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Background: Within the quartet condensation model (QCM), the isovector pairing correlations for N = Z nuclei
are described with a very high accuracy by a “condensate” of a-like quartets. The usual approach involves
cumbersome recurrence relations in order to compute numerically the relevant quantities of the model: the norm
of the quartet states and the mean value of the isovector pairing Hamiltonian as functions of the pair mixing

amplitudes.

Purpose: We present the final analytical expressions for the above-mentioned quantities, for all cases up to four

quartets in the valence shell.

Method: The analytical QCM expressions were obtained by a straightforward implementation of the SO(5)
algebra in the symbolic computer algebra system CADABRA2.

Results: The norm of the quartet states and the mean value of the Hamiltonian are polynomial functions of the
mixing amplitudes. The numerical implementation of the QCM model is thus made trivial as a matter of copying

and pasting the presented formulas.

Conclusions: We introduce in this work a method of computer-aided analytical calculus for a many-body setting.
In particular, we provide precise and easy-to-use tools for the description of isovector pairing correlations.
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The o particle is the nucleus with the largest binding
energy in nature. For this reason this structure survives as an
o cluster, as can be seen from the binding energy analysis
of nuclei. Therefore the «a-cluster model of the nucleus was
proposed in the early years of nuclear structure theory [1].
The «a-like structure is hindered by the Pauli principle and
various approaches have been proposed to account for it [2-7].
The «-like structures were experimentally evidenced in light
nuclei [8] and therefore they were extensively analyzed in the
low-lying energy region [9-13], as well as in dipole resonance
area [14,15]. In medium and heavy nuclei, « clustering can
experimentally be correlated with the «-decay phenomenon
[16]. It was understood that an «-clustering component is
necessary in addition to the single-particle basis in order to
describe the absolute value of the «-decay width [17,18]. This
can be explained by the fact that « particles can appear only
at relatively low nuclear densities [19], a situation which is
realized on the nuclear surface of o-decaying nuclei [20].

Recently the quartet condensation model (QCM) was pro-
posed for the study of isovector pairing correlations in N = Z
nuclei [21,22] and further developed in [23-29] for the case of
isoscalar pairing and N > Z nuclei. Here, the building blocks
are not the Cooper pairs, but four-body clusters composed
of two neutrons and two protons coupled to the isospin
T =0 and to the angular momentum J = 0. The standard
QCM procedure uses involved recurrence relations in order
to compute the norm of the quartet states and the mean value
of the isovector pairing Hamiltonian as functions of the pair
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mixing amplitudes. Our purpose it to give closed analytical
expressions for the above-mentioned quantities, for all cases
up to four quartets in the valence shell.

We consider the isovector pairing Hamiltonian applicable
to both spherical and deformed nuclei

Niev Niey
H=Y aNiog+ Y Y ViPl P (1)
i=1 T=0,%14,j=1

where i, j denote the single-particle doubly degenerate states

and ¢; refers to the single-particle energies; a time-conjugated

state will be denoted by i. The N;( operator counts the
. . i

total number of particles, N;o =Y ._ , (¢; cir + chc;’,),

whereas the isovector triplet of pair operators is given

+ t T=1 .. T
by P = [Cifcir]s:o' Explicitly, Pfl = c:f’uc;yv, P:_l =
o

cInc{n, and P;O = %(cwcijr + cch;,u)' The V;; coefficients
represent the matrix elements of the pairing interaction in the
wr, vv, and 7t v channels.

In the following we limit ourselves to a short description
of the model’s features for self-consistency. Within the QCM,
one first defines a set of collective wm, vv, and v Cooper

pairs

Niey

rie) =Y xPl. 2
i=1
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where the mixing amplitudes x; are the same in all cases
due to isospin invariance. A collective quartet operator is
then constructed by coupling two collective pairs to the total
isospin7 =0
0'(x) = [M'TS = 2 or! (0 — [T{P. 3)
Finally, the ground state of the Hamiltonian (1) is described as
a “condensate” (although an actual & condensate appears only
at low densities) of such a-like quartets
W, (x)) = [Q(x)17]0), “
where ¢ is the number of quartets. By construction, this state
has a well-defined particle number and isospin. Its structure
is defined by the mixing amplitudes x;, which are determined
numerically by the minimization of the Hamiltonian expecta-
tion value, subject to the unit norm constraint, i.e.,

§{Wy(x)|H|Wy(x)) =0
(Wq ()W (x))

&)

To compute these quantities, the method proposed in [22,23]
makes use of the recurrence relations obeyed by the matrix
elements of the pairing interaction in the auxiliary basis
|ninons) = FT"‘I" "21"2)"’|O of states having a well-defined
number of mm,vv, and mwv pairs. The advantage of this
method lies in its generality: the same numerical code is able
to compute the relevant quantities in all cases of interest. On
the downside, within this framework a large number of numer-
ical evaluation steps are required in order to obtain the values
of the norm and Hamiltonian average. Taking into account the
fact that the minimization procedure itself requires multiple
evaluations of the functions, the code running times may be
considerable, especially in the case of coupled mean-field +
quarteting self-consistent approaches (a possible interesting
generalization of the relativistic mean field + projected-BCS
of Ref. [30]). Furthermore, the recurrence relations them-
selves are rather involved and thus challenging to derive and
to implement numerically.

We address these issues by choosing to evaluate analyti-
cally rather than numerically the expressions of the norm and
Hamiltonian average. On the one hand, a direct numerical
implementation of the final formulas considerably shortens
the code running times. On the other hand, the problem of
obtaining the numerical implementation itself is made trivial,
being a matter of copying and pasting the formulas (with some
minor syntax modification to make them compatible with the
chosen programming language).

The basic idea of our approach is that a single run of the
symbolic evaluation code for an expression renders unneces-
sary the alternative of an arbitrary number of possible numer-
ical evaluations. To this purpose we employ the CADABRA2
symbolic computer algebra system [31-33], capable of ana-
lytically handling operations with noncommuting objects. We
have implemented the SO(5) algebra (e.g., presented in [22])
as a set of substitution rules which are repeatedly used in
order to evaluate the averages of the relevant operators on the
quartet states. The substitution operations are performed until

convergence is achieved for the considered expression. As an
illustrative schematic example of the procedure, consider an
average of the single-particle energy term

(OIF1&N; 1 T} 10) = (01T 2P, + T{N; DI0)
= 2¢x;(0|T1 P, |0)

= 2€x;:{0|(P],
=26 = 26, (©)

It 4 x; — xiN;,1)10)

where (some of) the substitution rules employed are derived
directly from the SO(5) algebra: N,-JFI — 2x,-PZ1 + FIN,-J
and FlPl.Tl — P:lI‘] + x; — x;N; 1. Also, we use the standard
vacuum annihilation conditions N;;|0) — 0 and I';|0) — O
and the notation €;x7 — &. At each step, it is also necessary
to invoke the routines performing the distribution of terms and
the sorting of each expression. The largest running time of
our brute force implementation of the SO(5) algebra is of the
order of a few tens of CPU hours for the most complicated
case analyzed, that of four quartets [see Eqs. (12)—(14) below].
However, one needs to keep in mind that the code needs to be
executed only once. Also, it is not difficult to conceive further
optimizations in order to reduce the execution times and as
such to easily approach the cases of five or more quartets.

We present below the results for the cases correspond-
ing to a number of ¢ =1, 2,3, and 4 quartets in the va-
lence space. The numerical results obtained using the expres-
sions given below were confirmed to be identical to those
obtained using the standard recurrence relations approach
[34].

The norms of the quartet states and the Hamiltonian aver-
ages as functions of the mixing amplitudes may be expressed
as

(Wy ()| Wy (x))
(Wy ()| H W, (x))

= Nq(x)’
= E,(x) + vy(x). @)

As expected, the above-mentioned quantities are polyno-
mial functions of the mixing amplitudes of degree 4q. It is
convenient to express them in terms of the sums

Niev Niey
o o
E“ZE X7, &ng € X;,
i=1 i=1
3
Mev Mey

Vop = Z Vijx?xf,

ij=1

ua = § ‘/ll'xlaa
i=1

where x7¥ denotes the amplitude x; to the power a and Ny, is
the number of levels in the valence space. The generalization
to the case of degenerate (spherical) levels is made trivial by
the fact that the mixing amplitudes and interaction matrix
elements are equal within each degenerate subspace. For
g = 1, we obtain

N =3(2%7 + Xy),
Ei=12Q2& X + &),
v =3@% Vi 4V +Us). 9

031303-2



ANALYTICAL APPROACH FOR THE QUARTET ...

PHYSICAL REVIEW C 99, 031303(R) (2019)

For g = 2 the results are

Ny =30(Zs +4 5" + 7247 — 8%, T — 4 54 5,7,

Ey=240(E 44657 + 7654 — 28686 — 660 — 286, 5" — 26, 5, 3y),

v =608 Vi —8X7 Vi3 — 4,5V — 245, Vs — 125, V55— 4% Vi,
+28 Vi3 + 4V +4 V55 + 47 Uy +4 50U — 9 Sulls — Us).

The expressions for g = 3 of the norm function, single-particle energy, and interaction terms read

N; =

E; =

U3 =

630(6 212 — 24 %, Ty + 8,0 — 57 2y g — 1284 B +27 547 + 68 X6” — 8 B ° + 52 X5 X7
+26 3,7 X5 4+ 22 557 By7 — 120 5, Ty B — 24 ' Ty — 8 5,7 Bg + 44 B4° 3,7,

7560(6E1, —4E 10+ 85 X" — 196, By — 128, o' + 2764 Ty + 68 E T — 8 2o°

—38E& s+ 5285 5° — 2010 %0 + 268, Ty By + 226 £y By2 — 206 By T — 8 T Bp?
—248, 54507 — 408, ) Te + 4484 54 07 — 606 T By),

1890(16 257 Vi | —48 5, V13 —48 24 0° Vi | — 32557 Vi 5 — 16 557 Vs 3 — 16 B 207 Vy

+176 24 222 Vi3 + 208 52 Vi 7 +208 2 V3 s + 44 24> Zo Vi + 52 Bg X Vi g — 160 6 o Vi 3
—24024 V15 — 800 V9 — 12054 5, V53 — 805, Va7 — 402, Vs s —40 24 B Vi1 — 8 24 V)

+ 10852 Vi3 —T6 S5 Vi3 + 27256 Vis — 152 54 V7 + 136 6 Vs 3 — 152 54 Vs s + 24V 1) + 24 Vs g

+24 Vs 74+ 5252 Uy — 80 223 U — 116 4 o> Uy — 116 T2 Ug + 24 T o Uy + 296 Ty Ty Uss
+48 2 Uio — S Ty’ Uy + 45 g Uy — 216 B Us + 102 2y Us — 18U»).

The final formulas below correspond to a number of ¢ = 4 quartets, for a total of 16 particles in the valence shell:

N =22680(16 5° — 160 Ty 50 + 64 X6 o7 + 552 4% 5 + 408 T Tp* — 1216 Ty T Ty — 960 T T,

— 31224 5,2 + 1504 B2 £,% + 360 T4 Tg To2 + 528 £1p T2 — 336 542 T Ty — 2352 56 T T
+2016 24 19 Ty — 288 14 Tp + 321 Tt + 944 5, T6? + 1395 g2 — 1206 =42 g — 1056 ¢ 1
— 312384 Z12 + 90 Z6).

Ey =362880(16 &, Tp" — 4064 £,° 424 E X5° — 1206, By 5° + 204 & 5* + 276 £, 4 5

+40E T Tyt 42768 242 557 — 600E10 £o° — 456 E Ty 5070 — 304 £, 6 57 4+ 204 &, Tg 57

— 2348, 242 2,2 439615 22 + 180 & X4 7 + 1128 £ T 22 — 456 &, Ty T Tp2 4+ 90 &, g X2
— 3605 210522 — 785 547 Ty — 1265 242 25 + 376 &, B> Ty — 252614 Ty + 1260 €19 24 X,

— 1176 56 Ty — 168E4 54 T p — 882E Sy n + 905, T4 Tg Tn + 504 &, 1o T

+ 1325 51 8, + 321654 — 60353 247 4+ 236 E4 T6> — 234 E15 By — 42E, 547 B — 660 E19 T
+708E T4 T 4+ 1395 E g — 603 E4 Ty By — 294 &, T Tg — 396 E Tio + 2525 T4 o

— 784212 —36E Tiu + 90 Eje).

vs =90720(32V1 15,7 + 152Uy 5% — 160V 35,0 — 528U 57 — 24054V 1 55° + 96V 5557 + 48V5 33,

— 876X, UL Tt + 180U To* + 80T V11 o 4 110424V 350% 4 816V 75, + 816V5 555" 4 464564y T)°

+ 312054Us 25> + 2208U10 5% 4+ 55254%V, 1 257 + 40855V, 15,7 — 121686V 38,7 — 18245,V 55,°
— 2400V 9%, — 91254 V33557 — 2400V 7%5% — 1200Vs5 555° 4+ 10624°Uy 5y% + 522 55Uy 252

— 40806l To% — 421254Usg 5% — 1476U 50 — 91284 X6V 1 527 — 720210V £ — 936547V 3552
+ 3605V 3 X% 4 451256V, 5527 + 72054V, 7557 4+ 1584V 11 557 4+ 2256 56V3 35,7 + 72054V 5507
+ 15843 95,7 + 15845 75,7 — TA4 T, Selds Ty — 12248 10Uy oy — 6844°Us Ty + 2124 55Us X5

+ 7704 Sl Ty — 5328 T4l 10Ty + 1080U14 T0 — 15643V 155 + 752862V 1 ) + 1802, 55V 1 2)
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4264515V 1) — 672X, 86 V1 350 + 2016Z 10V 355 — 504%,2V) 5%, — 352855V, 550 — 47045V, 75,

+ 50404V, 055 — 1008V 13X, — 252542 V3355 — 176455V3 35, — 470456V5 5 X, + 504054 Vs 75,

— 1008311 Ty 4 252054 Vs 55 — 1008Vs 90X, — 504V 755 — 399543, 4 140562 Uy + 693X, Sslhy

+ 2105 15Uy — 175254 Slds + 18005 10l + 3483542 Us — T155SsUs + 31205610 + 9904l — 45006

— 845456V — 58886 Tg Vi1 + 504542 10V1 1 — 72814V + 128453V 3 + 944567V 3 — 24125, 55V 3

— 31255V 3 + 2832546V s — 158450V 5 — 24125,V 7 + 558055V, 7 — 26405 V)0 — 93654V 1

+ 360V 15 + 14162, Z¢Va 3 — 792X 10V 3 — 241254°Vs 5 4 5580%5Vs.5 — 264056Vs 7 — 9364 V3.0

+ 360V 13 — 1320%6Vs 5 — 9364 Vs 7 + 360Vs 11 + 360V 9). (14)

The above formulas may be employed to compute directly
the ground-state correlations in N = Z nuclei with up to 16
particles in the valence shell. However, by exploiting the
particle-hole symmetry, the same expressions may be applied
to cases involving a larger number of particles: a system with a
number of quartets ¢ may be mapped to an equivalent system
with Ny — g hole-quartets. Let us note briefly that recently
the particle-hole formalism has been used to elaborate an
improved approximate treatment of pairing correlations [35].
Here, the starting point is the reformulation of the PBCS
condensate in the particle-hole basis. A detailed study of
the generalization of the particle-hole approach to quartet
correlations was very recently developed [36].

In the present Rapid Communication we limit ourselves to
confirming that the particle-hole symmetry is manifest in the
framework of the QCM, using the above analytical expres-
sions. We consider as testing ground the nucleus >2S, which
contains four quartets, or equivalently two hole-quartets, in
the valence sd shell. We use the same spherical single-particle
spectrum as in Ref. [23], as displayed in Table I, and assume
a constant isovector pairing strength V;; = —24/A MeV, with
A = 32 [37]. The transition from particle to hole degrees of
freedom may be performed in the standard way, resulting in
the isovector pairing Hamiltonian in the hole representation

Niey Mey 3
H= Z (4e; + 3Vy) + Z <—€i - EVii)]Vi.O
i=1 i=1
Niey

+ > D VPl (15)

T=0,%1i,j=1

TABLE 1. Single-particle spectrum and mixing amplitudes for
the nucleus **S corresponding to the standard particle treatment
using ¢ = 4 quartets, x\Y=*, and to the hole formalism using ¢ = 2
hole-quartets, x,(,qzz), together with their products indicating explic-
itly the inverse proportionality x#=* ~ 1/x\7=? of Eq. (16).

S.p. state € (MeV) xi=4 x}(lqzz) x1=4 x qu"zz)
1ds ), —3.926 0.291 0.0457 0.0133
2512 —3.208 0.260 0.0511 0.0133
1ds, 2.112 0.0317 0.420 0.0133

(

where the number of holes operator is Ni,O =4 — N, and
the pair operators for holes are defined as Pfr = P; ;. Similar
to the pairing case, it turns out that the original quartet
condensate may be related to a hole-quartet condensate of
inverse amplitudes (see Appendix A of [36] for details):

1
x

k
[QT< >] Ifilled sheu)oc[Q*(x)]N’””‘|0>. (16)

where QT(}C) denotes the hole-quartet operator defined by the
Nev 1 pt

coupling of two collective hole-pairs f‘j ()%) =3y ™ i

in Eq. (3).

We have confirmed numerically this inverse proportion-
ality by first computing the ground state of **S in a ¢ =
4 description using the expressions (12)—(14), and then
in a ¢ =2 hole-quartet description with the formulas of
Eq. (10), with the corresponding modifications of Eq. (15).
In both cases we have obtained a correlation energy Ecor =
10.36 MeV. The numerical results regarding the mixing am-
plitudes are presented in Table I with three significant digits,
indicating explicitly the inverse proportionality of particle and
hole amplitudes.

Let us finally note that on the numerical side, as opposed
to the standard recurrence relations method where the running
times are of the order of a few minutes [23], our timings are
more than two orders of magnitude smaller (having used the
same minimization routine of the NAG library).

In conclusion, we introduce in this paper a method of
computer-aided analytical calculus for many-body problems
where it is not only possible, but also advantageous, to per-
form some algorithmic computations symbolically instead of
numerically. This approach presents a twofold benefit: on the
numerical side, the computational time may be significantly
reduced, and on the implementation side the effort is made
negligible. Moreover, it may be applied to a wide class of
many-body models. In this work, we analyzed the particular
example of the quartet condensation model which precisely
describes the isovector pairing correlations in N = Z nuclei.
The corresponding analytical formulas can easily be imple-
mented in any programming language. The extensions of the
QCM model to N > Z nuclei and also to the case of isoscalar
pairing are currently under consideration from an analytical
perspective and will be presented in future works.

as
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