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Description of shape coexistence in 96Zr based on the quadrupole-collective Bohr Hamiltonian
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Experimental data on 96Zr indicate coexisting spherical and deformed structures with small mixing ampli-
tudes. Although a possible geometrical description of such a shape coexistence is implied in the contemporary
discussion, it does not exist yet for 96Zr. The observed properties of the low-lying collective states of 96Zr
based on the geometrical collective model are investigated. The quadrupole-collective Bohr Hamiltonian with
the potential having two minima, spherical and deformed, is applied. Good agreement with the experimental data
on the excitation energies, B(E2), and B(M1) reduced transition probabilities is obtained. It is shown that the
low-energy structure of 96Zr can be described in a satisfactory way within the geometrical collective model with
a potential function supporting shape coexistence without other restrictions of its shape. However, the excitation
energy of the 2+

2 state can be reproduced only if the rotation inertia coefficient is taken to be 5 times smaller than
the vibrational one in the region of the deformed well. It is shown also that shell effects are important for the
description of B(M1; 2+

2 → 2+
1 ). An indication of the influence of the pairing vibrational mode on the 0+

2 → 0+
1

transition is obtained.
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Shape coexistence in nuclei is a remarkable phenomenon
which has become a widespread feature that may occur in
many nuclei. The occurrence of different shapes has its origin
in the evolution of shell structure with excitation energy and
varying occupation of nucleonic orbitals [1–3]. It was dis-
cussed in Ref. [4] that the occurrence of the shape coexistence
can be related to the existence of a sufficiently large energy
gap between subshells. Closely spaced subshells lose their
individuality due to pairing correlations and behave as a sin-
gle, large subshell supporting deformation. In the presence of
the well-defined subshells in the spherical single-particle level
scheme a strong redistribution of nucleons over the single-
particle levels can take place by particle-hole transitions with
increasing excitation energy. This helps to stabilize the defor-
mation of the excited states when the ground state is spherical
[5]. A substantial change of a configuration of nucleons may
lead to a large difference in microscopic structure between
the spherical states and the states with deformation-optimized
shell structure. This property can decrease the mixing of two
configurations of different shapes. Although the explanation
of shape coexistence phenomena is a subject of microscopic
nuclear models, the collective model treats directly the shape
parameters as its dynamical variables and, thus, is supposed
to describe the dynamical consequences of shape coexistence
in a simple way.

The basic idea of the nuclear collective model is that,
even though such a quantum many-body system as the
atomic nucleus is characterized by a huge amount of micro-
scopic degrees of freedom, they are organized in collective
modes playing a crucial role in determining nuclear structure.

Consequently, a collective Hamiltonian can be constructed
which includes, in the case of the geometrical collective
model, as the basic ingredients the deformation-dependent
collective potential and the tensor of inertia [6,7]. This Hamil-
tonian determines nuclear collective dynamics.

A shape evolution of the nuclear states can happen as a
function of excitation energy, angular momentum, and the
number of nucleons. The shape transition with the number
of nucleons has been noticed in many chains of isotopes and
isotones but appears to be rather gradual in many cases. The
abrupt change of shape in Zr isotopes [8–10] is exceptional.
This is a notable feature of nuclear structure in A ≈ 100
nuclei. The structure of Zr isotopes has been studied within
the framework of many different models [11–24]. Strongly de-
formed states coexisting with a nearly spherical ground state
have been reported for Sr and Zr isotopes [25–27]. In parallel
with a smooth or abrupt establishment of a deformed shape, a
significant mixing between the configurations of a different
shape or a suppressed mixing of two such configurations
can be considered. Such information can be obtained from
electromagnetic transition probabilities. By measuring the
electromagnetic decay properties of the collective 2+

2 state of
96Zr [28] the high purity of the coexisting states has recently
been established. Some low-lying excited states of 96Zr are
related by strong E2 transitions. Therefore, it is natural to
consider them in the framework of the collective quadrupole
model with a Bohr Hamiltonian and it is intriguing to study
to what extent the collective model is capable of reproducing
the experimentally observed situation. The interpretation of
the observed properties of 96Zr in the framework of the
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geometrical collective model is, thus, an important task and
it is the main motivation to undertake the present investiga-
tion. In Refs. [5] and [28] the properties of 96Zr have been
considered in the framework of the shell model.

An explanation of the observed high purity of the co-
existing spherical and deformed states in the framework of
the geometrical collective model requires a consideration
of the collective Hamiltonian having a potential with two
minima. To our knowledge the Bohr Hamiltonian with such
potential has been considered up to now only in the papers
of two groups [29–32] where the sextic-type potential has
been treated with quite restricted possibilities for variation
of the relative depth of the spherical and deformed minima,
a rigidity of the potential near the minima, and a height
and width of the barrier separating two minima. However, in
order to verify a principal possibility of the description of the
observed properties of 96Zr within the geometrical collective
model it is important to consider a potential with spherical
and deformed minima, however, without any other restrictions
of their shapes, i.e., including shallow regions around the
minima for the occurrence of soft deformation. In the present
paper the experimental data for 96Zr are analyzed based on the
β-dependent potential with two minima separated by a barrier;
however, all other characteristics of the potential, e.g., relative
depth of two minima, the height and width of the barrier,
and other characteristics of the potential, are varied without
restrictions so as to achieve a satisfactory description of the
observed properties of the low-lying states of 96Zr.

Thus, the aim of the present paper is to investigate an
option to approximately describe, in principle, the properties
of the low-lying collective 0+

1,2 and 2+
1,2 states of 96Zr and a

weak mixing of the configurations characterized by spherical
and deformed shapes based on the quadrupole-collective Bohr
Hamiltonian. At the end of the paper we consider briefly the
characteristics of the 4+

1 and 0+
3 states. It is also interesting

how the impact of shell effects are manifested in such a
description.

The quadrupole-collective Bohr Hamiltonian takes the
form [33]

H = − h̄2

2B0

1√
wr

1

β4

∂

∂β
β4

√
r

w
bγ γ

∂

∂β

+ T̂βγ + T̂γ + h̄

2B0

∑
κ

Î2
κ

�κ

+ V (β ). (1)

The first term in Eq. (1) presents the kinetic energy of β

vibrations. The second and the third terms are connected to
the γ degrees of freedom. The last two terms are the rotational
and potential energies. Above,

w = bββbγ γ − b2
βγ , r = b1b2b3,

(2)
�κ = 4bκβ

2 sin2

(
γ − 2κπ

3

)
.

The parameter B0 is a dimensional scaling factor for the
components of the inertia tensor. Thus, the coefficients bββ ,
bγ γ , bβγ , and bκ are dimensionless inertia coefficients for the
β and γ vibrations and the rotational motion. The collective
potential is determined below.

TABLE I. The results of calculations of the energies and electro-
magnetic reduced transition probabilities for 96Zr. The value of brot

is taken as 0.2. The values of B(E2) are given in Weisskopf units
and those of B(M1) are given in nuclear magnetons. The value of
Q(2+

2 ) is given in e b. The excitation energies are given in keV. The
experimental energy of the 0+

2 state is used to fix the value of B0.
Experimental data are taken from Refs. [28,39].

Energies and transitions Calc. Expt.

E (2+
1 ) 1748 1750

E (2+
2 ) 2268 2226

E (0+
2 ) 1582∗ 1582

B(E2; 2+
2 → 0+

2 ) 26.1 36(11)
B(E2; 2+

1 → 0+
1 ) 3.6 2.3(3)

B(E2; 2+
2 → 0+

1 ) 0.26 0.26(8)
ρ2(0+

2 → 0+
1 ) 0.0013 0.0075

B(E2; 2+
2 → 2+

1 ) 2.25 2.8+1.5
−1.0

B(E2; 2+
1 → 0+

2 ) 6.8 —
B(M1; 2+

2 → 2+
1 ) 0.11 0.14(5)

Q(2+
2 ) −0.51 —

For keeping our task at a manageable size we assume that
the γ degrees of freedom can be separated from β in the
potential and the value of γ is stabilized around γ = 0. We
mention, however, that the results for the potential energy
surface of 96Zr presented in Ref. [28] rather indicate a triaxial
shape in its 2+

2 and 0+
2 states. Triaxiality should decrease

significantly the result presented in Table I for Q(2+
2 ). Thus,

future experimental data on this quantity will give us informa-
tion on the shape of 96Zr.

A separation of β and γ in the potential is not sufficient for
the complete separation of β and γ degrees of freedom since
they are coupled through the kinetic energy term. However,
this coupling effectively produces an additional ∼1/β2 type
term in V (β ) [34]. Thus, the potential obtained below fitting
the data includes, in fact, the effect of the β-γ coupling
through the kinetic energy term. It is found in our calculations
that the interpretation of the existing experimental data on
0+

1,2 and 2+
1,2 states does not require an introduction of a

β-dependent bββ coefficient. Thus, we put below bββ = 1. We
assume also, for simplicity, that b1 = b2 = b3 ≡ brot.

After approximations discussed above we obtain the fol-
lowing expression for the collective Hamiltonian:

H = − h̄2

2B0

1

b3/2
rot

1

β4

∂

∂β
β4b3/2

rot
∂

∂β
+ h̄2

2B0

	̂I2 − Î3
2

3brotβ2
+ V (β ).

(3)

A description of the β motion only, without consideration
of the γ variable, was realized for the first time in the
Davydov-Chaban model [35]. It was assumed there that γ

is a constant and not a collective variable. Thus, a collective
motion has been considered not in the five-dimensional but
in the four-dimensional space. As a result, β3 was presented
instead of β4 in the kinetic energy term of the β motion.
Having in mind a future generalization of our consideration to
the full β-γ plane we treat γ as a collective variable, however,
separated from β (see, for instance, Ref. [36]).
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Using the Hamiltonian (3) to obtain an equation for the
collective wave function and excluding from this equation a
term with a first derivative over β we get the Schrödinger
equation in the following form:{

− h̄2

2B0

d2

dβ2
+ h̄2

2B0

	̂I 2 − Î 2
3

3brotβ2
+ V (β )

+ h̄2

2B0

[
1

4τ

d2τ

dβ2
− 3

16

(
1

τ

dτ

dβ

)2
]}

	 = E	, (4)

where τ = β8b3
rot. We keep in Eq. (4) the rotational inertia

coefficient because, as it was found in Refs. [37,38], in the
case of well-deformed axially symmetric nuclei the inertia
coefficient for the rotational motion is 4–10 times smaller than
the inertia coefficient for the vibrational motion. In a complete
correspondence with this result it is shown below that in order
to explain the excitation energy of the 2+

2 state it is necessary
to take brot/bββ several times less than unity.

Using the wave functions from Eq. (4) the matrix elements
of an arbitrary operator F̂ are calculated as

〈i|F̂ | j〉 =
∫ ∞

0
dβ	∗

i F̂	 j . (5)

The E2 reduced transition probability is given by the
following expression:

B(E2; Ii → I f ) =
(

3

4π
ZeR2

0

)2(
C

If 0
Ii0 20

)2|〈i|β| j〉|2, (6)

where R0 is the nuclear radius and C
If 0
Ii020 is the

Clebsch-Gordan coefficient. The E0 transition strength
ρ2(E0; Ii → I f ), which is defined as ρ2(E0; i → f ) ≡
|〈 f |M(E0)|i〉|2/(eR2

0)2, and in the collective model
M(E0) = 3/4πZeR2

0β
2, is given by

ρ2(0+
2 → 0+

1 ) =
(

3

4π
Z

)2

|〈0+
2 |β2|0+

1 〉|2. (7)

The M1 reduced transition probability is calculated assuming
the following expression for the M1 transition operator:

(M1)μ = μN

√
3

4π
gR(β )Îμ, (8)

where μN is the nuclear magneton and gR(β ) is the
deformation-dependent collective g factor. This form of the
M1 transition operator is justified below. Thus,

B(M1; 2+
2 → 2+

1 ) = μ2
N

9

2π
|〈2+

2 |gR(β )|2+
1 〉|2. (9)

The Hamiltonian (4) contains two important ingredients
that determine the results of our calculations: the potential
energy as a function of β and the inertia coefficient for the
rotational motion. To describe the shape of the potential we
defined several points fixing the positions of the spherical
and deformed minima, the rigidity of the potential near its
minima, and the height and width of the barrier separating
the two minima. The deformation at the second minimum has
been taken to be β = 0.24 in agreement with the experimental
value of B(E2; 2+

2 → 0+
2 ). The potential energy as a function

FIG. 1. The wave functions of the 0+
1 , 0+

2 , 2+
1 , and 2+

2 states.

of β is determined by using cubic spline interpolation between
selected points. Then we numerically solve the Schrödinger
equation (4) with zero boundary conditions, varying selected
points in order to get a satisfactory description of the energies
of the 2+

1 and 2+
2 states and the following transition proba-

bilities: B(E2; 2+
2 → 0+

2 ), B(E2; 2+
1 → 0+

1 ), and B(E2; 2+
2 →

0+
1 ). The number of points is taken to be between 10 and 13,

although we did not aim at a minimization of the number of
points determining the shape of the potential. Small variations
of the positions of some points can lead to noticeable varia-
tions of the values of observables. The parameter B0 has been
varied to fix the energy of the 0+

2 state.
We have initially assumed that the rotational inertia co-

efficient brot = 1. It was found in this case that the main
problem for describing the experimental data is related to
the reproduction of the excitation energy of the 2+

2 state
together with the 0+

2 state. This energy spacing was obtained
at several hundreds of keV lower than the experimental value.
As it is shown in Fig. 1 the wave function of the 2+

2 state
is located in the deformed well of the potential. Therefore,
this state can be interpreted qualitatively as a rotational state
based on the 0+

2 state, and its energy is determined by the
deformation at the minimum of the deformed well and the
rotational inertia coefficient. The deformation at the minimum
of the deformed well is related to the B(E2; 2+

2 → 0+
2 ) value.

Therefore, the calculated value of the excitation energy of the
2+

2 state can be improved only if we assume that the rotational
inertia coefficient brot is smaller than the vibrational inertia
coefficient, i.e., that brot/bββ < 1.

The results for the energies of the low-lying collective
states and the electromagnetic transition probabilities ob-
tained, assuming that the rotational inertia coefficient is 5
times smaller than the vibrational one (i.e., brot = 0.2), are
shown in Table I and in Fig. 2.

The results presented in Table I are obtained assum-
ing that γ = 0. This assumption does not influence the re-
sults for B(E2; 2+

i → 0+
j ). However, in the case of γ = 30◦,

Q(2+
2 ) = 0. As it is seen from the results presented in

Table I the agreement between the calculated results and the
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FIG. 2. Experimental (a) and calculated (b) low-lying 0+ and 2+

states of 96Zr. Excitation energies are given in keV. The values of
electric transition probabilities are given in Weisskopf units and those
of magnetic ones are in nuclear magnetons. Experimental data are
taken from Ref. [28].

experimental data is satisfactory. The results for ρ2(0+
2 →

0+
1 ) and B(M1; 2+

2 → 2+
1 ) are discussed below. The value

of ρ2(0+
2 → 0+

1 ) is a factor 3.6 smaller than the experimental
value. However, both the experimental and the calculated
ρ2(0+

2 → 0+
1 ) values are small in comparison to the corre-

sponding quantities in other nuclei [40].
Taking the average of a double commutator

[[H, β2], β2] = (4h̄2/B0)β2 over the ground state and
using the well-known relation between 〈0+

1 |β2|0+
1 〉 and

B(E2; 2+
1 → 0+

1 ) [41], we can derive the following relation:

ρ2(0+
2 → 0+

1 ) � h̄2

B0

1

E (0+
2 )

10B(E2; 2+
1 → 0+

1 )

e2R4
. (10)

In our calculations the value of h̄2/B0 was fixed as 8.062 keV
to reproduce the experimental value of E (0+

2 ). Substitut-
ing this value and the experimental values of E (0+

2 ) and
B(E2; 2+

1 → 0+
1 ) into Eq. (10) we obtain that ρ2(0+

2 →
0+

1 ) � 0.0035, in satisfactory correspondence to the result
given in Table I.

This result means that we can reproduce the experimental
value of ρ2(0+

2 → 0+
1 ) = 0.0075 using the collective model

with quadrupole degrees of freedom only within a factor
of 2. We cannot exclude that the pairing vibrational mode
plays an important role in a description of the E0 transitions
[42].

Consider now the result obtained for the B(M1; 2+
2 → 2+

1 )
value. Application of the collective model expression for the
M1 transition operator [43] gives a value that is more than
3 orders smaller than the experimental one. This means that
another approach should be used to derive an expression for
the M1 operator. In this rapid communication we only indicate
a way in which this can be done. The expression for the
M1 transition operator suitable for use within the geometrical
collective model can be obtained in the framework of the
generator coordinate method. Qualitatively, we can suggest
the following procedure; however, a detailed presentation of
the derivation of the required expression needs a separate

FIG. 3. The potential energy V (β ) and the calculated energy
levels.

publication. After some approximations described in Ref. [44]
(see also Ref. [45] where the expression for the arbitrary
single-particle operator has been derived), the final expression
looks to be a product of the geometrical factor reflecting the
dipole character of the M1 transition operator and an integral
over β. This integral is a product of the diagonal matrix
element of the M1 single-particle operator, taken over the
BCS wave function obtained for the given value of β, and
the collective wave functions of the initial and final states.
This expression looks like the integral in Eq. (9). Thus, the
matrix element mentioned above can be identified with gR(β ).
At β = 0 it is natural to take this matrix element to be equal
to the shell model value of the g factor of the 2+

1 state,
namely, −0.26. We assume this value to be correct inside the
spherical well. In the deformed well we can use the standard
collective model value Z/A. The calculations of the collective
g factor for the well-deformed nuclei [46] indeed always gives
a positive value close to Z/A; however, this value can differ for
neighboring isotopes and is usually smaller than Z/A. Then
we interpolate between these two values assuming a narrow
transition region in β where the wave function of the 2+

2 state
changes its sign.

With this transition operator we obtain B(M1; 2+
2 →

2+
1 ) = 0.11μ2

N , which coincides in the limit of the experi-
mental uncertainties with the experimental value 0.14μ2

N [28].
This result stresses the importance of the shell effects for the
description of the shape coexistence phenomena, at least, in
the case of 96Zr.

The collective potential, which has been fixed phenomeno-
logically to describe the experimental data, is shown in Fig. 3.
The height of the barrier calculated from the energy of the
ground state is equal to 2.45 MeV.

The wave functions of the ground and excited states are
shown in Fig. 1. Their distribution between the spherical and
deformed parts of the total potential is characterized by the
values obtained by integration of the squares of the wave
functions over the regions inside the spherical or deformed
wells. These values are presented in Table II.
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TABLE II. Distribution of the wave function of the 0+
1 , 0+

2 , 2+
1 ,

and 2+
2 states between the spherical and deformed parts of the total

potential.

Potential well 0+
1 0+

2 2+
1 2+

2

Spherical 98.9% 3.2% 77.3% 23.7%
Deformed 1.1% 96.8% 22.7% 76.3%

As the value of β separating the spherical and deformed
wells we have considered several points: the zeros of the 2+

2
and 0+

2 wave functions, and the middle of the barrier. The
results obtained are not very sensitive to this choice. As we
see from Table II the wave function of the Iπ = 0+

1,2 states
are practically concentrated in one well: spherical for the 0+

1
state and deformed for the 0+

2 state [23,28]. Qualitatively the
same situation is realized in the case of the Iπ = 2+

1,2 states.
However, in this case the distribution of the wave functions
between the spherical and deformed wells is less asymmetric.
As it is seen from Table II the wave function of the 2+

1 state
is also located mainly in the spherical well like the 0+

1 state.
However, its weight in the deformed minimum is equal to
22.7%, i.e., significantly larger than for the 0+

1 state.
In addition to the states considered above there are the

4+
1 state, which decays by a strong E2 transition to the 2+

2
state, and the 0+

3 state, also decaying to the 2+
2 state by

a strong E2 transition. This means that both the 4+
1 and

0+
3 states can be considered in the model presented in this

rapid communication. Our preliminary calculations with the
potential fitted above have shown that the wave function of
the 4+

1 state is concentrated in the deformed well. Therefore,
this state can be considered as a member of the band including
the 0+

2 and 2+
2 states. However, we have obtained that the

ratio [E (4+
1 ) − E (0+

2 )]/[E (2+
2 ) − E (0+

2 )] is equal to 2.5. This
value is much lower than the typical rotational ratio of 3.33;
however, is is larger than the experimental value of 2.0. The
reason for this result is the closeness of the energy of the 4+

1
state to the barrier height.

As we have found in our calculations the height of the bar-
rier can be varied in some limits without significant changes
of the results obtained for the 0+

1,2 and 2+
1,2 states, including

an extent of localization of these states in the spherical and
deformed wells. Of course, some values are changed; how-
ever, an overall agreement with experimental data remains.
Thus, inclusion of the higher excited states into consideration
can demand a change of the height of the barrier, since these
states are lying above the barrier, and the form of the potential
at deformations larger than β = 0.24. At the same time, the
noncollective degrees of freedom increase with excitation
energy and start to play an important role. This will limit the
possibility of the description of the experimental data within
the collective model.

For the energy of the 0+
3 state we obtained a value that is

much larger than the experimental one. Probably, this means
that the structure of the 0+

3 state is related to the excitation of
the γ mode.

In conclusion, we have studied a possibility to describe
the properties of the low-lying collective states of 96Zr based
on the quadrupole-collective Bohr Hamiltonian in terms of
axially symmetric shape coexistence. The potential energy of
this Hamiltonian is fixed to describe the experimental data in
a satisfactory way. This potential has two minima—spherical
and deformed separated by a barrier. Good agreement with
the experimental data is obtained for the excitation energies,
B(E2), and B(M1) values of the lowest-lying states. It is
shown that the experimental value of the excitation energy of
the 2+

2 state can be reproduced only if the rotational inertia
coefficient in the region of a deformed well is taken to be 5
times smaller than the β-vibrational inertia coefficient.

The calculated value of ρ2(0+
2 → 0+

1 ) is 6 times smaller
than the measured value. This indicates a possible influence of
the pairing vibrational mode that is not included in the present
consideration.

The calculated value of the B(M1; 2+
2 → 2+

1 ) strength
demonstrates an excellent agreement with the experimental
value. However, this result has been obtained due to using an
M1 transition operator that takes into account the result of the
shell model for the g factor of the spherical configuration.
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