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Establishing the geometry of α clusters in 12C through patterns of polarized γ rays
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Linearly polarized monocromatic beams of γ rays, that will be available at the ELI-NP facility, will open
up the way to nuclear fluorescence experiments aimed at measuring the depolarization ratio of the outcoming
photons. This is the ideal tool to clearly discriminate among the various proposed geometric configurations for
α-cluster nuclei, such as 12C in a model-independent way. For this nucleus, all possible outcomes have been
enumerated in this Rapid Communication, and the predicted theoretical patterns of intensities will serve as a
guide for the conclusive experimental identification of its nuclear molecular structure.
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The purpose of this Rapid Communication is to present
a method to ascertain the nature of the geometrical shape
of clusterized nuclei by extending group-theoretical meth-
ods that are heavily used in molecular Raman spectroscopy
and adapting them to the nuclear domain. In particular, the
promises of the ELI-NP facility, that is currently under con-
struction, to deliver beams of almost monochromatic tunable
(in the 0–20-MeV range) highly intense and highly polarized
γ rays allows us to propose an application of those techniques
aimed at solving the mystery of α clustering in 12C (and other
nuclei [1–3]) with a conceptually simple experiment. Several
theoretical models have been proposed along the years to
unravel the structure of the all-important carbon nucleus that
have either focused on the whole spectrum or focused just on
the properties of the Hoyle state or of the ground state. Let us
mention a few of them: as early as 1937 Wheeler was reason-
ing with molecular models and with the idea of a triangular
configuration of α particles in the nucleus of 12C [4], in 1956
Morinaga proposed a linear chain of 3α particles as a possible
structure for the Hoyle state [5]. Both the conventional shell
model for p-shell nuclei and more recent ab initio models,
such as the no-core shell model [6,7], provide valuable insight
on the microscopic structure but are, at present, unable to
reproduce all the features of this nucleus associated with the
strong α clusterization, despite the tremendous computational
efforts and the success in neighboring systems or the correct
reproduction of some of the observed states. It seems that
state-of-the-art nucleon-nucleon interactions still miss some
important ingredient that explains the formation of clusters
inside a nucleus. Other approaches, such as antisymmetrized
molecular dynamics [8], fermion molecular dynamics [9], and
nuclear effective field-theory lattice calculations [10] often
predict slightly bent linear structures (or, that is the same
nonequilateral triangles). Other approaches have relied on
descriptions of 12C as a Bose-Einstein condensate gas of
α particles [11]. The equilateral triangle shape was, very
convincingly to my view, reproposed within the algebraic
cluster model (ACM) by Bijker and Iachello [12,13]. This

model provides a group-theoretical construction of rotational
and vibrational states of an equilateral triangle with three α
particles at the vertices that is based on the U(7) dynamical
symmetry and contains the D3h point group as a subgroup of
SO(3). Therefore, in a single formalism, the vibrational ener-
gies and rotational bands are adapted to the discrete symmetry.
Not only the success of this elegant model in reproducing
the spectral features is overwhelming, but also a spectacular
prediction of a 5− state at high excitation energy has been duly
confirmed in experiments [14]. Already more than 50 years
ago, Blatt and Weisskopf [15] warned us against taking the
rigid molecularlike models too seriously, preferring a sort of
liquid or dynamical view of α clusters in nuclei. The ACM
mentioned above, being based on general algebraic grounds,
circumvents some of these obstacles. Another model worth
mentioning at this point is the semimicroscopic algebraic
cluster model [16–18] where the role of the Pauli principle
is emphasized, and the conclusions point toward a triangular
structure, even though it does not support the vibrational
interpretation of the Hoyle state as a breathing mode.

Despite all of these approaches and others on which I will
not dwell, a direct proof of the exact shape is not yet available,
and the correctness of one model (i.e., of a geometric con-
figuration and the underlying symmetry) over the others only
comes from the relative success in reproducing energy levels,
electromagnetic form factors, and transition rates [19,20]. It
is the aim of the following to show how the measurement of
the depolarization ratio can discriminate among the various
possibilities. The independent method that is suggested here is
new to nuclear physics as testified, for example, by the recent
paper [21] where a lucid review of the interplay of single-
fermion and cluster dynamics is given, but no agreement can
be found among different models.

I will now briefly recall the elements of the Raman effect,
that was conceived and is now commonly employed in the
realm of molecular physics, and I will then reformulate it
in the language of nuclear molecules to provide a series
of theoretical patterns that can be used in experiments with
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polarized γ beams to definitely rule out or rule in certain
symmetries (and the corresponding models).

The history of Raman spectroscopy and its far-reaching
applications are too rich and long to be summarized in this
Rapid Communiication (see, for example, Ref. [22]), but one
can say that, whenever electromagnetic radiation of a given
frequency is shined at a sample, this might absorb it and
reemit the same frequency (elastic or Rayleigh scattering) or
a set of different frequencies (inelastic or Raman scattering1)
that reflect the inner workings of the molecular vibrational
and rotational states. The detailed structure of the energy
levels is a fingerprint that reveals information on the geometric
arrangement of the charges inside the molecule and how they
respond to an external electric field, i.e., its polarizability (that
is a rank-2 tensor). The spatial configuration of atoms in a
molecule links very deeply with the mathematical descrip-
tion provided by discrete point groups, that give a formal,
powerful, and straightfoward interpretation of the measured
properties and the selection rules. In particular, the connection
of Raman spectroscopy with a polarimeter, obtained through
the acquisition of spectra through a polarizer that works as
an analyzer set along or perpendicular to the polarization axis
allows for measuring the depolarization ratio ρ = I⊥/I‖, i.e.,
the ratio of intensities measured along the perpendicular and
parallel directions.

This ratio is the key quantity that allows the underpinning
of totally symmetric modes [23], and thus it gives a precise
spectroscopic clue as to whether a certain molecule possesses
a given shape, according to the underlying vibrational repre-
sentation of the discrete point group. Let us be more specific:
There exist a set of rules on how randomly oriented samples
give off radiation such that the intensity emitted from states
belonging to totally symmetric representations2 are polarized
along the plane of the initial polarization, giving off less
and less radiation (down to zero, but not necessarily) on the
perpendicular plane, whereas all other nontotally symmetric
modes give off exactly 3/4 less radiation on the perpendicular
plane than on the parallel plane. These topics are very clearly
summarized in Ref. [24], and they are very familiar to any
spectroscopist [22,23],

0 < ρ < 3/4, totally symmetric states → polarized,

ρ = 3/4, other symmetric states → depolarized.

A band or a state of the first type is called polarized, whereas
all other cases of nontotally symmetric states are called depo-
larized. In experiments with a certain error in the measure-
ments, there is still a marginal possibility that ρ does not
differ significantly from 3/4 also in the first case, but this is
improbable in practice.

Now the nuclear molecules made of α particles, even
though the Born-Oppenheimer approximation is most cer-
tainly not valid and large kinetic energy fluctuations are

1I will leave aside the distinction between Stokes and anti-Stokes
lines as it is inessential to the present discussion. Nuclei do not show
appreciable thermal populations of excited levels.

2The symmetric representations take various names in different
groups: A, A′, A1, Ag, A

′
1, A1g, . . ., etc.

name shape group Γvib Patterns

linear = D∞h A1g + A1u + E1u

linear = C∞ν 2A1 + E1

equilateral D3h A1 + E

isosceles C2ν 2A1 + B1

scalene Cs 3A

FIG. 1. This table enumerates the possible shapes of a nuclear
molecule made out of three α’s, their underlying point-group symme-
try, and the characters of the normal modes of vibration (with totally
symmetric modes highlighted). The last column shows the schematic
predicted patterns for depolarization ratios (intensity vs energy, not
to scale). The white and black histograms represent parallel and
perpendicular intensities.

present in nuclei, are also prone to acquire a certain polar-
izability under the influence of the external electric field of
the incoming polarized radiation. Then, depending on whether
the latter has enough energy to excite a given mode, they
might absorb it and reemit it, and the depolarization ratio
of the emitted radiation is determined by the character of
the vibration. Coming now to the application that I want to
discuss, one can enumerate all possible classes of molecules
that might arise from three α particles, and this bring us
to the first two columns of the table in Fig. 1. The three
particles can be on a line at the same distance between one
another, thus giving a linear centrosymmetric configuration,
whose geometry is left unaltered by the operations of the D∞h

dihedral group. Or the particles, although still on a line, might
have different distances, thus giving a noncentrosymmetric
arrangement, associated with the noncentrosymmetric group
C∞ν . In principle, there is no reason why three identical parti-
cles should take different distances on the right or on the left,
but I want, for the sake of generality, to take all possibilities
into account. On the other hand, if the particles are not on a
line, they will form a triangle. The most symmetric (and most
probable, unless one has a reason to suppose that the mutual
interaction is affected by some other noncentral effect) is the
equilateral triangle with group D3h. This is the group of the six
operations {E, 2C3, 3C2, σh, 2S3, 3σv} (i.e., identity, rotations
around various axes, reflections, and improper rotations) that
leave invariant the equilateral triangle. Another possibility is
that the triangle is isosceles (with any apex angle between 0
and π but not π/3) with group C2ν or even that the triangle
is scalene with Cs group. This is the simplest possible, being
made up only of identity and reflection on the horizontal plane
{E, σh}. Note that D3h ⊃ C2ν ⊃ Cs upon a proper identifica-
tion of the axes’ names.

Note that bent configurations are already contained in
Fig. 1 under isosceles triangles (if the arms have the same
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length) or under scalene triangles (if the arms have unequal
lengths).

By taking N = 3 particles, one should find 3N − 5 = 4
normal modes of vibration for linear configurations and 3N −
6 = 3 for planar configurations. Albeit trivial by well-known
methods of molecular physics, such as the tabular method
[23], the laborious job of working out all the vibrational
characters is not derived here but merely summarized in the
fourth column of Fig. 1 where the Mulliken notation has been
used. For each group, the totally symmetric representation,
i.e., the one that is made of +1 characters for each operation of
the group, has been highlighted in red. Remembering that A-
type modes are singly degenerate, whereas E-type modes are
doubly degenerate, one notes that the number of symmetric
modes over totally symmetric modes is 1/4, 2/4, 1/3, 2/3,
and 3/3 respectively, that is, for each symmetry, one can expect
a given pattern, and these all differ from each other. Now,
in actual experiments, measuring intensities as a function of
energy, one sees the doubly degenerate modes as one peak,
therefore one should correct the previous theoretical statement
into a practical recipe: 1/3, 2/3, 1/2, 2/3, and 3/3 where, un-
fortunately, the linear noncentrosymmetric arrangement and
the isosceles triangle do show the same number of polar-
ized peaks over total peaks. Despite this concurrence, there
are anyway four mutually exclusive possibilities, depicted
schematically in the last column of Fig. 1 where the white
histograms represent the intensity along the parallel direction
and the black histograms represent the intensity along the per-
pendicular direction: From white to black, depolarized bands
go to 3/4, and polarized bands typically go to something
between 0 and 3/4 as already stated. Note that each peak
should have its own intensity and energy and the patterns are
to be intended only as a scheme of what will be observed. This
method is independent of the actual values of the eigenstates
or of the absolute and relative intensities of the transitions, and
this easy measurement is definitely worth a try.

There is one possible complication to the neat picture
described above, that might arise from the fact that the nucleus
is not necessarily described by the same geometry in all of
the excited bands, it might, for instance, be triangular in
the ground state and become linear or bent in some excited
states. Stated another way, the possibility that potential-energy
surfaces (PESs) pertaining to different geometries might come

PES(v1, · · ·) {v1, · · ·}

1

S2

FIG. 2. Schematic of the PES, depending on the relevant vari-
ables of the potentials v1, . . . (in general, multidimensional). More
than one minimum, belonging to different symmetries, S1,2 might be
present, with its own set of excited states (bandheads shown with
dashed lines).

D∞h

D3h C2ν Cs

FIG. 3. Group-subgroup chain relations.

low enough to intersect with the lowest-energy curve is not to
be discarded (and this would signal the presence of noncentral
terms in the α − α potential). This is depicted schematically
in Fig. 2.

In this case, the rules outlined above should be connected
depending on group-subgroup chain relations, see Fig. 3,
using the tables of correlations between representations as in
Fig. 4. This table is not complete (see Ref. [23]) but contains
only the representations that occur in the normal modes (there-
fore sometimes there are slashed correspondences, that can be
eliminated), and it should be read as follows: A representation,
that behaves with certain characters under the operations of a
larger group, behaves with characters belonging to some other
representation of the smaller group.

The schematic in Fig. 2 does not necessarily point towards
rigid models (even though it depicts the vibrations as bound
states): The geometrical requirements and the rules are there
also for states lying in the continuum; only the bars of the
last column of Fig. 1 will correspond to resonances with finite
widths rather than to narrow states.

Another issue worth mentioning at this point is as follows:
What would happen to a BEC state of 3α particles? A BEC
is a coherent superposition of bosons collapsed to the ground
state, therefore it is a L = 0 state from which radiation should
be scattered in a single polarized way.

Clearly all of the above is valid under the hypotheses that
12C has an α-cluster structure and that the α’s are to be taken
as elementary constituents. Therefore, these considerations
are limited to energies low enough that the fermionic nature
of the α’s does not come into play (I would guess somewhat
below 20 MeV). In addition, nuclear molecules are very
different from chemical molecules because the kinetic-energy
fluctuations around the equilibrium points might be as large as
the nucleus itself, whereas in molecules they are small vibra-
tions, and the energy scales of vibrations and rotations do not
decouple through the Born-Oppenheimer approximation as
happens for atomic systems. These words of caution, however,
do not affect the nature of symmetry: A discrete point-group
symmetry is there even if the oscillations are large, provided
that the geometry remains compatible.

D∞h A1g+ A1u+ E1u D∞h A1g+ A1u+ E1u

↓ ↓ ↓ ↓ ↓ ↓
C∞ν A1+ A1+ E1 D3h A1+ /A2+ E

↓ ↓ ↓ ↓ ↓
C2ν A1+ A1+ B1 + /B2 C2ν A1+ A1 + B1

↓ ↓ ↓ ↓ ↓ ↓
Cs A + A + A Cs A + A + A

FIG. 4. Descent in symmetry restricted to representations of
the groups that are relevant to all possible configurations of three
identical particles.
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In conclusion, it is suggested that a nuclear fluorescence
experiment whereby the intensity of γ radiation emitted from
an excited molecular cluster structure is measured along
two perpendicular directions can be compared against a few
enumerable theoretical patterns that can be traced back to
different geometric point-group symmetries of the nuclear
molecule. This gives a final and neat answer, independent of
energies, transition rates, and the like, to the question that

arises from the puzzling plethora of interpretations that have
been given on the α-cluster structure of 12C. This method can
easily be extended to other cluster structures with different
numbers of particles or with different types of clusters.

I would like to thank J. Cseh and M. Freer for fruitful
correspondence on this Rapid Communication and A. Vitturi
and D. Mengoni for valuable discussions.
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