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We study momentum distributions and short-range correlation probabilities in A = 2 and A = 3 systems. First,
we show results with phenomenological and meson-theoretic two- and three-nucleon forces to verify consistency
with previous similar studies. We then apply most recent high-quality chiral nucleon-nucleon potentials up to
fifth order in the chiral expansion together with the leading chiral three-nucleon force. The focal points of our
investigations are the model dependence of one- and two-body momentum distributions and the impact of three-
body forces on them.
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I. INTRODUCTION

The study of high-momentum distributions in nuclei is
fundamentally important as it can reveal information about
the short-range few-nucleon dynamics when the few-nucleon
system under consideration is surrounded by the medium. In
this work, we focus on short-range correlations (SRCs) in the
deuteron and, with particular emphasis, in 3He.

The lively discussion recently stimulated by inclusive elec-
tron scattering measurements at high momentum transfer on
both light and heavy nuclei provides additional motivation
for studying SRCs. In fact, those measurements have been
analyzed with the purpose of extracting information on SRCs
[1–5]. In a suitable range of Q2 (the four-momentum squared
of the virtual photon) and of xB (the Bjorken variable), the
cross section for the A(e, e′)X process is factorized such that
cross section ratios for nuclei A1 and A2 can be related to
the respective probability of a nucleon to be involved in
(either two-body or three-body) SRCs [1]. In nuclear matter,
the amount of correlations in the wave function and the G
matrix [6] is expressed in terms of the “wound integral”. We
recall, in passing, that the wound integral is the integral of
the amplitude squared of the “defect function,” defined as the
difference between the correlated and the uncorrelated wave
functions.

Information about two-body SRCs can also be obtained
in coincidence experiments involving knock-out of a nucleon
pair with protons [7] or electrons [8–11].

The plateaus seen in the ratios of inclusive scattering cross
section [1,2] can be attributed to the dominance of SRCs
for momenta above approximately 2 fm−1. That is, when
the electron scatters from a high-momentum nucleon in the
nucleus, the scattering can be viewed as an electron-deuteron
interaction, with the other A − 2 nucleons essentially at rest.
More specifically, in an appropriate range of Q2 and xB, the

ratio

R(A1, A2) = σ (A1, Q2, xB)/A1

σ (A2, Q2, xB)/A2
(1)

is expected to display scaling behavior. Under those circum-
stances, the cross section ratio can be expressed as

σ (A1, Q2, xB)

σ (A2, Q2, xB)
= A1

A2
R(A1, A2), (2)

where R is identified with the ratio of SRC probabilities
in the two nuclei A1 and A2. Therefore, measurements of
inclusive electron scattering cross section ratios in the appro-
priate kinematical region can be related to the ratio of SRC
probabilities, and ultimately the absolute probability for a
particular nucleus, given a suitable starting point, which, quite
naturally, one would take to be the deuteron.

Deuteron momentum distributions in the context of SRCs
were studied in Ref. [12] using local and nonlocal realistic
two-nucleon (2N) interactions. Those included purely phe-
nomenological local potentials, such as the Argonne v18 [13]
(AV18) or the Nijmegen II [14] models, nonlocal meson-
theoretic models, such as the charge dependent Bonn (CD-
Bonn) potential [15], and state-of-the-art nonlocal chiral
potentials [16–18]. In the study of Ref. [12], it was con-
cluded that predictions of high-momentum distributions in
the deuteron with nonlocal meson-exchange forces or state-
of-the-art chiral forces are systematically lower than those
obtained with the local AV18 or Nijmegen II potentials.

The analysis of Ref. [12] highlights nonlocalities in the
tensor force as the source of differences in SRC among
the various predictions. At this point, it is appropriate to
recall that the presence of nonlocality in the tensor force
has been known for a long time to be a desirable feature in
nuclear structure calculations. (For a discussion on the impact
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of nonlocality in the one-pion exchange, see, for instance,
Refs. [19–21].)

This paper contains updates and major extensions of the
work of Ref. [12], presenting a simultaneous study of mo-
mentum distributions in the deuteron and in 3He. First, we
calculate the deuteron momentum distribution using the most
recent chiral 2N potentials from Ref. [22], from leading to
fifth chiral order. These interactions are better and more
consistent than the ones of Refs. [16–18] used in Ref. [12],
because the same power counting scheme and cutoff proce-
dures are used at each order. In addition, the πN low-energy
constants (LECs) are the very accurate ones determined in the
Roy-Steiner analysis of Ref. [23]. The uncertainty associated
with these LECs is sufficiently small that variations within
their errors have negligible impact on the construction of the
potentials, which are nonlocal and of soft nature. A point
worth mentioning is that these 2N forces can predict a triton
binding energy around 8.1 MeV, leaving only very small room
for three-nucleon (3N) forces.

We then proceed to consider the single-nucleon (1N) and
2N momentum distributions in 3He using the phenomeno-
logical AV18 and the meson-theoretic CDBonn potentials,
alone or augmented by 3N forces, namely the Urbana IX
(UIX) model [24] in conjunction with AV18, and the Tucson-
Melbourne (TM) [25] 3N force in conjunction with CDBonn.
This will allow us to quantify the 3N force contributions
within the framework of these older forces. To verify our
calculations, results obtained with the AV18 and AV18/UIX
potential models will be compared with the previous studies
of Refs. [26–28].

Having established a reliable baseline, we shift our focus
to the more novel aspects of this work, namely the most
recent high-precision chiral 2N potentials [22] and corre-
sponding chiral 3N force. The main motivation behind this
calculation can be explained as follows. The presence of
high-momentum components in the nuclear wave function
is an indication of SRCs. At the two-body level, SRCs
originate from the (repulsive) short-range central and tensor
forces, which, in the well-established and still popular meson-
exchange phenomenology, are described by ω- and ρ-meson
exchange, respectively. Although realistic meson-theoretic
or purely phenomenological interactions are frequently em-
ployed in contemporary calculations of nuclear structure and
reactions, this approach has some intrinsic limitations. First,
the connection between the 2N and the applied 3N force
does not rest on firm grounds. Second, no clear mechanism
exists to quantify and control the theoretical uncertainty of
a prediction. These problems can be addressed systemati-
cally in the chiral effective field theory (χEFT) approach,
which, in principle, provides a well-defined prescription to
develop nuclear forces in an internally consistent manner at
each order of a systematic perturbative expansion. In fact,
using effective degrees of freedom, namely hadrons (nucle-
ons and pions), and maintaining a link with quantum chro-
modynamics (QCD) through the symmetries of low-energy
QCD, χEFT has become a well-established and, in princi-
ple, model-independent framework to develop nuclear forces
and quantify the theoretical uncertainty at each order of the
expansion. Therefore, we find it both important and insight-

ful to perform these calculations using state-of-the-art chiral
interactions.

The paper is organized as follows: In Sec. II we set the
stage with a brief discussion on the deuteron, while we address
3He in Sec. III. In the latter section, we will first present a brief
review of the numerical techniques used to calculate the A = 3
nuclear wave functions and the 1N and 2N momentum distri-
butions. Then we will show and discuss results obtained with
the older AV18 and CDBonn potential models, augmented or
not by the UIX [24] and the TM [25] 3N forces, respectively,
as well as the chiral 2N potentials of Ref. [22], without or
with the chiral 3N force. We will also discuss the procedure
adopted to determine the two LECs entering the leading 3N
force. Our conclusions and future plans are summarized in
Sec. IV.

II. HIGH-MOMENTUM DISTRIBUTION AND
SHORT-RANGE CORRELATIONS IN THE DEUTERON

To best put this study in context, we begin with a quick
review of the 2N bound state. In particular, we present in
Fig. 1 the deuteron momentum distributions ρ(k), defined
as the Fourier transform squared of the coordinate-space
deuteron wave function. On the left side of the figure, we
show the results, with focus on high-momentum components,
obtained with the latest chiral interactions of Ref. [22] from
leading to fifth order (N4LO). On the right side of the figure,
we show for comparison the same quantities calculated as in
Ref. [12] with the older chiral potentials of Refs. [16–18].
From inspection of the figure, we can conclude that the
convergence pattern has definitely improved with the new
potentials.

We then define the probability of SRCs in the deuteron as
in Ref. [12], i.e.,

a2N (d ) = 4π

∫ ∞

kmin

ρ(k)k2 dk, (3)

where kmin is taken to be 1.4 fm−1 (276 MeV). This definition
was adopted in Ref. [1], where the choice of the lower
integration limit was suggested by the onset of scaling of the
cross section, which should signal the dominance of scattering
from a strongly correlated nucleon. In view of Eqs. (1) and
(2), the absolute per-nucleon SRC probability in a nucleus
A can be deduced if the absolute per-nucleon probability
in 3He and the deuteron are calculated or estimated. More
precisely,

a2N (A) = a2(A/3He)a2N (3He) and

a2N (3He) = a2(3He/d )a2N (d ), (4)

where a2(A1/A2) is the SRC probability for nucleus A1 relative
to nucleus A2. The probability in the deuteron was taken to
be equal to 0.041 ± 0.008 in Ref. [2]. We list in Table I the
integrated probabilities a2N (d ) defined in Eq. (3), calculated
integrating the curves of Fig. 1(a). As additional, related infor-
mation, we also show the corresponding D-state percentage.
In fact, deuteron D-state probabilities are larger with stronger
short-range central and tensor components of the nuclear force
which, for the nonlocal chiral interactions and, generally, for
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FIG. 1. (a) Momentum distributions in the deuteron predicted with the chiral potentials of Ref. [22] at LO (dotted), NLO (dash–double
dot), N2LO (dash-dot), N3LO (dash), N4LO (solid). The cutoff is fixed at � = 500 MeV. (b) Predictions taken from Ref. [12], and are obtained
using the chiral potentials of Refs. [16–18].

nonlocal interactions, are softer than for the local AV18 poten-
tial. The values in parentheses correspond to the distributions
displayed on the right of Fig. 1, i.e., obtained with the older
chiral potentials of Refs. [16–18]. As the table shows, there
are huge variations between the LO and the NLO cases, and
still large differences between NLO and N2LO. Variations
at higher orders indicate a clear convergence pattern, defi-
nitely improved by the use of the newest potentials. Finally
we notice that the deuteron integrated probabilities a2N (d )
display significant model dependence, as the corresponding
values obtained with the AV18 and the CDBonn potentials are
0.042 and 0.032, respectively. We will show below that similar
considerations apply to 3He as well.

III. HIGH-MOMENTUM DISTRIBUTION AND
SHORT-RANGE CORRELATIONS IN THE 3He NUCLEUS

A. Theoretical formalism

We briefly review the method used to solve the A = 3 quan-
tum mechanical problem, i.e., the hyperspherical harmonics
(HH) method. This method has the great advantage that we
can work both in coordinate and momentum space, with
no restriction on the choice of the nuclear potential model,

TABLE I. Probabilities of SRCs as defined in Eq. (3) and
deuteron D-state percentage for the chiral interactions considered in
panel (a) of Fig. 1. The values in parentheses, given for comparison,
are taken from Ref. [12] and correspond to the distributions shown
in panel (b) of Fig. 1. The cutoff � is equal to 500 MeV in all cases.

Model a2N (d ) PD

LO 0.046 (0.047) 0.0729 (0.0757)
NLO 0.015 (0.015) 0.0340 (0.0313)
N2LO 0.026 (0.022) 0.0449 (0.0417)
N3LO 0.024 (0.030) 0.0415 (0.0451)
N4LO 0.024 (0.026) 0.0410 (0.0414)

either local or nonlocal. The starting points are the so-called
Jacobi coordinates, which are defined in coordinate space
as [29,30]

xp = 1√
2

(r j − ri ), yp =
√

2

3

(
rk − 1

2
(ri + r j )

)
, (5)

where p represents an even permutation of i, j, k = 1, 2, 3,
with p = 1 for i, j, k = 2, 3, 1, and ri is the position of the ith
particle. The conjugate Jacobi momenta (in units of h̄ = 1) are
defined as

qp = 1√
2

(p j − pi ), kp =
√

2

3

(
pk − 1

2
(pi + p j )

)
, (6)

pi being the momentum of the ith particle. The next step is to
introduce the so-called hyperradius ρ and hypermomentum Q
as

ρ =
√

x2
p + y2

p, Q =
√

k2
p + q2

p, (7)

and the hyperangle φ(ρ/Q)
p , given by

tan φ(ρ)
p = yp

xp
, tan φ(Q)

p = kp

qp
. (8)

We note that ρ and Q do not depend on the considered
permutation, while φ(ρ)

p or φ(Q)
p do. Then, the HH functions

for the A = 3 system are given in coordinate space by

Yα,n
(

(ρ)

p

) = [
[Yl (x̂p) ⊗ YL(ŷp)]��z ⊗ [

χSi j ⊗ 1
2

]
��z

]
JJz

× [
ηTi j ⊗ 1

2

]
T Tz

Pn,l,L
(
φ(ρ)

p

)
, (9)

where 
(ρ)
p = (φ(ρ)

p , x̂p, ŷp) and

Pn,l,L
(
φ(ρ)

p

) = Nn,l,L
(

cos φ(ρ)
p

)l(
sin φ(ρ)

p

)L

× PL+1/2,l+1/2
n

(
cos 2φ(ρ)

p

)
, (10)

Nn,l,L being a normalization coefficient and
PL+1/2,l+1/2

n ( cos 2φ(ρ)
p ) a Jacobi polynomial of degree n.

In Eq. (9), Yl (x̂p) and YL(ŷp) are spherical harmonics in
the two Jacobi coordinates, coupled to the total orbital
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(a) (b) (c)

FIG. 2. The three contributions to the 3N force at N2LO. Panels
(a) and (b) correspond to the 2PE and 1PE terms, respectively, while
panel (c) corresponds to the contact contribution.

angular momentum �,�z, χSi j (ηTi j ) is the spin (isospin)
function of the pair i j, where the spins (isospins) of the
particles i and j are coupled to Si j (Ti j), which is itself
coupled to the spin (isospin) 1/2 of particle k to give the
total spin (isospin) �,�z (T, Tz). The total orbital angular
momentum � and the total spin � are coupled to the
total angular momentum J, Jz. Finally, we remark that the
grand angular momentum is defined as G = 2n + l + L,
and we have labeled with the channel index α the set of
quantum numbers [l, L,�, Si j, �, Ti j, T ] which determine
the spin-isospin-angular state. An expression similar to
Eq. (9) holds in momentum space, with appropriate changes.

Having introduced the HH functions, the A = 3 nuclear
wave function can be written as

 =
∑
α,n

uα,n(ρ)
∑

p

Yα,n
(

(ρ)

p

)
, (11)

where uα,n(ρ) is the hyperradial function to be determined.
Similarly, in momentum space we can write

 =
∑
α,n

wα,n(Q)
∑

p

Yα,n
(

(Q)

p

)
, (12)

where wα,n(Q) is the function of the hypermomentum Q, and
it is related to uα,n(ρ) via essentially a Fourier transform [29],

TABLE II. Values for the LECs c1,3,4, cD, and cE at the chiral
orders N2LO, N3LO, and N4LO. The cD and cE LECs reproduce
the A = 3 binding energies and the GT matrix element in tritium β

decay, as explained in the text. The 2PE N3LO 3N interactions are
not included, i.e., the c1,3,4 LECs in the 3N force are those of Table
II of Ref. [22]. The numbers in parentheses indicate the error arising
from the fitting procedure.

� (MeV) c1 c3 c4 cD cE

N2LO 450 −0.74 −3.61 2.44 0.935(0.215) 0.12(0.04)
500 −0.74 −3.61 2.44 0.495(0.195) −0.07(0.04)
550 −0.74 −3.61 2.44 −0.140(0.190) −0.44(0.03)

N3LO 450 −1.07 −5.32 3.56 0.675(0.205) 0.31(0.05)
500 −1.07 −5.32 3.56 −0.945(0.215) −0.68(0.04)
550 −1.07 −5.32 3.56 −1.610(0.220) −1.69(0.03)

N4LO 450 −1.10 −5.54 4.17 1.245(0.225) 0.28(0.05)
500 −1.10 −5.54 4.17 −0.670(0.230) −0.83(0.03)
550 −1.10 −5.54 4.17 −1.245(0.175) −1.91(0.02)

TABLE III. Same as Table II but including the 2PE 3N interac-
tion at N3LO and N4LO, i.e., the c1,3,4 LECs in the 3N force are
those of Table IX of Ref. [22].

� (MeV) c1 c3 c4 cD cE

N2LO 450 −0.74 −3.61 2.44 0.935(0.215) 0.12(0.04)
500 −0.74 −3.61 2.44 0.495(0.195) −0.07(0.04)
550 −0.74 −3.61 2.44 −0.140(0.190) −0.44(0.03)

N3LO 450 −1.20 −4.43 2.67 0.670(0.210) 0.41(0.05)
500 −1.20 −4.43 2.67 −0.750(0.210) −0.41(0.04)
550 −1.20 −4.43 2.67 −1.350(0.200) −1.14(0.03)

N4LO 450 −0.73 −3.38 1.69 0.560(0.220) 0.46(0.05)
500 −0.73 −3.38 1.69 −0.745(0.225) −0.15(0.04)
550 −0.73 −3.38 1.69 −1.030(0.200) −0.57(0.02)

i.e.,

wα,n(Q) = (−i)G
∫ ∞

0
dρ

ρ5

Qρ2 JG+2(Qρ)uα,n(ρ), (13)

where JG+2(Qρ) is a Bessel function. Finally, the functions
uα,n(ρ) [or wα,n(Q)] are themselves expanded on a basis of
Laguerre polynomials (or their Fourier transform) as

uα,n(ρ) =
∑

k

cα,n,k
(5)Lk (γ ρ) e−γ ρ/2, (14)

where cα,n,k are unknown coefficients and γ is a nonlinear pa-
rameter, chosen to be 4 fm−1 for the local AV18 or AV18/UIX
potentials, and 7 fm−1 for the other nonlocal potentials. These
values are the ones used in Refs. [29,30]. Equations (11)–(14)
can be cast in a compact form as

 =
∑

μ

cμφμ, (15)

where φμ are given either in coordinate or momentum space.
What is essential is that the cμ coefficients of the expansion
are the same in both cases. These coefficients are determined
using the Rayleigh-Ritz variational principle, and the problem
of determining cμ and the energy E is reduced to a generalized
eigenvalue problem,∑

μ′
cμ′ 〈φμ|H − E |φμ′ 〉 = 0. (16)

The advantage of having φμ expressed either in coordinate or
in momentum space is clear: the matrix elements of local oper-
ators will be calculated in coordinate space, those of nonlocal
operators in momentum space. Furthermore, the 1N and 2N
momentum distributions can be written straightforwardly in
momentum space, without the need to perform any additional
Fourier transform, unlike what was done in Refs. [26–28]. We
will define and evaluate these momentum distributions in the
next sections.

We conclude this section by discussing the construction
of the 3N force in the chiral approach. As is well known,
the chiral 3N force appears for the first time at N2LO. It
consists of three contributions: the two-pion exchange (2PE)
term, the one-pion exchange (1PE) diagram, and a short-range
contact term. These contributions are shown in Fig. 2. All
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FIG. 3. The 1N momentum distributions np/n(k), calculated using the AV18 and CDBonn 2N interaction, and AV18/UIX and CDBonn/TM
2N and 3N interaction models.

three diagrams are multiplied by LECs. In particular, the 2PE
term depends on the LECs c1,3,4, which are already present in
the 2PE part of the 2N force, and therefore they are already
fixed. Instead, the 1PE and the contact terms are multiplied
by two new LECs, cD and cE , respectively. We determine
them within a well established procedure (see Ref. [31] and
references therein), repeated in Ref. [32] for the new chiral
potentials of Ref. [22]. The LECs cD and cE are essentially
constrained to reproduce the A = 3 binding energies and the
Gamow-Teller (GT) matrix element of tritium β decay. For
completeness, the values of cD and cE from Tables I and II of

Ref. [32] are reported again here in Tables II and III, which
include, in addition, the values obtained with � = 550 MeV.
In the first table, the cD and cE values are obtained using the
3N force up to N2LO. The complete 3N force beyond N2LO
is very complex and often neglected in nuclear structure
studies. However, the 2PE component of the 3N force can be
calculated fully up to N4LO. In Ref. [33] it was shown that the
2PE 3N force has essentially the same analytical structure at
N2LO, N3LO, and N4LO. Thus, one can add the three orders
of this 3N force component and parametrize the result in terms
of effective LECs. These effective LECs are taken from Table
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FIG. 4. The neutron momentum distributions nn(k), calculated using only 2N (a) and 2N+3N (b) chiral interactions, with � = 500 MeV.
The different chiral orders are labeled as in the text. In particular, in panel (b), we have indicated with “I” and “II” the results obtained using
the LECs of Tables II and III, respectively.
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FIG. 5. Same as Fig. 4 but for the proton momentum distributions np(k). Notice that in panel (b) the N3LO and N4LO results can barely
be distinguished.

IX of Ref. [22] and shown here in Table III. By using these
c1,3,4 in the mathematical expression of the N2LO 3N force,
one can include the 2PE parts of the 3N force up to N3LO

and N4LO in a simple way. Obviously, the LECs cD and cE

are fitted again for each case and are listed in Table III. The
error arising from the fitting procedure, shown in parentheses,
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FIG. 7. Same as Fig. 6 but for the proton momentum distributions np(k).

is quite large. On the other hand, we have observed that the
impact of the 3N interaction on the momentum distributions
and SRCs is weak (see below). Thus, we find it appropriate

TABLE IV. The integrated p/n probabilities, as defined in
Eq. (19), obtained with the various phenomenological potential
models, i.e., AV18, CDBonn, AV18/UIX, and CDBonn/TM, varying
the integration lower bound kmin, given in fm−1. We report also the
values of Table II of Ref. [26], obtained with the AV18 potential
model.

Pn(kmin ) Pp(kmin )

kmin =0.0 kmin =1.5 kmin =0.0 kmin =1.5

AV18 0.997 0.068 0.997 0.041
AV18/UIX 0.997 0.077 0.998 0.048

CDBonn 0.998 0.052 0.998 0.031
CDBonn/TM 0.998 0.054 0.999 0.033

Ref. [26] 0.999 0.067 1.000 0.041

to use in our study the wave functions obtained adopting the
central values of cD and cE .

Some comments are in order concerning the chosen range
for the cutoff, �, between 450 and 550 MeV. On the one
hand, we wish to stay below the breakdown scale, which, as
discussed in Ref. [34], is expected to be around 600 MeV. On
the other hand, softer cutoffs impact the ability to describe 2N
scattering up to moderate energies (about 300 MeV in terms
of laboratory energy), which motivates our lower limit.

B. Single-nucleon momentum distributions and corresponding
integrated short-range correlations probabilities

The 1N momentum distributions for a particular nucleon
(p or n) with momentum k in 3He are defined as

np(k) = 1

2

∫
dk̂ dq †(k, q)Pp(k, q),

(17)

nn(k) =
∫

dk̂ dq †(k, q)Pn(k, q),
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TABLE V. Same as Table IV but obtained with chiral potentials, at different chiral orders, for different values of the cutoff �, 450, 500,
and 550 MeV, also with the inclusion of the 3N force (lines labeled N2LO/N2LO at N2LO, N3LO/N3LO-I and N3LO/N3LO-II at N3LO,
N4LO/N4LO-I and N4LO/N4LO-II at N4LO). The labels “I” and “II” refer to the LECs of Tables II and III, respectively.

Model/� (MeV) Pn(kmin = 0.0) Pp(kmin = 0.0) Pn(kmin = 1.5) Pp(kmin = 1.5)

450 500 550 450 500 550 450 500 550 450 500 550

LO 1.000 1.000 0.999 1.000 0.999 0.999 0.090 0.105 0.113 0.076 0.089 0.095
NLO 0.999 0.999 0.999 0.999 0.999 0.998 0.020 0.025 0.033 0.013 0.016 0.023

N2LO 0.999 0.999 0.999 0.999 0.999 0.999 0.033 0.040 0.046 0.020 0.024 0.027
N2LO/N2LO 0.999 0.999 0.999 0.999 0.999 0.999 0.033 0.040 0.046 0.020 0.024 0.027

N3LO 0.999 0.999 0.999 0.999 0.999 0.999 0.042 0.038 0.041 0.025 0.025 0.026
N3LO/N3LO-I 0.999 0.999 0.999 0.999 0.999 0.999 0.045 0.041 0.045 0.027 0.028 0.030
N3LO/N3LO-II 0.999 0.999 0.999 0.999 0.999 0.999 0.045 0.041 0.045 0.027 0.027 0.029

N4LO 0.999 0.999 0.999 0.999 0.999 0.999 0.041 0.039 0.043 0.024 0.025 0.026
N4LO/N4LO-I 0.999 0.999 0.999 0.999 0.999 0.999 0.043 0.043 0.048 0.026 0.028 0.030
N4LO/N4LO-II 0.999 0.999 0.999 0.999 0.999 0.999 0.043 0.042 0.046 0.026 0.027 0.028

where we have fixed the permutation to be p = 1, i.e., the par-
ticular nucleon is fixed to be particle 1, and therefore k = kp=1

and q = qp=1, in the notation of Eq. (6). Furthermore, Pp/n

is the proton/neutron projection operator acting on particle
1. With this definition, the 1N momentum distributions are
normalized as

4π

∫
k2 dk nn/p(k) = 1. (18)

We have verified that Eqs. (17) and (18) are consistent with
those of Ref. [26].

We have first calculated the 1N momentum distributions
using the AV18 [13] or CDBonn [15] phenomenological po-
tentials, with and without the 3N force (UIX [24] or TM [25]
for AV18 or CDBonn, respectively). The results are shown in
Fig. 3. From those, we conclude that 3N force contributions
are small, and only noticeable for k � 2 fm−1. In contrast,
potential-model dependence is large in the range k � 2 fm−1,
an aspect which will be a recurrent theme throughout this
paper. Furthermore, some small model dependence is present
also in the low-k region, for k � 0.5 fm−1, at the level of 1%.
Only the results at k = 0 fm−1 differ at the 3% level. This
suggests the presence of correspondingly small differences in
the asymptotic part of the wave functions. Note that, in order
to avoid an excessively cumbersome presentation, results from
Refs. [26,28], obtained using AV18 HH and AV18/UIX vari-
ational Monte Carlo (VMC) wave functions, are not shown.
However, we have verified that we are in agreement with
Refs. [26,28], with small differences only in the high-k tail of
the distributions. Comparison between our results and those
of Refs. [26–28] will be shown in the case of the back-to-back
2N momentum distribution (see below).

We then move to study the 1N momentum distributions
using chiral potentials [22]. In Figs. 4 and 5 we present the
neutron and proton 1N momentum distribution obtained with
only 2N forces at LO, NLO, N2LO, N3LO, and N4LO in
panel (a), and adding the 3N force, with LECs from Table II
(model I) or III (model II). These 1N momentum distributions
are calculated with cutoff value fixed at � = 500 MeV. The
figure shows that, for small values of k, all predictions at

NLO and higher orders are quite similar. Overall, differences
between the N3LO and N4LO curves are small enough to
suggest a reasonable convergence pattern. The 3N force con-
tributions are found again to be very small, and therefore the
differences between the predictions from model I and model
II for the 3N force are even smaller. The 1N momentum
distributions nn(k) and np(k) calculated with and without 3N
interaction, at different chiral orders and for different values
of the cutoff �, are shown in Figs. 6 and 7, respectively. By
inspection of the figures, we can see that cutoff dependence
appears comparable at all orders. Naturally, sensitivity is more
pronounced in the high-krel region, where larger values of the
cutoff produce “harder” distributions. Finally we consider the
integrated probabilities, defined as

P p/n(kmin) = 4π

∫ ∞

kmin

np/n(k) k2 dk (19)

as in Table II of Ref. [26]. The results obtained with the
2N and 2N+3N phenomenological potentials are listed in
Table IV. Those obtained using the chiral potentials are pre-
sented in Table V. In both tables, we have first calculated
P p/n(kmin = 0), in order to verify that the 1N momentum dis-
tributions are properly normalized. Note that in our integration
the upper limit of the integral is in fact 5 fm−1. Therefore, the
difference of P p/n(kmin = 0) from unity [see Eq. (18)] gives
an indication of the importance of the tail of the momentum
distribution. By inspection of the tables we can see that
P p/n(kmin = 0) � 1 within 0.2–0.3%. A comparison of the
results of Table IV and V shows again a remarkable model
dependence. The results of Table V show also a satisfactory
order-by-order convergence.

A glance at Figs. 3–7 reveals characteristic differences
between the qualitative features of the chiral predictions as
compared to the phenomenological and meson-theoretic ones.
This is due to the polynomial structure of the (short-range)
contact terms used in the construction of the chiral potentials,
combined with the exponential regulator function

f (p′, p) = exp[−(p′/�)2n − (p/�)2n]. (20)
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FIG. 8. The 2N momentum distributions nnp/pp(krel, Kc.m. = 0),
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The present results are shown as circles (full for Av18 and empty for
AV18/UIX), while the previous studies of Refs. [26,27] and Ref. [28]
are shown as thin or thick solid lines, respectively. For the np case,
all the results essentially overlap.

In the meson-theoretic potentials, the short range is described
by heavy-meson exchanges represented by Yukawa functions
of heavy-meson masses. On the other hand, the phenomeno-
logical AV18 potentials use a Woods-Saxon function to pro-
vide the short-range core. (Heavy mesons, of course, have no
place in chiral EFT.) Overall, the chiral predictions fall off
at a faster rate as compared to the phenomenological ones.
This is to be expected from the “softer” nature of the chiral
potentials.

C. Two-nucleon momentum distributions and corresponding
integrated short-range correlations probabilities

The 2N momentum distribution of the N1N2 pair, with
N1N2 = np or pp, as a function of their relative momentum
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FIG. 10. The 2N momentum distributions nnp/pp(krel, Kc.m. = 0),
calculated using the AV18, AV18/UIX, CDBonn, and CDBonn/TM
2N and 3N interaction models. The thin and thick lines are on top of
each other and can barely be distinguished.

krel, is defined as

nN1N2 (krel, Kc.m.) =
∫

dk̂rel

∫
dk̂c.m.

†(krel, Kc.m.)PN1N2

× (krel, Kc.m.), (21)

where PN1N2 is the projection operator on the N1N2 pair. Note
that we have introduced the definitions

krel = −
√

2

2
qp=1, Kc.m. = −

√
2

3
kp=1; (22)

that is, we have chosen the pair N1N2 to contain particles 2,3.
In the following, we will focus on the so-called back-to-back
(BB) 2N momentum distributions, i.e., nN1N2 (krel, Kc.m. = 0),
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c.m. = 5 fm−1 and 10 fm−1

can barely be distinguished.
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FIG. 11. The 2N momentum distributions nnp(krel ) (a) and npp(krel ) (b) as function of K+
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potential. For K+
c.m. = 1.5 fm−1 we show also the results obtained with the CDBonn 2N only potential and the AV18/UIX potential, already

presented in Fig. 9. The lines for K+
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and on the Kc.m.-integrated 2N momentum distributions, i.e.,

nN1N2 (krel ) = 4π

∫ K+
c.m.

0
K2

c.m. dKc.m.n
N1N2 (krel, Kc.m.). (23)

The upper limit of the Kc.m. integration restricts the values of
Kc.m. to a limited range, approximately K+

c.m. � 1.0–1.5 fm−1.
This is because, in the SRC model (as opposed to the mean-
field model), one considers highly correlated N1N2 pairs with
small center-of-mass momentum [26,27]. The integrations of
Eqs. (21) and (23) have been performed numerically with the
Van der Corput sequence [35] and we have verified that our
results are stable with the increasing value of Van der Corput
points of integrations. Typically, 50 000 points are enough for
converged results.

First we calculate the 2N momentum distributions using
the AV18 [13] phenomenological potential, with and without
the UIX phenomenological 3N force [24], in order to compare
with results available in the literature [26–28]. The compari-
son presented in Fig. 8 shows that we are able to reproduce
the results of previous investigations for nN1N2 (krel, Kc.m. = 0),

but we have verified a similar degree of agreement also for
nN1N2 (krel ). Furthermore, we see that the 3N force contribu-
tion is quite small, an observation which will be confirmed
throughout the paper.

We then move to the nnp/pp(krel ) 2N momentum distribu-
tion as function of K+

c.m. [see Eq. (23)]. The results for the
AV18/UIX are shown in Fig. 9, from which we can conclude
that contributions from K+

c.m. larger than approximately 5 fm−1

are not significant. We also note, in passing, that for K+
c.m. =

1.5 fm−1 the AV18 and AV18/UIX results are very close to
each other.

Next we explore the model dependence of the 2N mo-
mentum distributions, by repeating the calculations using
the CDBonn potential without or with the TM 3N force. In
Figs. 10 and 11 we show the results for the nnp/pp(krel, Kc.m. =
0) and for the nnp/pp(krel ) as function of K+

c.m., respectively.
The figures reveal that (i) the results with CDBonn/TM and
those with AV18/UIX are substantially different from each
other, especially in the high-krel tails, confirming what we
mentioned earlier while recalling the findings of Ref. [12];
(ii) the 3N force contributions are again barely appreciable

TABLE VI. The integrated np and pp SRC-probabilities, as defined in Eqs. (24)–(27), obtained with the various potential models, i.e.,
AV18, CDBonn, AV18/UIX, and CDBonn/TM. For the np case, we report in the last two lines labelled AV18-d and CDBonn-d the deuteron
results of Ref. [12]. Note that the BB probabilities carry a dimension of fm3, while the others are dimensionless.

N1N2 = np N1N2 = pp

NBB NSRC,BB NSRC(krel,min ) N NBB NSRC,BB NSRC(krel,min ) N

AV18 6.922 0.241 0.093 1.997 2.194 0.009 0.026 0.998
AV18/UIX 5.751 0.210 0.106 1.997 1.897 0.009 0.031 0.999

CDBonn 6.552 0.171 0.060 1.997 2.078 0.005 0.012 0.999
CDBonn/TM 5.931 0.157 0.063 1.998 1.924 0.005 0.014 0.998

AV18-d 0.042
CDBonn-d 0.032
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FIG. 12. The np momentum distributions nnp(krel, Kc.m. = 0), calculated using only 2N (a) and 2N+3N (b) chiral interactions, with � =
500 MeV. The different chiral orders are labeled as in the text. In the inset of panel (a) we show the small krel range (krel � 1 fm−1) on a linear
scale. In panel (b), we indicate with “I” and “II” the results obtained using the LECs of Tables II and III, respectively.

on the plot (which is on a logarithmic scale); (iii) the K+
c.m.

dependence in the CDBonn/TM case is very similar to the one
seen in the AV18/UIX case.

An important issue in the considerations of SRC is the
behavior of nnp(krel ) in nuclei as compared with the same
quantity in the deuteron [nnp

d (krel )]. This is because a highly
correlated np pair in a nucleus is expected to exhibit a behav-
ior similar to the pair in the deuteron. We proceed to calculate
the integrated SRC probabilities, defined as

NBB
N1N2

= 4π

∫ ∞

0
nN1N2 (krel, Kc.m. = 0)k2

rel dkrel, (24)

NSRC,BB
N1N2

= 4π

∫ ∞

krel,min

nN1N2 (krel, Kc.m. = 0)k2
rel dkrel,

(25)

NSRC
N1N2

(krel,min) = 4π

∫ ∞

krel,min

nN1N2 (krel )k
2
rel dkrel, (26)

NN1N2 = 4π

∫ ∞

0
nN1N2 (krel )k

2
rel dkrel

≡ NSRC
N1N2

(krel,min = 0), (27)

where we have used krel,min = 1.5 fm−1. These equations are
the same as in Ref. [26]. For convenience, we will continue to
refer to these integrated quantities as probabilities. A more
accurate description of, for instance, NBB

N1N2
would be the

number of back-to-back N1N2 pairs after integration of the
pair relative momentum.

The results for the different potential models used so
far are shown in Table VI, from which we can conclude
that the 3N force contributions are small also for the in-
tegrated quantities. However, model dependence is strong,
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FIG. 13. Same as Fig. 12 but for the pp pair.
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FIG. 14. The np momentum distributions nnp(krel, Kc.m. = 0), calculated using only 2N (solid lines) and 2N+3N (dashed lines) chiral
interactions, at different chiral order and for three values of the cutoff � = 450, 500, 550 MeV. In all panels, the lines from bottom to top
correspond to increasing values of �. The LECs of the 3N interaction are those of Table III.

TABLE VII. The integrated np SRC probabilities, as defined in Eqs. (24)–(27), obtained with chiral potentials, at different chiral orders,
for different values of the cutoff �, 450, 500 and 550 MeV, also with the inclusion of the 3N force (lines labelled N2LO/N2LO at N2LO,
N3LO/N3LO-I and N3LO/N3LO-II at N3LO, N4LO/N4LO-I and N4LO/N4LO-II at N4LO). The labels “I” and “II” refer to the LECs of
Tables II or III, respectively. Note that the BB probabilities carry a dimension of fm3, while the others are dimensionless.

Model/� (MeV) NBB NSRC,BB NSRC(krel,min ) N

450 500 550 450 500 550 450 500 550 450 500 550

LO 2.731 2.829 3.051 0.094 0.120 0.144 0.089 0.112 0.126 1.999 1.999 1.998
NLO 5.896 6.054 6.458 0.047 0.066 0.096 0.016 0.024 0.037 1.998 1.998 1.997

N2LO 5.977 6.127 6.236 0.087 0.118 0.141 0.029 0.038 0.045 1.998 1.997 1.997
N2LO/N2LO 5.844 5.831 5.827 0.086 0.114 0.135 0.030 0.040 0.050 1.998 1.998 1.998

N3LO 6.443 6.314 6.317 0.131 0.112 0.122 0.039 0.039 0.044 1.997 1.997 1.997
N3LO/N3LO-I 5.823 5.884 5.907 0.121 0.107 0.117 0.042 0.043 0.051 1.998 1.998 1.998
N3LO/N3LO-II 5.817 5.865 5.890 0.121 0.107 0.117 0.042 0.043 0.050 1.998 1.998 1.998

N4LO 6.360 6.345 6.266 0.125 0.119 0.129 0.038 0.042 0.047 1.997 1.997 1.998
N4LO/N4LO-I 5.823 5.911 5.915 0.116 0.114 0.125 0.041 0.047 0.054 1.998 1.998 1.998
N4LO/N4LO-II 5.809 5.868 5.857 0.116 0.113 0.123 0.040 0.045 0.051 1.998 1.998 1.998
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FIG. 15. Same as Fig. 14 but for the pp pair.

especially for NSRC,BB and NSRC(krel,min). This large model
dependence might have impact on the extraction of SRC prob-

abilities from (e, e′ p) experiments, if not properly taken into
account.

TABLE VIII. Same as Table VII but for the pp pair.

Model/� (MeV) NBB NSRC,BB NSRC(krel,min ) N

450 500 550 450 500 550 450 500 550 450 500 550

LO 1.049 1.087 1.165 0.016 0.020 0.023 0.030 0.040 0.045 0.999 0.999 0.999
NLO 1.976 2.014 2.109 0.002 0.004 0.009 0.002 0.004 0.010 0.999 0.999 0.998

N2LO 1.975 2.009 2.036 0.002 0.002 0.003 0.003 0.004 0.005 0.998 0.998 0.998
N2LO/N2LO 1.943 1.935 1.932 0.002 0.002 0.002 0.003 0.004 0.006 0.999 0.998 0.998

N3LO 2.083 2.061 2.060 0.004 0.007 0.006 0.003 0.007 0.009 0.998 0.998 0.998
N3LO/N3LO-I 1.928 1.952 1.958 0.004 0.007 0.006 0.004 0.009 0.011 0.998 0.999 0.999
N3LO/N3LO-II 1.927 1.948 1.953 0.004 0.007 0.006 0.004 0.008 0.011 0.998 0.999 0.999

N4LO 2.064 2.070 2.048 0.004 0.005 0.004 0.004 0.008 0.009 0.998 0.998 0.998
N4LO/N4LO-I 1.929 1.960 1.962 0.004 0.006 0.004 0.004 0.009 0.012 0.998 0.999 0.999
N4LO/N4LO-II 1.926 1.949 1.945 0.004 0.005 0.004 0.004 0.009 0.010 0.998 0.999 0.999
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FIG. 16. The 2N momentum distributions nnp(krel, K+
c.m.) for K+

c.m. = +1.5 fm−1, calculated using only 2N (solid lines) and 2N+3N (dashed
lines) chiral interactions, at different chiral order and for three values of the cutoff � = 450, 500, 550 MeV. In all panels, the lines from bottom
to top correspond to increasing values of �. The LECs of the 3N interaction are those of Table III.

We now turn our attention to the 2N momentum distri-
butions obtained with the 2N chiral potentials without or
with the 3N forces, obtained as discussed in Sec. III A. We
begin with studying the order-by-order pattern, using the � =
500 MeV cutoff as an example. The results obtained with
the other values of � display a similar behavior. In panel
(a) of Fig. 12 we show the BB np momentum distribution
nnp(krel, Kc.m. = 0) obtained using only the 2N force at LO,
NLO, N2LO, N3LO, and N4LO. In panel (b), we present the
results for nnp(krel, Kc.m. = 0) including the 3N force, with
LECs obtained from Tables II (model I) and III (model II), re-
spectively. By inspection of the figures, we can conclude that
the LO curve has a distinct behavior at small krel compared
with the other curves, which suggests that the asymptotic
part of the wave function at LO is significantly different than
at the higher orders. Furthermore, as will be clearly shown
below in Figs. 14 and 15, the 3N force contribution is very
small, and therefore the difference between the 3N force
models is not visible. Finally, the N3LO and N4LO curves

are very similar up to krel � 2.2 fm−1, indicating satisfactory
order-by-order convergence at least in the region where the
distributions still have non-negligible size. In Fig. 13 we show
the corresponding BB pp momentum distributions. As we can
see, the same remarks apply in the pp case as well.

The BB 2N momentum distributions nnp(krel, Kc.m. = 0)
and npp(krel, Kc.m. = 0) calculated with and without 3N inter-
action, at different chiral order and for different values of the
cutoff �, are shown in Figs. 14 and 15, respectively. The re-
sults for the 2N momentum distributions nnp/pp(krel, K+

c.m.) for
K+

c.m. = +1.5 fm−1 and K+
c.m. = +∞ are shown in Figs. 16–

19. By inspection of all the figures we can conclude that
we have essentially no cutoff dependence below krel �
2.2–2.5fm−1, and increasingly strong cutoff dependence
above it. Furthermore, the 3N force contributions are visible
only for krel � 3.0 − 3.5 fm−1. Note, however, that above
krel � 2.5 fm−1 all momentum distributions are so small that
the differences are of no practical relevance, as discussed
below.
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FIG. 17. Same as Fig. 16 but for the pp pair.

Calculating the integrated SRCs as defined in Eqs. (24)–
(27), we obtain the values displayed in Tables VII and VIII
for np and pp SRCs, respectively. For these “observables,”
as well, we find that order-by-order convergence is satisfac-
tory and cutoff dependence is weak. This implies that the
contributions from the region krel � 2.2 fm−1 are essentially
negligible.

Earlier in the paper, we noted that the momentum distribu-
tions we calculated with chiral interactions die out at a faster
rate than those obtained with phenomenological potentials. In
Sec. III B, we pointed out that such a feature may be expected
given the softer nature of chiral forces. While this is a correct
observation within the spectrum of interactions considered
here, it is important to note that the chiral nature of an
interaction does not necessarily bring additional softness. To
support this statement, we refer to Ref. [36], where predictions
for 1N and 2N momentum distributions in A � 16 are shown.
In that work it is concluded that, when local chiral interac-
tions are employed, the resulting momentum distributions are

consistent with those obtained from local phenomenological
potentials. In fact, the local 2N chiral interactions (at N2LO)
applied in Ref. [36] and developed in Refs. [37,38] predict
a D-state probability for the deuteron ranging between 5.5
and 6.1%, values which are typical for the “hardest” local
potentials.

Therefore, once again, the local vs nonlocal nature of the
2N force (by far the largest contribution to the 1N and 2N
momentum distributions, as we have observed on several
occasions), is a major factor in determining the theoreti-
cal momentum distributions in nuclei and, particularly, their
short-range part.

IV. CONCLUSIONS AND OUTLOOK

We have presented predictions for 1N and 2N momentum
distributions in the deuteron and in 3He. We have employed
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FIG. 18. Same as Fig. 16 but for K+
c.m. = +∞.

state-of-the-art chiral 2N potentials (with or without the lead-
ing chiral 3N force) and also, for the purpose of comparison
and validation of our tools, older potentials plus 3N force,
either fully phenomenological or based on meson theory. A
main motivation was to explore the short-range few-nucleon
dynamics as predicted by these diverse interactions. One
of our findings is that, regardless the 2N force model, the
contribution from 3N forces is always very weak.

We have also quantified and pointed out, as appropriate,
any significant model dependence, especially in the high-
momentum tails of the momentum distributions. Model de-
pendence is large with both phenomenological and chiral
potentials. We have explored cutoff dependence and found
that it can be significant. This is the case, though, in the region
where the momentum becomes larger than the cutoff values
themselves.

Although potentials based on chiral EFT may be expected
to produce weaker SRC than purely phenomenological or
meson-exchange ones, on several occasions the discussion
of model dependence led back to considerations of local-
ity vs nonlocality of the underlying 2N force, rather than
“chiral” vs “nonchiral.” We find this to be an important
issue, extensively debated in the literature of the 1990s

[19–21] and now reemerging in the light of new stimulating
discussions.

The 2N potentials considered here have an established suc-
cess record with low-energy predictions, such as the structure
of light and medium-mass nuclei as well as the properties of
nuclear matter. But, as shown above, they differ considerably
in their high-momentum components. Note that there is no
physical reason why the off-shell behavior of, say, AV18,
should be preferable as compared to other potentials. In fact,
on fundamental grounds off-shell behavior is not observable.
To stress this point even more, 2N potentials which are
known as Vlow−k [39] are typically cut off between 1.5 and
2 fm−1 and, thus, produce essentially zero SRC. However,
these low-momentum interactions are highly successful in
ab initio nuclear structure calculations and, thus, are valid
2N potentials. On the other hand, high momentum transfer
reactions are easier to analyze using one-body currents of the
impulse approximation, suitable with harder 2N potentials,
whereas the use of low-momentum potentials complicates
the currents necessary to describe high momentum transfer
experiments [40].

Although the chiral potentials considered here are not
SRG-evolved interactions, they are nonlocal and rather soft,
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FIG. 19. Same as Fig. 18 but for the pp pair.

and thus the above arguments should apply to them as well.
It will be interesting to explore the feasibility of describing
“hard scattering” data (in the form of cross section ratios
[8,10,41]) with these softer, nonlocal potentials.

We are presently extending our study of momentum distri-
butions to include the triton and 4He.
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