nuclei in the neutron-rich region marked
as (1)–(7) in Fig. 5. These regions almost coincide with
the forbidden regions estimated from the ground-state spin
and parity, as shown in Fig. 4. Therefore, the improvement
reported in this paper is considered to be reliable for these
nuclei. Some results and discussions are given below.
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TABLE I. Properties of nuclear structure for β-decay study of selected nuclei. “Single-particle orbitals” (third and fourth columns) show
single-proton and -neutron orbitals at the Fermi surface estimated from the modified Woods-Saxon potential [12]. “Number of transition
modes” shows the number of transitions available for each transition from excited levels between the Fermi surfaces of neutrons and
protons. “Forbidden” includes all of the forbidden transitions (i.e., the number of forbidden transitions). The ratios of calculated half-lives
to experimental ones are also listed.

(Z, N) AEl Single-particle orbital Number of transitions Tth/Texp

Proton Neutron Allowed Forbidden This work Previous

(51,80) 131Sb 1g7/2(+) 2d3/2(+) 1 4 0.26 0.04
(51,81) 132Sb 1g7/2(+) 2d3/2(+) 1 6 0.14 0.05
(51,82) 133Sb 1g7/2(+) 2d3/2(+) 1 6 0.84 0.14
(51,83) 134Sb 1g7/2(+) 2 f7/2(−) 1 10 0.60 0.60
(51,84) 135Sb 1g7/2(+) 2 f7/2(−) 1 10 0.34 0.34
(51,85) 136Sb 1g7/2(+) 2 f7/2(−) 2 11 0.28 0.28
(81,130) 211Tl 3s1/2(+) 2g9/2(+) 0 6 0.33 0.06
(81,131) 212Tl 3s1/2(+) 2g9/2(+) 0 6 0.05 0.02
(81,132) 213Tl 3s1/2(+) 2g9/2(+) 0 7 0.29 0.06

IV. HALF-LIFE OF β DECAY

The calculated half-lives of selected isotopes are shown in
Fig. 7. For neutron-rich antimony isotopes (Z = 51), the half-
lives calculated using the gross theory in our previous work
are underestimated. Considering the single-neutron orbitals at
the Fermi surface, some of the β-decay transitions must be
suppressed. For the A = 130–133 isotopes of antimony, the
single-neutron orbital is estimated to be 2d3/2(+), as shown
in Table I (see also the single-particle levels for 132Sn in
Fig. 6, as the neighboring doubly magic nucleus). Because
the single-proton orbit is 1g7/2(+), the transition type in the
g-g state for these nuclei is the second-forbidden transition.
For A = 134–142, the single-neutron orbital is estimated to
be 2 f3/2(−); therefore, the transition type in the g-g state
for these nuclei is the first-forbidden transition. For the latter
case (A � 134), we improved the calculated half-lives using a
treatment based on parity mismatch [9]. For the former case
(A < 134), the calculated half-lives from our previous study

(parity mismatch) are still underestimated, whereas those in
the present study, for which the change of spin and parity is
considered, are close to the experimental values. For neutron-
rich tellurium isotopes (Z = 52), in the range of N > 137,
g-g transitions are the first-forbidden transition. However, our
previous study did not treat these nuclei as the first-forbidden
transition in the region. We fixed this mistake in the present
study. For neutron-rich thallium isotopes (Z = 81), the single-
neutron orbital is estimated to be 2g9/2(+) in the range of A =
208–217, as shown in Table I and Fig. 6 for 208Pb. This is an
example of a fourth-forbidden transition. We also considered
the contribution of excited states to half-lives. Table I shows
the number of transition modes, including those from or to
excited levels. In these nuclei, there are few or no allowed
transitions. Now we focus on neutron-rich isotone nuclei
in the neighborhood of N = 126. Figure 8 shows the decay
schemes of β decay in the single-particle level and the allowed
transition channel in N = 127.
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FIG. 8. Decay schemes of selected isotone nuclei with N = 127, 208Tl127, 202Re127, and 196Tm127 in the pure single-particle levels. A nucleus
becomes neutron rich when it passes to right figure. Solid arrow (red): g-g transition. Dashed arrow (blue): allowed transition. Forbidden
transitions are not illustrated in the figure because there are many such transitions.
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FIG. 9. Decay scheme of superheavy nuclei around 290Sg184 [11,12]. The thin purple lines represent even (positive) parity and the thin
green lines represent odd (negative) parity.

For 208Tl127, there are no allowed transitions, as mentioned.
For 202Re127, a more neutron-rich nucleus, which has 27 decay
channels, there is only one allowed transition. For 196Tm127,
which has 48 decay channels, 8 channels are allowed tran-
sitions. The doubly magic nucleus 208Pb (and neighboring
nucleus 208Tl127) has a shift of single-particle levels between
neutrons and protons in one major shell, resulting in mis-
match, as explained in the previous section. For 202Re127, this
mismatch still remains even though there is only one allowed
transition. A much more neutron-rich nucleus, 196Tm127, how-
ever, does not have a shift in one major shell due to decreasing
proton energy with Coulomb repulsion and increasing neutron
energy with isospin symmetry. Because of the disappearance
of the shift in one major shell and increasing Q value, there
are many channels that have an allowed transition.

We applied this β-decay calculation to heavy and super-
heavy nuclei. In these nuclei, the single-particle levels with
high angular momentum, l , mix, and these levels shift to lower
energy from higher energy levels, coming even close to the
Fermi energy or its neighborhood because of the ls-splitting
force, which is proportional to l . Doubly magic superheavy
nuclei, such as 298Fl184, as shown in Fig. 6, may exhibit a
shift of one major shell of single-particle levels, as discussed
in Sec III. In addition, the superheavy nuclei have levels
with high angular momentum near the Fermi surface or lower
excited states. In this case, the combination between neutron
and proton levels for the β-decay transition may have a large
difference in spin, even though they have the same parity: It is
not the allowed transition. Figure 9 shows the β-decay scheme
of a superheavy nucleus, namely 290Sg184. The neutron Fermi
level is 3d3/2(+) (184th occupied) and the proton Fermi level
is 1i13/2(+) (106th occupied). In the β-decay transition, the
g-g transition is between 3d3/2(+) of a neutron and 2 f7/2(−)
of a proton because the β− decay increases the number of
protons by one. Between these energy levels, there are no
allowed transitions.

We consider the β decay of 289Db184, which excludes one
proton from 290Sg184. A 3d3/2(+) neutron in this nucleus can
decay to the 1i13/2(+) of a proton in the g-g transition. This
is also a forbidden transition. The situation is similar to that
for 291Sg185, which excludes one neutron from 290Sg184. The
Fermi level of a neutron is 2h11/2(+) and that of a proton is
2 f7/2(−).

Figure 7 also shows the results of calculated half-lives for
dubnium (Z = 105) and seaborgium (Z = 106) isotopes. Be-
cause of the suppression of forbidden transitions in this work,
half-lives are estimated to be longer than those obtained in
previous calculations, in which spin parity was not considered
(only parity mismatch was considered).

V. SUMMARY

We surveyed the change of spin and parity between neutron
and proton single-particle levels for β decay in the entire
nuclear chart and improved the gross theory of β decay based
on this spin-parity property. We found that regions where the
forbidden transition is dominant are distributed periodically
in the nuclear chart, especially in the vicinity of 132Sn, 208Pb,
and 298Fl. By introducing the spin-parity treatment to the
gross theory, the half-lives of nuclei in which the allowed
transition is hindered in the g-g state increased, becoming
close to experimental values. We showed the case of the
neighborhood of 132Sn and 208Pb, including some predictions
for neutron-rich nuclei such as Db and Sg isotopes for which
experimental data are unavailable.
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