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Electromagnetic currents of the pion-nucleon system
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Pion photoproduction amplitudes are calculated from a set of equations that have been derived by coupling an
external photon to all places in a dressed pion-nucleon vertex. The calculation is consistent with gauge invariance,
charge conservation, unitarity, and covariance. To provide input to the photoproduction amplitude, a photon-
nucleon vertex is calculated from a set of equations derived by complete attachment of photons to a dressed
nucleon propagator. We check the accuracy of this vertex by extracting its nucleon electromagnetic form factors.
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I. INTRODUCTION

Photons have long been used to probe the structure of
nucleons and to obtain information about their excited states
[1,2]. This is done by using photons to initiate various nucleon
reactions, and then analyzing the results with theoretical mod-
els. Pion photoproduction is an example of such a reaction.
In the literature, amplitudes for this process are calculated
by using integral equations to sum up an infinite number of
γ N → πN Feynman diagrams, or their nonrelativistic equiv-
alents [3–8]. The equations used in these models are simi-
lar to the Bethe-Salpeter or Lippmann-Schwinger equations
for πN → πN , but with the incoming pion lines replaced
with photons. Although in many cases they provide a good
description of the γ N → πN data, these equations are not
without difficulties. One problem is that they do not conserve
electromagnetic (EM) current in a way that is theoretically
correct.

Amplitudes that have gauge invariance, and hence conserve
EM current, satisfy the Ward-Takahashi identity (WTI) [9,10].
This relates an n + 1-point function Gμ that has one external
photon [an example of which is the five-point function in
Eq. (9)] to an n-point Green function G [such as the four-
point function in Eq. (1)]. If Gμ were evaluated exactly it
would include the infinite number of diagrams that can be
constructed by attaching an external photon line (EM current)
to the diagrams comprising G. Summing all these terms is
extremely difficult, however, and for numerical calculations
to be practical one must resort to truncating the series for Gμ

and G. To preserve gauge invariance this should be done in
such a way as to maintain the relationship between Gμ and G
that is specified by the WTI.

There are many ways of constructing a Gμ that satis-
fies the WTI, but to be consistent with the exact case, Gμ

should include the sum of all diagrams that can be ob-
tained by attaching a photon to the diagrams retained in
the approximated G. By using various approximations, the
photoproduction amplitudes of [3–8] all satisfy the WTI, and
hence achieve gauge invariance, to varying degrees. However,
since the photons do not attach to the other particles in all

possible ways, gauge invariance is not achieved in the correct
manner.

To construct a γ N → πN amplitude that does achieve
gauge invariance in the correct way, one can take any set of
N → πN diagrams, write down terms for every possible way
a photon could attach to them, and add them up. The gauging
of equations method [11–16] allows this to be done even if
we want the photoproduction amplitude to contain an infinite
number of diagrams. It uses the fact that complete attachment
of photons to all terms generated by an integral equation can
be achieved by attaching to only a finite number of places in
the integral equation itself. The result is a closed expression
for a gauge invariant, nonperturbative amplitude T μ that can
be solved in a straightforward way. This amplitude also obeys
Watson’s theorem, and thus has unitarity.

In Sec. VII, T μ is calculated using a covariant model
of the strong interaction as input. As in Refs. [3–8], we
work in the context of the traditional few-body meson theory,
where the structure of mesons and baryons is described by
cutoff form factors. This choice is both technically convenient
and relevant to current approaches used to study nucleon
resonances [17]. Similar calculations have been undertaken
by Haberzettl et al. [18–20], but in their work the dressed
photon-nucleon vertex that appears in the nucleon pole term of
T μ [first diagram on the right-hand side (RHS) of Fig. 2] was
constructed by using its general analytical form as prescribed
by Ball and Chiu [21,22]. By contrast, we have included in
this vertex the complete sum of diagrams obtained by gauging
a dressed nucleon propagator. To our knowledge, the γ N →
πN calculations presented in this paper are the first in which
gauge invariance is achieved through the complete attachment
of photons to an infinite set of Feynman diagrams.

II. THE GAUGING OF EQUATIONS METHOD

We begin by outlining the gauging method and its appli-
cation to the pion-nucleon system. Following Ref. [15], we
consider the task of gauging the following four-point Green
function G that describes interactions between point-like pions
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and nucleons:

(2π )4δ4(p′
1 + p′

2 − p1 − p2)G(p′
1, p′

2, p1, p2)

=
∫

d4y1d4y2d4x1d4x2ei(p′
1·y1+p′

2·y2−p1·x1−p2·x2 )

×〈〈0|T [ψ (y2)φ(y1)ψ̄ (x2)φ̄(x1)]|0〉〉, (1)

where ψ and φ are Heisenberg fields of nucleons and pions,
respectively, |0〉〉 is the physical vacuum, and T is the time
ordering operator. The xm and ym are the initial and final
spacetime coordinates of pions (m = 1) and nucleons (m =
2), while the pm, p′

m are their initial and final state momenta.
When evaluated with Wick’s theorem, G can be written as the
sum of all possible πN → πN Feynman diagrams. In turn,
these can be split into the sums of one-particle reducible (1PR)
and one-particle irreducible parts as G = G1PR + G.

The gauged version of G is needed in the derivation of T μ,
and we first apply the gauging method to this sum of diagrams.
It can be expressed in compact form by the Bethe-Salpeter
(BS) equation:

G(p′
1, p′

2, p1, p2)

= G0(p′
1, p′

2, p1, p2) +
∫

d4r1

(2π )4

d4s1

(2π )4
G0(p′

1, p′
2, r1, r2)

× v(r1, r2, s1, s2)G(s1, s2, p1, p2), (2)

where the total momentum of the pion-nucleon system is
p = p′

1 + p′
2 = p1 + p2 = s1 + s2 = r1 + r2. In Eq. (2), G0

is the sum of all fully disconnected πN → πN diagrams
and the potential v is the sum of all amputated, connected,
two-particle irreducible πN → πN diagrams. That G0 is dis-
connected means it splits into two single-particle propagators
gN and gπ which are the sums of all possible N → N and
π → π diagrams:

G0(p′
1, p′

2, p1, p2) = (2π )4δ4(p′
1 − p1)gπ (p1)gN (p2). (3)

No total momentum conservation delta function has been
included in G0 because the momenta are understood to be
related in the way specified just below Eq. (2).

It is convenient to suppress the integrals and momentum
labels in Eq. (2) and to write the BS equation in the shorthand
notation

G = G0 + G0vG. (4)

In this form, the equation is reduced to a topological statement
about the structure of the Feynman diagrams belonging to G.
As such, it can be utilized directly to express the structure of
the same Feynman diagrams, but with a photon (EM current)
attached to all places in all of them. Using a superscript μ to
indicate quantities that have had this attachment carried out in
all possible ways, it immediately follows that

Gμ = Gμ
0 + Gμ

0 vG + G0v
μG + G0vGμ, (5)

The third term on the RHS of this equation, for instance, is
shorthand for∫

d4r1

(2π )4

d4s1

(2π )4
G0(k1, k2, s1, s3)

× vμ(s1, s2, r1, r2)G(r1, r2, p1, p2). (6)

The total momentum to the right of the attachment point is
p = p1 + p2 = r1 + r2 and that to the left is p + q = s1 +
s2 = k1 + k2. The momentum q is that transferred to the
particles during the attachment.

Equation (5) expresses the gauged version of Gμ in terms
of an integral equation and illustrates what is meant by
“gauging an equation.” Both Gμ and Gμ

0 are obtained from
G and G0 but with a photon attached to all possible places
in all diagrams contributing to them. The gauged potential
vμ is similarly obtained from v, but because v consists of
amputated diagrams, vμ does not include terms that can be
obtained by attaching to their external legs. Notice that the
final three terms in Eq. (5) can also be expressed as [G0vG]μ,
which illustrates a rule for the gauging of products that is
identical to the product rule for derivatives.

Some simple algebra allows Eq. (5) to be formally solved,
giving

Gμ = −G[G−1]μG = G
[
G−1

0 Gμ
0 G−1

0 + vμ
]
G, (7)

where, in longhand, the inverse of G0 is

G−1
0 (p′

1, p′
2, p1, p2) = (2π )4δ4(p′

1 − p1)g−1
π (p1)g−1

N (p2).
(8)

The terms that make up the single-particle propagators can
also be generated by integral equations, allowing G0 to be
gauged in a similar way to G. This is done in Sec. II B.

A. The Ward-Takahashi identity

To verify that the diagrams comprising Gμ come in the
right combination to preserve gauge invariance, let us suppose
that instead of constructing a five-point function by gauging,
it is found by evaluating

Gμ
Exact(k1, k2, p1, p2)

=
∫

d4y1d4y2d4x1d4x2ei(k1·y1+k2·y2−p1·x1−p2·x2 )

×〈〈0|T [ψ (y2)φ(y1)ψ̄ (x2)φ̄(x1)Jμ(0)]|0〉〉 (9)

where the initial and final state momenta are related to each
other the same way as in expression (6). The EM current Jμ

corresponds to a phase transformation of the charged particle
fields. The generators of this transformation are

λN = e

2
(1 + τ3), λπba = ieεb3a, (10)

where τ3 is the Pauli matrix for the third component of
isospin, εb3a is the Levi-Civita symbol, and e = √

4π/137 is
the elementary charge. The a and b subscripts on λπ label the
pion charges.

For the EM current to be conserved it must satisfy the con-
dition ∂μJμ = 0z, and this, in turn, results in Gμ

Exact satisfying
the two-body WTI [10]:

− iqμGμ
Exact(k1, k2, p1, p2)

= λπG(k1 − q, k2, p1, p2) + λNG(k1, k2 − q, p1, p2)

− G(k1, k2, p1 + q, p2)λπ − G(k1, k2, p1, p2 + q)λN ,

(11)
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To simplify this expression, the pion charge labels have been
left off.

The Feynman diagrams that comprise Gμ
Exact come in two

types. The first type, Gμ, can be constructed by attaching pho-
tons to the Feynman diagrams that make up G. Diagrams of
the second type cannot be constructed in this way, but vanish
when they are contracted with qμ and so do not contribute to
the WTI. The diagrams that make up Gμ may be further sorted
into two sets, Gμ

1PR and Gμ, according to whether they can be
obtained by attaching photons to G1PR or G. Thus Gμ

1PR and
Gμ must satisfy separate WTIs that add up to identity (11).
These are the same as the WTI for Gμ, but involve Gμ, G and
Gμ

1PR,G1PR instead. It is easy to show that the Gμ of Eq. (7)
satisfies the appropriate WTI provided that vμ satisfies

−iqμv
μ

l j (k1, k2, p1, p2)

= λπ lmvm j (k1 − q, k2, p1, p2) + λNvl j (k1, k2 − q, p1, p2)

− vlm(k1, k2, p1 + q, p2)λπm j

− vl j (k1, k2, p1, p2 + q)λN (12)

and Gμ
0 obeys an identity the same as Eq. (11) but involving

Gμ
0 and G0 instead.
To obtain an expression for Gμ

0 , we can use the product rule
to write

Gμ
0 (k1, k2, p1, p2) = (2π )4δ4(k1 − p1)gμ

N (k2, p2)gπ (k1)

+ (2π )4δ4(k2 − p2)gN (k2)gμ
π (k1, p1),

(13)

where it is understood that k1 + k2 = p1 + p2 + q. Deriving
Gμ

0 is thus a matter of gauging the single-particle propagators.
This we do in the next section.

B. Gauge invariant γN → N vertex

In what follows it is assumed that the interaction of pions
and nucleons is described by an interaction Lagrangian linear
in the pion field. We shall, however, neglect explicit dressings
of pions. Consequently, gπ is a Feynman propagator for a
meson with mass mπ ≈ 138 MeV:

gπ (k) = i

k2 − m2
π + iε

. (14)

Meanwhile, the sum of diagrams comprising the dressed
nucleon propagator gN can be represented by the Dyson-
Schwinger equation,

gN (p) = gN0(p) + gN0(p)�N (p)gN (p), (15)

where the nucleon self energy �N is the sum of all N → N
diagrams that are one-particle irreducible. The “bare” nucleon
propagator gN0 is a Feynman propagator for a fermion with
mass mN0:

gN0(p) = i

� p − mN0 + iε
. (16)

We refer to mN0 as the bare nucleon mass and it is set so
that gN has a pole at p0 = mN ≈ 939 MeV in the nucleon rest
frame. As discussed in detail in Appendix A, we express the

dressed nucleon propagator in terms of positive and negative
energy components as

−igN (p) = �+g+
N (p0) + �−g−

N (p0), (17)

where �± = 1
2 (1 ± γ0). The residue of g+

N (p0) at p0 = mN is
called the renormalization constant Z2, and this is calculated
in Sec. III.

Equation (15) has the same form as the BS equation for G,
so gauging gN gives

gμ
N = −gN

[
g−1

N

]μ
gN = gN


μ
N gN ,



μ
N = 


μ
N0 + �

μ
N , gμ

N0 = gN0

μ
N0gN0.

(18)

By analogy with the WT identities written above, gμ
N0 and gμ

π

should satisfy

−iqμgμ
N0(p′, p) = λN gN0(p) − gN0(p′)λN ,

−iqμgμ
π (k′, k) = λπgπ (k) − gπ (k′)λπ . (19)

The gauged pion propagator may also be written as gμ
π =

gπ
μ
π gπ , and it is easy to verify that the bare vertices



μ
N0 = λNγ μ,


μ
π (k′, k) = λπ (k′μ + kμ)

(20)

allow gμ
π and gμ

N0 to satisfy (19). Note that these vertices differ
from those specified by Feynman rules (see, for example,
Appendix A of [23]) by a factor of −i. Thus the quantities
we derive by gauging need to be multiplied by −i to make
them consistent with Feynman rules.

To gauge the infinite number of diagrams that make up the
self-energy, we note that they can be expressed as

�N (p) =
∫

d4r

(2π )4

d4s

(2π )4
f̄ a
0 (k, p, p − r)

× G0(r, p − r, s, p − s) f a(s, p − s, p). (21)

The bare pion absorption vertex f̄0 may be read directly from
the Lagrangian, while the dressed pion emission vertex f is
given by the integral equation

f a(k, p − k, p) = f a
0 (k, p − k, p)

+
∫

d4r

(2π )4

d4s

(2π )4
vab(k, p − k, r, p − r)

× G0(r, p − r, s, p − s) f b(s, p − s, p).
(22)

It is convenient to express the above two equations in the
shorthand form

�N = f̄0G0 f = f̄0G f0,

f = f0 + vG0 f . (23)

Applying the product rule then yields the gauged self-energy

�
μ
N = f̄ Gμ

0 f + f̄ G0 f μ
0 + f̄ μ

0 G0 f + f̄ G0v
μG0 f . (24)

The vertex that results from using this in 

μ
N is illustrated in

Fig. 1. The gauged bare vertices f μ
0 , f̄ μ

0 are model dependent,
and expressions for these are not given until Sec. V. We can,
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FIG. 1. The photon-nucleon vertex of Eq. (18). The dashed,
solid, and wiggly lines denote pions, nucleons, and photons,
respectively.

however, say that since f0 is an amputated quantity, its gauged
version needs to satisfy a WTI analogous to (12)

−iqμ f μa
0 (k, p′ − k, p) = λN f a

0 (k, p′ − k − q, p)

+ λπab f b
0 (k − q, p′ − k, p)

− f a
0 (k, p′ − k, p′)λN . (25)

Meanwhile, since gμ
N0 satisfies (19), one would expect gμ

N to
have the WTI

−iqμgμ
N (p + q, p) = λN gN (p) − gN (p + q)λN . (26)

By putting the preceding two WTIs into qμ

μ
N , it is easy to re-

cover Eq. (26). Therefore, provided f μ
0 and vμ are constructed

such that they satisfy the appropriate WTIs, gμ
N constitutes a

gauge invariant description of γ N → N . It then immediately
follows that the Gμ

0 found by gauging satisfies a WTI the same
as Eq. (11) but with Gμ

0 and G0 substituted for Gμ and G.
Since there exist data for the process described by gμ

N , this
quantity can be compared with experiment. First, though, the
external legs of its constituent Feynman diagrams need to be
“amputated.” This involves removing each external gπ , and
replacing each external gN with a factor of

√
Z2. We also

adopt a convention whereby amplitudes are multiplied by an
extra factor of i that cancels the −i needed to convert gauged
quantities to Feynman diagrams. The properly normalized
photon-nucleon vertex is therefore



μ
Z = Z2


μ
N . (27)

C. Gauge invariant description of γN → πN

A gauge invariant amplitude for γ N → πN may be de-
rived by applying the gauging method to the unamputated
πNN vertex F = G0 f gN = G f0gN . The result, illustrated in
Fig. 2, is given by

Fμ = G0T μgN , (28)

where

T μ = vμ
u + v

μ
t + vμ

s + tGμ
0 f + tG0v

μG0 f

+ tG0 f μ
0 + f μ

0 + vμG0 f , (29a)

t = v + vG0t, (29b)

v
μa
t = 
μ

π (k f , k f − q)gπ (k f − q) f a(k f − q, p f , pi ), (29c)

vμa
u = 


μ
N (p f , p f − q)gN (p f − q) f a(k f , p f − q, pi ), (29d)

vμa
s = f a(k f , p f , pi + q)gN (pi + q)
μ

N (pi + q, pi ). (29e)

FIG. 2. The singly gauged amplitude of Eq. (29a).

In writing Eq. (28), use has been made of the fact that
G−1

0 G = 1 + tG0. The vμ’s in equations (29) are, like T μ, all
functions of k f , p f , pi. The a index, which labels the charge
of the emitted pion, has also been dropped in many instances
in order to simplify the notation.

When the inputs vμ, f μ
0 , gμ

N , and Gμ
0 satisfy the Ward-

Takahashi identities written thus far in this section, the ampli-
tude Fμ is also gauge invariant. It obeys the following WTI:

−iqμFμa(k f , p f , pi ) = λπabFb(k f − q, p f , pi )

+ λNFa(k f , p f − q, pi )

− Fa(k f , p f , pi + q)λN . (30)

The singly gauged amplitude is also consistent with two-
body unitarity. To see this, we need only note that T μ can
be rearranged into a form similar to the Bethe-Salpeter and
Lippmann-Schwinger equations:

T μ = V μ + T G0V
μ,

V μ = vμG0 f + f μ
0 + 
μ

π gπ f + f0gN0

μ
N0

+ 

μ
N gN f + f0gN0 f̄ μ

0 G0 f ,

T = t + f gN f̄ . (31)

In other words, T μ has the same form as the amplitudes in
[3–8]. Since they all have two-body unitarity, it immediately
follows that T μ does as well.

Upon amputating the external legs from Fμ, we arrive at
the following properly normalized singly gauged amplitude
which incorporates gauge invariance and unitarity:

T μa
Z = Z2T μa. (32)

III. NUCLEON RESONANCES

In this section, the equations for 

μ
Z and T μa

Z are extended
to include contributions from excited state nucleons. The
lowest energy excited state is the �(1232) particle, which
has spin and isospin both equal to 3/2. However, the lowest
order γ N → πN diagram involving the �, which is shown in
Fig. 3, cannot be obtained by gauging because the diagram
that results from removing the incoming photon does not
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Δ

FIG. 3. Diagram needed to describe certain γ N → πN data that
cannot be obtained by gauging.

exist. This is not a deficiency of the gauging method, though,
because the diagram is gauge invariant on its own and can be
added on to T μ without violating the WTI.

Another excited state of relative importance is the
N∗(1440) Roper resonance. This has the same spin and
isospin as the ground state nucleon, and if the � particle in the
intermediate state of Fig. 3 is replaced by a Roper, the result
is a class of diagrams that are not self gauge invariant, but
which can be obtained by gauging. This is done in Secs. III A
and III B.

Following the πN → πN models of [24,25], we suppose
that the Roper resonance occurs in one-particle states only. For
πN scattering, this situation may be described by the properly
normalized “coupled channels” amplitude T given by

T = iZ2t + iZ2

∑
αβ

fβgβα f̄α,

fα = fα0 + tG0 fα0, f̄α = f̄α0 + f̄α0G0t, (33)

�αβ = f̄α0G0 fβ, gαβ = gα0δαβ +
∑

ρ

gα0�αρgρβ,

where the subscripts α, β, ρ can be N (for a nucleon) or R (for
a Roper particle). The bare Roper propagator gR0 is the same
as gN0 but with the bare Roper mass mR0 substituted for mN0.
As discussed in detail in Appendix A, the elements gαβ of the
2 × 2 matrix g are given explicitly as

g =
(

g−1
R /� �NR/�

�NR/� g−1
N /�

)
=

(
gNN gNR

gRN gRR

)
, (34)

where � = g−1
N g−1

R − �2
NR is the determinant of g−1. The “no

baryon mixing” Roper propagator gR is given by an expression
the same as (15) but with gR0 and �RR in place of gN0 and
�N ≡ �NN , respectively.

When working in the center-of-mass frame where the total
momentum is p = (p0, 0), the positive energy part of g can be
isolated by writing it as

− ig(p) = g+(p0)�+ + g−(p0)�−. (35)

In the coupled channels system, the elements of g+ need to
have poles at mN and the Roper mass mR ≈ 1365 − 95i MeV.
To arrange this, the denominator

�+ = [
g−1

N

]+[
g−1

R

]+ − [
�+

NR

]2 (36)

must vanish when p0 = mN or p0 = mR. The quantities on the
RHS of Eq. (36) are defined by

ig−1
β (p) = �+[g+

β (p0)]−1 + �−[g−
β (p0)]−1,

i�(p) = �+(p0)�+ + �−(p0)�−. (37)

Setting �+(mN ) = �+(mR) = 0 gives us a pair of simulta-
neous equations that can be solved to find the required bare
masses, and we get

mα0 = 1

2Aα

( − Bα ±
√
B2

α − 4AαCα

)
, (38)

where

Aα = aββ − aβα,

Bα = (aβα − aββ )(aαβ + aαα ) − cα + cβ,

Cα = aααaαβ (aββ − aβα ) − aααcβ + aαβcα,

aαβ = mβ − �+
αα (mβ ), cα = [�+

NR(mα )]2. (39)

In the first three lines of Eq. (39), β = R if α = N and vice
versa. Meanwhile, the signs in Eq. (38) need to be chosen so
that it reduces to [d+

R (mR)]−1 = 0 and [d+
N (mN )]−1 = 0 when

�NR → 0 and hence there is no mixing of the ground and
excited states.

When calculating �+(mR), one needs to take into account
that because �+ is a function of p0 =

√
p2, it has two possible

values at each point in the complex p2 plane. To make it
a single-valued function, the p2 plane can be replaced by
a Riemann surface consisting of two sheets [26,27]. �+
contributes a cut to the p2 plane running just below the real
axis from (mN + mπ )2 − iε to ∞ − iε, and the two sheets
can be joined along this cut so that passing through it takes
us from one sheet to the other. Then a particular p2 value is
on the first sheet if 0 � arg(p2) < 2π and on the second if
2π � arg(p2) < 4π . We must place m2

R on the second sheet
when calculating �+(mR) because an m2

R on the first sheet has√
m2

R = −mR. This can be done by rotating the loop integral

contour such that the cut in the p2 plane passes clockwise over
m2

R and ends up at some angle in between the positive real axis
and the negative imaginary axis. This rotation is discussed
further in Sec. IV.

One must also ensure that the pion-nucleon interaction
described by fα has the correct strength. To do this the model
parameters should be adjusted such that the pion-nucleon
coupling constant gπNN , an expression for which is given in
Appendix D, has its experimental value of 13.02.

In evaluating gπNN , a coupled channels renormalization
constant needs to be calculated by taking the residue of g+(p0)
at p0 = mN . Because �+

NR(mN ) = [g+
R (mN )]−1[g+

N (mN )]−1,
this residue can be factorized into the product of a row matrix
and its transpose. The “square root” of the renormalizsation
constant in the coupled channels system is thus either 1 × 2
or 2 × 1:

Res
p0=mN

g+(p0) =
(√

ZN√
ZR

)
(
√

ZN
√

ZR). (40)

The elements are given by

Zα = [g+
β (mN )]−1

�+′ (mN )
, (41)

where β = R if α = N and vice versa. The prime on �+
in Eq. (41) denotes a derivative with respect to p0. Note
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that when �NR → 0 we have [g+
N (mN )]−1 → 0 and the usual

textbook renormalisation constant is recovered:

ZN → Z2 =
[

d

d p0
[g+

N (p0)]−1

∣∣∣∣
p0=mN

]−1

(42)

A. Gauge invariant, coupled channels description of γN → N

To obtain a gauge invariant, coupled channels γ N → N ver-
tex, we repeat the process described in Sec. II B but with the
ordinary numbers replaced by matrices. Doing this, we obtain

gμ = −g[g−1]μg = g

(
−[

g−1
N

]μ
�

μ
NR

�
μ
RN −[

g−1
R

]μ

)
g. (43)

The matrix between the factors of g on the RHS will be
denoted as �μ. Its elements are given by expressions the same
as those in Eqs. (18) and (24) but with different vertices at the
edges of the pion loops:


μ
α = −[

g−1
α

]μ = 

μ
α0 + �μ

αα, (44a)

�
μ

βα = f̄ μ

β0G0 fα+ f̄βGμ
0 fα+ f̄βG0v

μG0 fα+ f̄βG0 f μ
α0. (44b)

We have chosen the bare Roper vertex 

μ
R0 to be the same

as the bare nucleon vertex in Eq. (20).
As was the case for gμ

N , the external propagators need
to be amputated from gμ before it can be compared with
experimental data. That is, the external propagators must be
removed and the result multiplied from the left and right
by the 1 × 2 and 2 × 1 renormalization constants. Thus the
properly normalized coupled channels vertex is



μ
Z = (

√
ZN

√
ZR)

(
−[g−1

N ]μ �
μ
NR

�
μ
RN −[g−1

R ]μ

)(√
ZN√
ZR

)
. (45)

B. Gauge invariant, coupled channels description of γN → πN

As the present model has Roper particles appearing only in
one body states, the task of deriving a singly gauged amplitude
that includes Roper contributions is a matter of gauging F =
G0 f g = G f 0g, where

f = ( fN fR), f 0 = ( fN0 fR0). (46)

The product rule yields an expression for Fμ that is very
similar to Eq. (28):

Fμ = G0Tμg, (47)

where

Tμ = vvvμ
u + vvv

μ
t + vvvμ

s + tGμ
0 f + tG0v

μG0 f

+ tG0 f μ
0 + f μ

0 + vμG0 f (48)

and

vvv
μa
t = 
μ

π (k f , k f − q)gπ (k f − q) f a(k f − q, p f , pi ), (49a)

vvvμa
u = 


μ
N (p f , p f − q)gN (p f − q) f a(k f , p f − q, pi ), (49b)

vvvμa
s = f a(k f , p f , pi + q)g(pi + q)�μ(pi + q, pi ). (49c)

The gauged matrix vertex f μa
0 is the same as f a

0, but with
f μa
N0 , f μa

R0 substituted for f a
N0, f a

R0. To allow the gN inside G0

to have a nucleon pole, the bare mass inside the two-body
propagator G0 is taken to be different from that in g. Thus,
amputating the external legs of Fμ now involves removing the
external propagators, multiplying from the right by the 2 × 1
renormalization constant and from the left by

√
Z2:

T μa
Z =

∑
ρ

√
Z2T μa

ρ

√
Zρ (50)

IV. STRONG INTERACTION MODEL

To provide the necessary input to a calculation of 

μ
Z and T μa

Z ,
the bare vertices fα0 and the potential v need to specified.
Rather than developing a new model for these, we have bor-
rowed from the covariant πN → πN description due to Gross
and Surya (GS) [25], which is based on Eqs. (33). In common
with most other models that use these and similar equations,
the two-particle intermediate states are simplified by replacing
G0 with bare, physical mass propagators multiplied by Z2. The
factor of Z2 causes the approximated propagator to have the
same nucleon pole residue as its exact counterpart. To further
reduce technical complexities, GS chose a separable v and
used the spectator approach to reduce all loop integrals to
three dimensions.

GS implemented the spectator approach by placing inter-
mediate pions on shell. They were led to this choice by a
careful assessment of pole contributions to typical Feynman
diagrams contributing to πN scattering. However, when we
used this approximation to calculate 


μ
Z , it was found to pro-

duce EM form factors that vary only slightly with the squared
photon momentum. To overcome this problem, we carried out
the spectator approach by putting the intermediate nucleons
on shell instead. This amounts to making the replacement

G0(k′, r′, k, r) → (2π )4δ4(k′ − k)Z2
π

Er
i( �r + mN )

× δ+(
r2 − m2

N

)
(p0 − Er + ωk − iε)(p0 − Er − ωk + iε)

, (51)

where p = k + r = k′ + r′ and Er =
√

r2 + m2
N . Despite this

change, we retained the cutoff factors, bare pion vertices, and
background potential of the GS paper. The cutoff factors are

hα (k2) =
[ (

�2
α − m̃2

α

)2(
�2

α − m̃2
α

)2 + (
m̃2

α − k2
)2

]2

. (52)

Ground state nucleons and pions have m̃N = mN , m̃π = mπ

while m̃R and the cutoff masses �N , �π , �R are treated as
free parameters. The bare vertices each have a factor of

√
Z2

absorbed into them, and are related to the vertices of Sec. II
by 
πa

α0 = √
Z2 f a

α0, 
̄πa
α0 = √

Z2 f̄ a
α0. They are given by


̄πa
α0 (k, p′, p) = g(0)

πNατaγ5(xα − yα �k)Fα (k2, p2, p′2),


πa
α0 (k, p′, p) = g(0)

πNατ ∗
a (xα − yα �k)γ5Fα (k2, p′2, p2),

(53)
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TABLE I. Parameters that were adjusted to fit the j = 1/2 phase
shift data. The cutoff masses are in units of MeV, as is m̃R. The other
parameters are dimensionless.

A B

�N 1432.99924 1358.45006
�R 1948.45836 1943.97350
�π 582.51508 582.61099
xN 0.17775 0.06548
xR 0.79282 0.87960

g(0)
πNN 10.99164 13.44624

g(0)
πNR 12.13224 10.70639

m̃R 1449.48265 1455.25030

where

Fα (k2, r′2, r2) = hα (r2)FV (k2, r′2),

FV (k2, r2) = hπ (k2)hN (r2),
(54)

and yα = (1 − xα )/(2mN ). The asterisk on the Pauli matrix
in 
πa

α0 denotes a Hermitian conjugate, while g(0)
πNα is the

bare coupling constant. The extent to which the pion-nucleon
coupling is pseudoscalar and pseudovector is governed by xα ,
which is a number between 0 and 1.

Similar to the bare vertices, the GS background potential
incorporates a factor of iZ2 and is related to the potential
written above by iZ2vba = Vba. It has the following form:

Vba = V1/2(P1/2)ba + V3/2(P3/2)ba, (55)

where

Vt (k
′, r′, k, r) = FV (k′2, r′2)Ṽt (p)FV (k2, r2),

Ṽt (p) = Ct
0(p2) � p + Ct

1,
(56)

and p = k′ + r′ = k + r. The isospin projection operators are

(P1/2)ba = 1
3τ ∗

b τa,

(P3/2)ba = δba − 1
3τ ∗

b τa,
(57)

while the C factors are written down in Appendix B.
To set the parameters, πN → πN phase shifts were cal-

culated from the renormalized amplitude Tba(k f , p f , ki, pi )
using the formulas given in Appendix C 1. The best set of
parameters we could find when using replacement (51) are
listed as Fit A in Table I and produce the phase shifts shown
in Fig. 4. The horizontal axes of these graphs show the
pion laboratory energies Eπ , which are related to the total
momentum p = k f + p f = ki + pi by

Eπ = p2 − m2
π − m2

N

2mN
− mπ . (58)

To facilitate calculation of the bare Roper mass, m2
R has

been placed on the second sheet of the Riemann surface
discussed in Sec. III. In the center-of-mass frame, where
p = (p0, 0), the factor [p0 − ωk − Er + iε]−1 on the RHS of
replacement (51) causes a cut in the p2 plane running from

 0
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FIG. 4. Phase shifts for j = 1/2. Fit A results (dotted lines) are
almost indistinguishable from those for Fit B (solid lines). The data
are taken from [28].

p2 = (mN + mπ )2 − iε to p2 = ∞ − iε when |r| is integrated
from 0 to ∞. This cut can be moved across m2

R by rotating
the |r| integral using the replacement |r| → |r|e−iφ , with
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TABLE II. Parameters that are determined by the fits. The masses
mN0, mR0, MR are in units of MeV and the other parameters are
dimensionless.

A B
√

ZN 1.09671 0.91862√
ZR 0.04759 0.04069√
Z2 1.04774 0.96018

mN0 1032.45740 1047.36929
mR0 1967.19681 1832.62105
MR 1362.9 − 96.8i 1362.7 − 96.7i
gπNN 12.79023 12.97247

φ � 12.5 degrees. The squared Roper mass then ends up on
the second sheet of the p2 Riemann surface, as required.

We have restricted mR0 to being real in order to preserve
unitarity. This condition made giving g+ a pole exactly at the
Roper mass rather difficult, and the Fit A parameters cause it
to have a pole at MR = 1362.9 − 96.8i MeV, which is slightly
different from mR.

Another issue with Fit A is the fact that Z2, which is
interpreted as being a probability, is greater than 1 (see
Table II). In exact field theory, the only singularities that
g+

N (p0) contributes to the p0 plane are a pair of cuts running
from ±(mN + mπ − iε) to ±(∞ − iε), and it can be shown
that this results in Z2 being restricted to the range 0 � Z2 � 1.
Introducing cutoff factors such as hα , however, gives g+

N (p0)
extra poles, and this allows Z2 to move outside the unitary
bound. The spectator approach also modifies the structure:
when replacement (51) is used inside g+

N (p0), the cuts move
so that they run from p0 = 0 + iε to p0 = mN − mπ + iε and
from p0 = mN + mπ − iε to p0 = ∞ − iε instead. We found
it impossible to obtain both a decent fit to the phase shifts and
a Z2 in the correct range when replacement (51) was used.

It turns out, however, that if the spectator approach is
implemented by putting both nucleons and antipions on shell,
the correct cut structure can be preserved. Thus, we also tried
using the two-term spectator approach,

G0(k′, r′, k, r) → (2π )4δ4(k′ − k)Z2
π i( �r + mN )

p0 − Er + ωk

×
[

δ+(
r2 − m2

N

)
Er (p0 − ωk − Er + iε)

+ δ−(
k2 − m2

π

)
ωk (p0 + ωk + Er − iε)

]
(59)

where ωk = √
k2 + m2

π . The first and second terms in the
large square brackets put nucleons and antipions on shell and,
together, contribute cuts to the p0 plane that are the same as
those in full four-dimensional field theory. The denominator
outside the square brackets does not contribute any cut struc-
ture because when it passes through zero the square bracketed
terms cancel. It should be noted, however, that the prescription
of Eq. (59) does not follow from the type of analysis that led
GS to set the pion on mass shell in their model [25].

A set of parameters corresponding to replacement (59) is
labeled as Fit B in Tables I and II. The phase shifts for this
fit are almost indistinguishable from the Fit A results, and Z2

falls in the correct range despite the poles contributed by the
cutoff factors.

V. GAUGING THE STRONG INTERACTION MODEL

In this section, expressions for the gauged bare πNN ver-
tices, gauged potential, and gauged intermediate propagators
are presented. They are needed as input to the pion-photon
vertex and pion photoproduction amplitude given in Sec. III.

A. Gauged bare πNN vertex

To gauge the bare πNN vertices, we use the method of
minimal substitution. The application of this procedure to
πNN vertices with cutoff factors is discussed at length in the
Ph.D. thesis of van Antwerpen [29] (an abridged version of
which was published in [30]). By taking a combination of his
results for pseudoscalar and pseudovector coupling, we can
immediately write

f μa
α0 (k′, r′, r)= �

μab
k′

[
f b
α0(k′, r′, r) − f b

α0(k′ − q, r′, r)
]

+ [
f a
α0(k′, r′, r + q) − f a

α0(k′, r′, r)
]
�μ

r

+ �
μ

r′
[

f a
α0(k′, r′, r) − f a

α0(k′, r′ − q, r)
]

− γ5Z−1/2
2 FV [(k′ − q)2, r′2]hα (r2)g(0)

πNαyα

× (
iγ μλπab + �

μab
k′ �q)

τ ∗
b , (60)

where

�
μab
k′ = iλπab

2k′μ − qμ

(k′ − q)2 − k′2 ,

�μ
r = iλN

2rμ + qμ

r2 − (r + q)2
,

�
μ

r′ = iλN
2r′μ − qμ

(r′ − q)2 − r′2 . (61)

It is easy to verify that this gauged vertex satisfies identity
(25). The f a

α0(k′, r′, r) terms on the RHS of Eq. (60) do
not contribute to the WTI, but play an important role in
ensuring that f μ

α0 does not contain any poles. Whenever the
denominators in the � factors pass through zero, these terms
cause the numerators to vanish and give a derivative.

Similarly, the gauged pion absorption vertex is given by

f̄ μa
α0 (k, r′, r) = [

f̄ b
α0(k + q, r′, r) − f̄ b

α0(k, r′, r)
]
�

μba
k

+ [
f̄ a
α0(k, r′, r + q) − f̄ a

α0(k, r′, r)
]
�μ

r

+ �
μ

r′
[

f̄ a
α0(k, r′, r) − f̄ a

α0(k, r′ − q, r)
]

− τbZ−1/2
2 g(0)

πNαFV [(k + q)2, r2]hα (r′2)yα

× (
iγ μλπba + �

μba
k �q)

γ5, (62)
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where

�
μba
k = i

2kμ + qμ

k2 − (k + q)2
λπba. (63)

B. Gauged potential

To gauge the background potential v, we begin by using the
product rule on the first of Eqs. (56):

v
μ

ba(k′, r′ + q, k, r) = Fμbat
L ṽt (p)FR + FLpṽ

μba
t (p + q, p)FR

+ FLpṽt (p + q)Fμbat
R , (64)

where p = k + r = k′ + r′ and ṽt = −iZ−1
2 Ṽt . FLp and FR are

products of cutoff factors with the momentum dependences

FLp = FV [k′2, (r′ + q)2], FR = FV (k2, r2). (65)

To gauge the functions of momentum we again borrow from
van Antwerpen’s results and use

Fμbat
L = [

(FL − FLk′ )�μbn
k′ + (FL − FLr′ )�μ

r′δbn
]
(Pt )na

+ (FLp − FL )�μbat
p ,

Fμbat
R = (Pt )bn

[
(FRk−FRp)�μna

k + (FRr−FRp)�μ
r δna

]
+ (FRp − FR)�μbat

p ,

ṽ
μba
t (p + q, p) = [ṽt (p + q) − ṽt (p)]�μbat

p

+ iZ−1
2 λbat

T Ct
0([p + q]2)

×
[
γ μ − �q(2pμ + qμ)

(p + q)2 − p2

]
, (66)

where
FL = FV [k′2, (r′ + q)2], FRp = FV (k2, r2),

FLk′ = FV [(k′ − q)2, (r′ + q)2], FRk = FV [(k + q)2, r2],

FLr′ = FV (k′2, r′2), FRr = FV [k2, (r + q)2],
(67)

and

�μbat
p = 2pμ + qμ

p2 − (p + q)2
λbat

T . (68)

Since p is the total momentum of the pion-nucleon system it
has been associated with the total “charge”:

λbat
T = i(λNδbn + λπbn)(Pt )na = i(Pt )bn(λNδna + λπna). (69)

Putting the pieces together, a gauged potential that satisfies
WTI (12) is obtained. The C functions in this vμ depend only
on p and q and do not participate in any integrals, resulting in
vμ retaining the separability of the original potential.

C. Gauging on-shell particles

When the spectator approach is implemented by putting
intermediate nucleons on shell, there are two possible ways
of applying it to diagrams that have two internal nucleon
lines within a single loop, such as the fifth diagram on the
RHS of Fig. 2. In order to satisfy the WTI, Gross, and Riska
[31] approximated diagrams such as this by replacing them
with two terms. In one term, the particle to the left of the
photon vertex was put on shell, and in the other the particle
to the right of the photon vertex received the same treatment.
However, because this prescription leads to the nonconser-
vation of charge, we will use a modified version suggested
by [13]:

Gμ
0 (k′, r′, k, r) → Gμ

N (k′, r′, k, r) + Gμ
π (k′, r′, k, r), (70)

where we now have k′ + r′ = k + r + q = p + q and

Gμ
N (k′, r′, k, r) = − Z2(2π )4δ4(k′ − k)( �r ′ + mN )
μ

N0(r′, r)( �r + mN )

×
[

π

Er′

δ+(
r′2 − m2

N

)
(Er + q0 − Er′ )(q0 − Er′ − Er )(p0 + q0 − Er′ − ωk + iε)(p0 + q0 − Er′ + ωk − izε)

+ π

Er

δ+(
r2 − m2

N

)
(Er + q0 − Er′ )(Er + q0 + Er′ )(p0 − Er − ωk + iε)(p0 − Er + ωk − izε)

+ π

ωk

δ−(
k2 − m2

π

)
(1 − z)

(p0 + ωk − Er )(p0 + ωk + Er − iε)(p0 + q0 + ωk − Er′ )(p0 + q0 + ωk + Er′ − iε)

]
, (71a)

Gμ
π (k′, r′, k, r) = − Z2(2π )4δ4(r′ − r)( �r + mN )
μ

π (k′, k)

×
[

π

ωk′

δ−(
k′2 − m2

π

)
(1 − z)

(q0 + ωk′ − ωk )(q0 + ωk′ + ωk )(p0 + q0 + ωk′ − Er )(p0 + q0 + ωk′ + Er − iε)
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+ π

ωk

δ−(
k2 − m2

π

)
(1 − z)

(q0 − ωk − ωk′ )(q0 − ωk + ωk′ )(p0 + ωk − Er )(p0 + ωk + Er − iε)

+ π

Er

δ+(
r2 − m2

N

)
(p0 + q0 − Er − ωk′ + iε)(p0 + q0 − Er + ωk′ − izε)(p0 − Er − ωk + iε)(p0 − Er + ωk − izε)

]
.

(71b)

If prescription (51) is used to implement the spectator
approach in G0, z = 1 should be chosen; z = 0 corresponds
to prescription (59).

In Gμ
N the delta function demands k′ = k and hence r =

p − k, r′ = p + q − k. Meanwhile, Gμ
π has r′ = r and hence

r = p − k, k′ = k + q. With that in mind, it is easy to see
that Gμ

N and Gμ
π remain regular when the square bracketed

denominators without iε terms go to zero. For instance, when
q0 = ωk − ωk+q, we have ωk+q + ωk + q0 = 2ωk , q0 − ωk −
ωk+q = −2ωk+q, and p0 + q0 + ωk+q = p0 + ωk . The first
two terms contained in the large curly brackets of Eq. (71b)
therefore cancel out and result in a derivative rather than a
singularity.

Note that the denominators in the round brackets cannot
pass through zero when q2 � 0 (this is the only case that
we will be considering). When −|q| � q0 � 0 it is obviously
impossible to have ωk+q + ωk − q0 = 0. If we also have a case
of |q| < |k| then

−ωk+q − ωk < −|k| < −|q| � q0 (72)

and it is not possible for ωk + ωk+q + q0 to pass through zero
either. Now consider the situation of |q| � |k|. In the extreme
case where q is parallel to k we have

−ωk+q − ωk = −
√

(|k| + |q|)2 + m2
π −

√
k2 + m2

π

< −|q| � q0. (73)

In the other extreme case where k is antiparallel to q we have

−ωk+q − ωk = −
√

(|k| − |q|)2 + m2
π −

√
k2 + m2

π

< −| |k| − |q| | − |k|
� q0 (74)

Thus the zeros of all round bracketed denominators are ex-
cluded. A proof that is nearly identical to the one above
shows that the zeros of ±(ωk+q + ωk ) − q0 are inaccessible
for 0 � q0 � |q| as well.

VI. NUCLEON ELECTROMAGNETIC FORM FACTORS

We now have the ingredients to calculate the photon-
nucleon vertex in Eq. (45). To test its accuracy, nucleon
electromagnetic form factors have been extracted. This is
done by using Lorentz invariance and the Gordon identity to

express the on-shell version of 

μ
Z as,

ū(p′)
μ
Z (p′, p)u(p)

= eū(p′)
[

F1(q2)γ μ + iσμνqν

2mN
F2(q2)

]
u(p), (75)

where it is assumed that p2 = p′2 = m2
N . The Dirac matrix

coefficients F1, F2 are the electromagnetic form factors and
are 2 × 2 matrices in isospin space. They can be decomposed
into proton and neutron components:

F1,2 = 1 + τ3

2
F p

1,2 + 1 − τ3

2
F n

1,2. (76)

It is conventional to report the form factors in the combina-
tions

GE (q2) = F1(q2) + q2

4m2
N

F2(q2),

GM (q2) = F1(q2) + F2(q2),

(77)

which are the Sachs form factors. Those obtained from the
Fit A parameters and prescription (51) are shown in Fig. 5,
denoted by the dot-dot-dashed lines. The Gp

E and Gp
M data are

taken from [32], the Gn
E data from [33,34], and the Gn

M data
from [35,36]. That we have obtained Gp

E (0) = 1, Gn
E (0) = 0

is a strong indication that the Ward identity is satisfied and that
gauge invariance is being maintained. The curve for Gn

M also
predicts the data with reasonable accuracy. However, the GE

curves have slopes with signs opposite to what they should be,
while that for Gp

M has a magnitude that is too large. The wrong
slope of Gp

E at q2 = 0 is particularly significant as it implies a
negative mean square charge radius 〈r2〉 for the proton [37], a
result that seems to be connected to the problem of Z2 > 1 for
the Fit A case.

The Fit B form factors are denoted by the dot-dashed lines
in Fig. 5. The slopes of these curves all have the correct signs,
but they are not steep enough and the magnitudes of Gn,p

M (0)
are not very good either.

Overall, it would appear that our model, as it stands,
is incapable of describing the EM form factors for q2 < 0.
There are, on the other hand, a lot of successful models
in the literature. One early theory postulated that photons,
after turning into quark-antiquark pairs, couple to nucleons as
vector mesons. The vector meson propagators have a dipole
form, and when enough exchange diagrams are included in
these vector meson dominance models, they are able to fit the
form factor data very well without including any pion loops
at all [38,39]. However, these models are essentially phe-
nomenological, and impart little information about the under-
lying nucleon structure. Other early calculations were based
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FIG. 5. Nucleon electromagnetic form factors. The meaning of the different line types is explained in the text.

on dispersion theory [40,41]. More recently, nucleon form
factor calculations have used lattice QCD [42,43], cloudy bag
models [44], quark models [45,46], and chiral perturbation
theory [47–49]. The latter calculations involve pion loop
diagrams, but are based on quite complicated Lagrangians.
Accordingly, the bare γ NN vertices have a lot of physics in
them. In contrast, we have simply used e

2 (1 + τ3)γ μ for this
vertex. That this choice for the vertex is inadequate is further
evidenced by the poor results at large −q2 where all loop
diagrams in Fig. 1 are expected to vanish, thus leaving only
Z2


μ
N0 to describe the data. Another possible source of error

is that, having removed the dressing from the two-particle
intermediate states, all γ NN vertices appearing inside our
pion loops are bare ones. This has resulted in 


μ
N being

the solution of an ordinary equation rather than an integral
one. However, since 


μ
Z still contains an infinite number of

diagrams we will assume an inadequate choice of bare γ NN
vertex is the main reason our calculations give such poor
results.

Accordingly, we replaced all instances of 

μ
N0 with



μ
N0 → F̃1(q2)γ μ + F̃2(q2)

i

2mN
σμνqν + F̃3(q2) �qqμ (78)

The first two coefficients are chosen to have the dipole form

F̃1(q2) = e
1

(1 − b1q2)2

1 + τ3

2
,

F̃2(q2) = e
a2p

(1 − b2pq2)2

1 + τ3

2
+ e

a2n

(1 − b2nq2)2

1 − τ3

2
.

(79)

The remaining coefficient in Eq. (78), which is included so
that the new 


μ
N0 satisfies the WTI, is

F̃3(q2) = 1

q2

[
e

1 + τ3

2
− F̃1(q2)

]
. (80)

Since F̃1(0) = e
2 (1 + τ3), F̃3(q2) in the limit q2 → 0 is a finite

quantity involving the derivative of F̃1 with respect to q2. With
this new bare vertex, the calculation is able to achieve a good
description of the data, as shown by the dashed (Fit A) and
solid (Fit B) lines in Fig. 5. The parameters b1, b2α , and a2α

are given in Table III.
Overall, the results of Fig. 5 provide an explicit example

of how the assumption of a “bare” nucleon is in contradiction
with the experimental data, and that the nucleon should be
considered as a composite particle.
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TABLE III. Parameters of the bare γ NN vertex in Eq. (78). The
b parameters have units of GeV−2, while the a’s are dimensionless.

A B

b1 2.000 1.408
b2p 10.000 1.408
b2n 1.111 1.408
a2p −0.260 0.715
a2n −0.100 −0.978

VII. MULTIPOLE AMPLITUDES

We now come to calculating the γ N → πN amplitude
of Eq. (50). All the parameters have already been set either
by the πN phase shifts or by the EM form factors and
there is no further adjustment. The results presented in this
section are therefore all predictions of the data, rather than fits
to it.

It is convenient to work in the center of mass of the
incoming photon and nucleon, and for the motion of the final
state pion and nucleon to be in the xz plane. This corresponds
to the kinematics T μa

Z (k f , p − k f , pi ), where

k f = (ωk̄, k̄ sin θ, 0, k̄ cos θ ), pi = (E , 0, 0,−q̄),

q = (q̄, 0, 0, q̄), E =
√

q̄2 + m2
N ,

q̄ = p2
0 − m2

N

2p0
, p2

0 = 2Eγ mN + m2
N . (81)

The momenta of the incoming nucleon, outgoing pion, and the
photon are denoted by pi, k f , and q, respectively. They are all
taken to be on shell. The total momentum of the πNγ system
is p = pi + q and, since we require p0 > mN + mπ to produce
a pion, the energy of the incoming photon Eγ must be chosen
to be greater than mπ + m2

π/(2mN ) ≈ 148 MeV. The on-shell
relative momentum is given by

k̄ =
√

[p2
0 − (mN + mπ )2][p2

0 − (mN − mπ )2]

4p2
0

. (82)

In calculating T μa
Z , the dressed propagator and photon vertex

in the crossed Born term vvvμa
u have been replaced by their bare

equivalents. That is to say we have made the replacement

vvvμa
u (k′, r′, r) →


μ
N0

i

�r ′− �q − mN + iε
f a(k′, r′ − q, r).

(83)

The resulting T μa
Z is the same as the one obtained by attaching

photons in all possible ways to g̃N0gπ f g, where g̃N0 is the
same as gN0 but for a particle of mass mN . We tried calculating
the vvvμ

u of Eq. (49b) by boosting the dressed propagator and
vertices to moving frames, but did not obtain very good re-
sults. This is understandable, though, because the parameters
have been set for the specific case of the dressed quantities
being in stationary frames.

We have also left out the � resonance and heavy meson ex-
change diagrams of Figs. 3 and 6, even though they are needed

(a)

Δ

(b) ω, ρ

FIG. 6. Terms that contribute to γ N → πN but which are not
included in our model.

to describe certain photoproduction data. The � diagrams,
for instance, have a large impact on a number of multipole
amplitudes, particularly those for which the total isospin t
or total angular momentum j are equal to 3/2. However,
the exact size of their contribution is in part determined by
the � electromagnetic form factors, and because these are
not well known they are usually taken to be free parameters
(as in, for example, [3,5,6]). As we are primarily concerned
with studying the ability of T μa

Z to predict, rather than simply
describe, the data, we have dropped the � diagrams and
concentrated on the amplitudes for which j = 1/2, t = 1/2.
The � is not expected to contribute much (if at all) to these
channels.

Likewise, the meson exchange diagrams are neglected
because they can also be expected to make a fairly small
contribution to the j = 1/2, t = 1/2 amplitudes (compare the
dotted and dash-dotted curves in Figs. 3 and 4 of Ref. [6] for
an example of this).

The multipole amplitudes were extracted from T μa
Z using

the formulas written in Appendix C 2. These amplitudes are
labeled with the notation Ml± (t ) and El± (t ), where l is the
orbital angular momentum of the emitted pion and the ± sign
indicates the total angular momentum j = l ± 1

2 . M denotes
magnetic multipole amplitudes and E the electric ones; using
Eq. (C13) these are further decomposed into proton and
neutron components which are labeled by subscript n’s and
p’s.

The j = 1/2, t = 1/2 proton multipole amplitudes are
shown in Fig. 7, where the different line styles denote the
same scenarios as in Fig. 5. The neutron amplitudes, shown
in Fig. 8, are of similar quality. When 


μ
N0 = 1

2 e(1 + τ3)γ μ

is used, the curves for Fit A are mostly quite close to the
data, although those for M1− (1/2) have magnitudes that are
a little too large. Parametrizing the photon-nucleon vertices
according to Eq. (78) makes no appreciable difference to the
E0+ (1/2) amplitudes, but causes the M1− (1/2) ones to become
less accurate in the case of Fit A. A possible explanation
for this is that since the parametrization has been set up to
correct the on-shell version of �μ, the γ NN vertices appearing
in diagrams other than the uncrossed Born term vvvμa

s do not
have the right on-shell values (the γ NN vertices in diagrams
other than vvvμa

s are just 

μ
N0). It is also possible that, in

addition to making the on-shell form factors more accurate,
the parametrization has the side effect of making the off-shell
vertices less so.

The M1− (1/2) curves for Fit B, on the other hand, show
an improvement when the bare photon vertex is parametrized.
Using 1

2 e(1 + τ3)γ μ for 

μ
N0 produces curves that are not

too bad, although their magnitudes are a little too large at
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FIG. 7. Proton multipole amplitudes for j = 1/2, t = 1/2. The
various line styles denote the same cases as in Fig. 5, while the data
are taken from [28].

energies greater than about 300 MeV. Parametrizing 

μ
N0,

however, moves the M1− curves downward and makes them
more accurate.

(a)

-16

-14

-12

-10

-8

-6

-4

-2

 0

 150  200  250  300  350  400  450  500  550  600

10
-3

/m

E  (MeV)

Re[nE0+(1/2)]

(b)

-6

-5

-4

-3

-2

-1

 0

 150  200  250  300  350  400  450  500  550  600
10

-3
/m

E  (MeV)

Re[nM1-(1/2)]

(c)

-2

-1.5

-1

-0.5

 0

 150  200  250  300  350  400  450  500  550  600

10
-3

/m

E  (MeV)

Im[nE0+(1/2)]

(d)

-5

-4

-3

-2

-1

 0

 150  200  250  300  350  400  450  500  550  600

10
-3

/m

E  (MeV)

Im[nM1-(1/2)]

FIG. 8. Neutron multipole amplitudes for j = 1/2, t = 1/2. The
various line styles denote the same cases as in Fig. 5.

VIII. CONCLUSION

In this paper we have calculated a γ N → πN amplitude
that has both unitarity and gauge invariance. For the first time,
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gauge invariance has been achieved through the complete
attachment of photons to an infinite set of N → πN diagrams.

In these covariant initial investigations, we have chosen to
reduce loop integrals to three dimensions using the covariant
spectator approach. The results obtained so far are encourag-
ing: there have been no insurmountable technical difficulties
and the γ N → πN amplitudes predict photoproduction data
for j = 1/2, t = 1/2 fairly well (these are the channels to
which only diagrams involving pions and nucleons are ex-
pected to make significant contributions). The model can be
easily extended to describe amplitudes for j > 1/2, t > 1/2
through the addition of extra nucleon resonances and heavy
meson exchange diagrams.

Meanwhile, the dressed photon-baryon vertex �μ that is
an input to the γ N → πN calculation gives a reasonable
prediction of the nucleon electromagnetic form factors for
on-shell (q2 = 0) photons. To get a good description of the
form factors for q2 < 0, we found it necessary to parametrize
the bare photon-nucleon vertex. Happily, this parametrization
also improved the quality of the Fit B M1− (1/2) multipole
amplitudes.

The numerical calculations we have presented in this paper
successfully illustrate how the gauging of equations method
can be used in practice, and it is hoped that the results will be
useful for future developments.
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APPENDIX A: Nucleon and Roper propagators

1. Nucleon propagator

In order to determine bare masses and coupling constants
in our description, it is useful to decompose the nucleon
propagator into positive and negative energy components, as
illustrated by the well-known covariant identity for the bare
nucleon propagator:

1

� p − m + iε
= m

E

[
�+(p)

p0 − E + iε
− �−(−p)

p0 + E − iε

]
. (A1)

In this expression E =
√

p2 + m2, and �±(p) are the positive
and negative energy projection operators given by

�±(p) = m ± � p̄
2m

where p̄ = (E , p). (A2)

For the dressed nucleon propagator, an analogous decompo-
sition can be made, but it takes on a more complicated form
[50]:

−igN (p) = g+(p)�+(p) + g−
1 (p)�−(−p) + g−

2 (p)�−(p).
(A3)

In order to simplify the algebra, we work in the center-of-mass
(c.m.) system where p = (p0, 0) ≡ (

√
s, 0), in which case

Eq. (A3) reduces to a form similar to that of Eq. (A1):

−igN (p) = g+(p0)�+ + g+(p0)�−, (A4)

where �± ≡ �±(0) = (1 ± γ0)/2. Expressed in this way, the
pole and residue (Z2) of gN (p) at � p = mN , where mN is the
dressed nucleon mass, is manifest as the pole and residue of
the positive energy component g+(p0) at p0 = mN . In order
to show this explicitly, we first consider the dressed nucleon
propagator in its covariant form

−igN (p) = 1

� p − mN0 − �̃N (p) + iε
, (A5)

where the dressing term �̃N (p) = i�N (p) is expressed in its
most general form as

�̃N (p) =� pA(p2) + mN B(p2) (A6)

with A(p2) and B(p2) being scalar functions. Then the re-
quirement that gN (p) have a pole at � p = mN leads to the
expressions

mN0 = mN
[
1 − A

(
m2

N

) − B
(
m2

N

)]
(A7)

for the bare mass and

Z2 = 1

A(s) − 2m2
N [A′(s) + B′(s)]

∣∣∣∣
s=m2

N

(A8)

for the residue of gN (p) at the � p = mN pole. By then consid-
ering Eq. (A5) specifically in the c.m., one finds the following
expressions for the positive and negative energy components
appearing in Eq. (A4):

g+
N (p0) = 1

[1 − A(s)]p0 − m0 − mB(s) + iε
, (A9a)

g−
N (p0) = 1

[A(s) − 1]p0 − m0 − mB(s) + iε
, (A9b)

where s = p2
0. It can then be checked explicitly that g+

N (p0)
has a pole at p0 = mN with residue Z2.

2. Nucleon propagator with Roper mixing

The nucleon (N) and the Roper resonance (R) have the
same quantum numbers and therefore can couple via self-
interactions. Denoting the one-particle irreducible amplitudes
for transitions N → N , R → N , N → R, and R → R, by �NN ,
�NR, �RN , and �RR, respectively, it is useful to first define
propagators gN and gR through the equations

g−1
N = g−1

N0 − �NN , (A10a)

g−1
R = g−1

R0 − �RR. (A10b)

These, however, are not the physical nucleon and Roper
dressed propagators as they contain no nucleon-Roper cou-
plings. Instead, we denote the propagators with full nucleon-
Roper coupling by gNN , gNR, gRN , gRR, and these are most
easily described by defining the matrices

g =
(

gNN gNR

gRN gRR

)
, g0 =

(
g0N 0
0 g0R,

)
, (A11)

� =
(

�NN �NR

�RN �RR

)
. (A12)
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One can then write a set of coupled equations for these
propagators as

g = g0 + g0�g (A13)

so that

g−1 = g−1
0 − � =

(
g−1

N −�NR

−�RN g−1
R

)
(A14)

and therefore

g = 1

�

(
g−1

R �NR

�RN g−1
N

)
, (A15)

where � = g−1
N g−1

R − �2
NR. Evidently, the matrix of propaga-

tors g must have poles at the dressed nucleon mass, i.e., at
� p = mN ≈ 939 MeV, and at the dressed Roper mass, i.e., at
� p = mR ≈ 1365 − 95i MeV. Indeed, one can show that [24]

−� = ( � p − mN0 − �̃NN )( � p − mR0 − �̃RR) − �̃2
NR

= ( � p − mN0 − �̃N )( � p − mR0 − �̃R), (A16)

where �̃ = i�, and

�̃N = 1

2

[
mR0 − mN0 + �̃NN + �̃RR

−
√

(mR0 − mN0 − �̃NN + �̃RR)2 + 4�̃2
NR

]
, (A17a)

�̃R = 1

2

[
mN0 − mR0 + �̃NN + �̃RR

+
√

(mR0 − mN0 − �̃NN + �̃RR)2 + 4�̃2
NR

]
(A17b)

are dressing amplitudes that define the “physical” nucleon and
Roper propagators

g̃N (p) = i

� p − mN0 − �̃N + iε
, (A18a)

g̃R(p) = i

� p − mR0 − �̃R + iε
. (A18b)

One thus has that

g = g̃N g̃R

(
g−1

R �NR

�RN g−1
N

)
. (A19)

As shown above, in the c.m. one can write

−ig̃N (p) = g̃+
N (p0)�+ + g̃−

N (p0)�−, (A20a)

−ig̃R(p) = g̃+
R (p0)�+ + g̃−

R (p0)�−, (A20b)

where g̃+
N (p0) has a pole at p0 = mN and g̃+

R (p0) has a pole at
p0 = mR. We can similarly write (α, β = N or R)

�̃αβ = p0γ0Aαβ + mN Bαβ

= p0(�+ − �−)Aαβ + mN Bαβ (�+ + �−)

= (p0Aαβ + mN Bαβ )�+ − (p0Aαβ − mN Bαβ )�−

≡ �+
αβ�+ + �−

αβ�− (A21)

and

ig−1
β = p0γ0 − mβ0 − �̃ββ

= p0 (�+ − �−) − mβ0(�+ + �−) − �̃ββ

= (p0 − mβ0 − �+
ββ )�+ − (p0 + mβ0 + �−

ββ )�−

≡ [
g−1

β

]+
�+ + [g−1

β ]−�−. (A22)

It is worth noting that [g−1
β ]± = [g±

β ]−1. One can thus write in
the c.m. system

−ig(p) = 1

�+

(
[g+

R ]−1 �+
NR

�+
RN [g+

N ]−1

)
�+

+ 1

�−

(
[g−

R ]−1 �−
NR

�−
RN [g−

N ]−1

)
�− (A23)

≡ g+(p0)�+ + g−(p0)�−, (A24)

where

1

�± = 1

[g±
N ]−1[g±

R ]−1 − [�±
NR]2

= g̃±
N g̃±

R . (A25)

It is evident from Eq. (A25) that the positive energy compo-
nent g+(p0) has poles at p0 = mN and p0 = mR. Moreover,
the residue of g+(p0) at p0 = mN is readily seen to be of
separable form:

Res g+ = 1

�+′

⎛
⎝

√
[g+

R ]−1√
[g+

N ]−1

⎞
⎠(√

[g+
R ]−1

√
[g+

N ]−1
)
, (A26)

where all quantities are evaluated at p0 = mN .

APPENDIX B: The πN → πN potential

Although the πN → πN potential we have used is the
same as that in [25], it is written down here in order to
standardize the notation. The C’s that appear in Eq. (56) are
given by the expressions

C1/2
1 = −(C1,N + C1,R) + C1,σρ,

C3/2
1 = 2(C1,N + C1,R) + C1,σρ,

(B1)
C1/2

0 = −(C0,N + C0,R) + 4(C0,σρ + C0,ρ ),

C3/2
0 = 2(C0,N + C0,R) − 2(C0,σρ + C0,ρ ),

where

C0,N (p2) = Cg(0)2

πNN h2
N (u)

[
1

p2 + m2
N − mN mπ − 2m2

π

− (1 − xN )2

4m2
N

p2 + m2
π − m2

N

2p2

]
,

C0,ρσ (p2) = −C
g(0)2

πNN

mN
h2

N (u)
(1 − xN )2

4mN

p2 + m2
π − m2

N

2p2
,

C0,R(p2) = g(0)2
πNR

h2
R(u)√

p2
mπ

[
1

m̃2
R − u

− (1 − xR)2

(mN + m̃R)2

]
,
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TABLE IV. The parameters that appear only inside the potential.

A B

C 1.42929 1.00364
Cρ 0.86740 0.66669

C0,ρ (p2) = −Cρ

g(0)2

πNN

4m2
N

h2
N (u)

p2 + m2
π − m2

N

2p2
; (B2)

C1,N = Cg(0)2

πNN h2
N (u)

x2
N − 1

2mN
,

C1,ρσ = −C
g(0)2

πNN

mN
h2

N (u)x2
N ,

C1,R = g(0)2

πNRh2
R(u)

(
m̃R − mN

m̃2
R − u

+ x2
R − 1

mN + m̃R

)
, (B3)

and u = (mN − mπ )2. Most of the parameters contained in
these expressions also appear in the bare vertices and are listed
in Table I. The exceptions are C and Cρ , which are given in
Table IV.

APPENDIX C: Partial wave amplitudes

To compare the πN → πN and γ N → πN amplitudes
with experiment, we subject them to partial wave decompo-
sitions and then, in the case of πN → πN , compute phase
shifts. This appendix contains formulas for the partial wave
amplitudes and phase shifts.

1. Pion-nucleon scattering

To obtain the partial wave version of T , we first sandwich
it with Dirac spinors and decompose it into isospin 1/2 and
3/2 components:

T ūu
ba = (P1/2)baT ūu

1/2 + (P3/2)baT ūu
3/2, (C1)

where T ūu
ba (k f , p f , ki, pi ) = ū(p f )Tba(k f , p f , ki, pi )u(pi ).

When all the external particles are on shell, k2
f = k2

i = m2
π ,

p2
f = p2

i = m2
N , and this allows the terms on the RHS of

Eq. (C1) to be expressed as

T ūu
t = ζ1t ū(p f )u(pi ) + ζ2t ū(p f )γ0u(pi ). (C2)

Calculating the partial wave amplitudes T ūu
l ′l jt is then a matter

of using ζ1, ζ2 in the following expression [51]:

T ūu
l ′l jt = εk̄

mN
π

∫ 1

−1
dx

{
Pl (x)[ζ1t (x) + ζ2t (x)]

+
(

k̄

εk̄

)2

Pl±1(x)[ζ2t (x) − ζ1t (x)]

}
δl ′l , (C3)

where x = pi·p f

|pi||p f | , εk̄ =
√

k̄2 + m2
N + mN , and the on-shell

relative momentum k̄ is given in Eq. (82). The P’s are Leg-
endre polynomials and the ± sign refers to the total angular
momentum j = l ± 1

2 .

When a separable potential is used, putting the amplitude
into the form of Eq. (C2) is very simple since it depends only
on the total center-of-mass momentum p = (p0, 0). In that
case ζ1t , ζ2t are independent of x and we obtain

T ūu
00 1

2 t = 2πεk̄

mN
(ζ1t + ζ2t ),

T ūu
11 1

2 t = 2π k̄2

εk̄mN
(ζ2t − ζ1t ). (C4)

The partial wave amplitudes are related to phase shifts and the
inelasticity parameter η by the formulas

δl jt = 1

2
tan−1

[ −Re
(
αT ūu

l ′l jt

)
Im

(
αT ūu

l ′l jt

) + 1

]
,

η2
l jt = [

1 + Im
(
αT ūu

l ′l jt

)]2 + [
Re

(
αT ūu

l ′l jt

)]2
,

(C5)

where

α = mN k̄

8π2 p0
. (C6)

Because T ūu
l ′l jt has unitarity, η must be equal to 1 for all p0 > 0.

2. Pion photoproduction

To compare the properly normalized γ N → πN amplitude
T μa

Z with experiment, one first needs to sandwich it with Dirac
spinors and isospin- 1

2 states and contract it with a polarization
vector:

Mūu
am′

t mt
(λ) = 〈

1
2 m′

t

∣∣ū(p − k f )T μa
Z (k f , p − k f , pi )

× u(pi )
∣∣ 1

2 mt
〉
êμ(λ), (C7)

where mt and m′
t are the z-axis projections of the initial and

final nucleon isospins. The polarization vector is given by

êμ(±1) = ∓ 1√
2

(0, 1,±i, 0), (C8)

where the argument λ = ±1 is the helicity; the amplitudes
we calculate are independent of how this is chosen. When the
kinematics are set according to Eq. (81), Mūu

am′
t mt

(λ) can be de-
composed into products of ordinary numbers and rotationally
invariant matrices as [52]

− mN

4π p0
Mūu

am′
t mt

(λ) = iσ · ê(λ)J (1)
am′

t mt

+ σ · k̂ f σ · [q̂ × ê(λ)]J (2)
am′

t mt

+ iσ · q̂k̂ f · ê(λ)J (3)
am′

t mt

+ iσ · k̂ f k̂ f · ê(λ)J (4)
am′

t mt
,

(C9)

where k̂ f = k f

|k f | and q̂ = q
|q| . In writing this it has been

assumed that ū and u have the Bjorken and Drell [53]
normalization.

Note that the LHS of Eq. (C9) differs from Eq. (B.4) of
Nozawa, Blankleider, and Lee (NBL) [3] by a factor of −1.
This discrepancy occurs because NBL’s amplitude Ma

πN,γ N
consists of Feynman diagrams multiplied by −i. This may be
seen by deriving the Born terms in their Eqs. (2.8b) and (2.8c)
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from Feynman rules. Meanwhile, the amplitude Mūu
am′

t mt
in the

above Eq. (C9) consists of Feynman diagrams multiplied by i
and some renormalization constants. To compensate, an extra
minus sign has been included in this equation.

J (1)
am′

t mt
, J (2)

am′
t mt

, etc. are used to calculate the invariant
amplitudes,⎛

⎜⎜⎜⎜⎜⎝

Eam′
t mt

l+

Eam′
t mt

l−

Mam′
t mt

l+

Mam′
t mt

l−

⎞
⎟⎟⎟⎟⎟⎠ =

∫ 1

−1
dx Dl (x)

⎛
⎜⎜⎜⎜⎝

J (1)
am′

t mt

J (2)
am′

t mt

J (3)
am′

t mt

J (4)
am′

t mt

⎞
⎟⎟⎟⎟⎠, (C10)

where x = cos θ and θ is the same as that which appears in
Eq. (81). The matrix Dl is given by

Dl (x) =

⎛
⎜⎜⎜⎜⎜⎝

alPl −al Pl+1
al l

2l+1 Ql
al (l+1)

2l+3 Ql+1

blPl −bl Pl−1 − bl (l+1)
2l+1 Ql − bl l

2l−1 Ql−1

clPl −cl Pl+1 − cl
2l+1 Ql 0

−dl Pl dlPl−1
dl

2l+1 Ql 0

⎞
⎟⎟⎟⎟⎟⎠,

(C11)

where al = 1
2(l+1) , bl = 1

2l , cl = 1
2(l+1) , dl = 1

2l , Ql = Pl−1 −
Pl+1. The P’s in Eq. (C11) and in Q are Legendre polynomials
and are functions of x.

Assuming the charged pion isospin matrices use the sign
and normalization convention τ±1 ≡ (τ1 ± iτ2)/

√
2 and τ0 ≡

τ3, the multipole amplitudes are given by the following com-
binations of physical amplitudes [54]:

Ml± (0) = 1

2
√

2
[Ml± (γ n → π− p) + Ml± (γ p → π+n)],

Ml± (1/2) = Ml± (γ p → π0 p) − 1

2
√

2
[3Ml± (γ n → π− p)

− Ml± (γ p → π+n)], (C12)

where Ml± (γ n → π− p) is equal to Mam′
t mt

l± with a = −1, m′
t =

1
2 , mt = − 1

2 . Similarly, Ml± (γ p → π+n) is equal to Mam′
t mt

l±

with a = 1, m′
t = − 1

2 , mt = 1
2 and Ml± (γ p → π0 p) is equal

to Mam′
t mt

l± with a = 0, m′
t = 1

2 , mt = 1
2 . It is also conventional

to decompose the t = 1/2 amplitudes into “proton” and “neu-
tron” pieces:

pMl± (1/2) = Ml± (0) + 1
3 Ml± (1/2),

nMl± (1/2) = Ml± (0) − 1
3 Ml± (1/2). (C13)

Relations identical to those appearing in Eqs. (C12) and (C13)
also apply to the E amplitudes. To check for mistakes in the
computer program used to calculate the multipole amplitudes,
we verified that it correctly reproduces the Born term results
of Laget [55].

APPENDIX D: THE COUPLING CONSTANT

To evaluate the coupling constant of the dressed πNN
vertices, we compare the pole (second) term from the first of
Eqs. (33) to a similar diagram that has bare vertices with gπNN

substituted for g(0)
πNN and a bare propagator for a physical mass

nucleon. The dressed coupling constant may be extracted by
equating the residues of the two diagrams at the nucleon pole.

The properly normalized πN → πN pole term is

TPole(k f , p f , ki, pi ) = iZ2 f (k f , p f , p)g(p) f̄ (ki, p, pi ), (D1)

where p = pi + ki = p f + k f = (p0, 0). Putting the external
particles on shell (that is, choosing p2

i = p2
f = m2

N , k2
i = k2

f =
m2

π ) and sandwiching TPole with Dirac spinors allows it to be
expressed in terms of the �± operators, giving

T ūu
Pole = T +

PoleU
+ + T −

PoleU
−, (D2)

where T ūu
Pole = ū(p f )TPoleu(pi ) and

T ±
Pole(p0) = − Iτ Z2

∑
βα

f ∓
β (p0)g∓

βα (p0) f̄ ∓
α (p0),

U ± = ū(p f )�±u(pi ). (D3)

The f ±
α (p0) factors are ordinary numbers (not matrices) given

by expressions that are straightforward to derive, while Iτ is
an isospin factor. Now, the negative energy propagator g− does
not have poles at the particle masses and so the residue of TPole

at p0 = mN is

Res
p0=mN

T ūu
Pole = −Iτ Z2

∑
αβ

f +
α (mN ) f +

β (mN )
√

ZαZβU −. (D4)

The diagram to which this should be compared is

V ūu
Pole = −Iτ g2

πNN ū(p f )γ5
� p + mN

p2 − m2
N + iε

γ5u(pi ) (D5)

When all particles are on shell and the diagram is multiplied
by Dirac spinors, pseudovector coupling is equivalent to
pseudoscalar. Using pseudoscalar coupling therefore causes
no loss of generality, and in either case the residue at p0 = mN

is

Res
P0=mN

V ūu
Pole = −Iτ g2

πNNU −. (D6)

Equating this to the RHS of Eq. (D4), we see that

gπNN = √
Z2 f +

N (mN )
√

ZN + √
Z2 f +

R (mN )
√

ZR. (D7)

The bare coupling constant g(0)
πNN should be set so that gπNN ≈

13.02.
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