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Several phenomena occurring in neutron stars are affected by the elementary excitations that characterize the
stellar matter. In particular, low-energy excitations can play a major role in the emission and propagation of
neutrinos, neutron star cooling, and transport processes. In this paper, we consider the elementary modes in the
star region where both proton and neutron components are superfluid. We study the overall spectral functions of
protons, neutrons, and electrons on the basis of the Coulomb and nuclear interactions. This paper is performed
in the framework of the random-phase approximation, generalized to superfluid systems. The formalism we
use ensures that the generalized Ward’s identities are satisfied. We focus on the coupling between neutrons
and protons. On one hand, this coupling results in collective modes that involve simultaneously neutrons and
protons; on the other hand, it produces a damping of the excitations. Both effects are especially visible in the
spectral functions of the different components of the matter. At high densities while the neutrons and protons
tend to develop independent excitations as indicated by the spectral functions, the neutron-proton coupling still
produces a strong damping of the modes.
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I. INTRODUCTION

In neutron stars, many phenomena and processes that occur
in the outer and inner cores are affected by the presence of
matter elementary excitations. In particular, these excitations
have a relevant role in neutrino emission and propagation, spe-
cific heath, and transport phenomena, which are all involved
in the short-time and long-time evolutions of the star. At not
too high density, it is expected that the main components of
the matter are neutrons, protons, electrons, and muons [1],
and then the spectral properties of these excitations can have
complex structures. Collective modes in asymmetric nuclear
matter have been studied previously, e.g., in Refs. [2–4]. In
the astrophysical context, a study of the collective excitations
in normal neutron star matter within the relativistic mean-field
method has been presented in Ref. [5]. The overall spectral
functions of the different components in normal neutron star
matter have been calculated in Refs. [6,7] on the basis of
nonrelativistic random-phase approximation (RPA) for the
nucleonic components and relativistic RPA for the leptonic
components. Different models for the nuclear effective in-
teraction were considered, and a detailed comparison was
performed between some Skyrme forces and a microscopi-
cally derived interaction. More recently, the relativistic RPA
has been employed also for the nucleon components [8].
The works of Refs. [6,7] were extended to superfluid proton
matter in Ref. [9] but neglecting the proton-neutron coupling.
The elementary excitations in superfluid neutron star matter
have been analyzed by several authors [10–15]. In Ref. [9],
it was shown that the proton superfluid matter due to the
electron screening of the proton-proton Coulomb interaction
still presents a pseudo-Goldstone mode at low momentum.

Its presence can have a strong influence, e.g., on neutrino
emission [10–16] or the mean free path. More recently, in
Refs. [17,18], the elementary excitations of superfluid neu-
tron matter in the crust region were studied and with the
possible inclusion of the coupling with the nuclear lattice in
Refs. [18–21].

In this paper, we focus on the region of homogeneous core
matter where both neutron and proton superfluidity can occur.
The region of the neutron stars where this, indeed, happens is
not well determined, and it could even be that neutron and
proton superfluidities never coexist. Therefore, we explore
different densities and different pairing gaps for neutrons and
protons in order to figure out the possible scenarios that can be
expected in the neutron star matter. We study the effect of the
neutron-proton interaction under which conditions neutrons
and protons are coupled and to what extent they can be
simultaneously excited. An extensive study of the elementary
excitations in presence of both proton and neutron superfluidi-
ties has been presented in Ref. [22] where the hydrodynamics
formalism was used with the inclusion of proton-neutron
coupling. As in Ref. [9], we introduce the general theoretical
scheme within the generalized RPA approximation, which
is known to be a conserving approximations [23,24], i.e.,
current is conserved locally and the related generalized Ward’s
identities [25] are fulfilled. The formalism can be derived by
different methods, e.g., by the equation of motion technique
[26] or the functional derivative scheme [6,7,9]. In any case,
the basic equations correspond to the generalized RPA. One of
the main goals of our paper is the study of the mutual influence
of protons and neutrons on the overall spectral functions. This
paper extends the study of Ref. [27] by including also the
neutron superfluidity.
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The plan of the paper is as follows. In Sec. II, the formalism
for the response function in the generalized RPA scheme
is briefly sketched. In particular, the method to estimate
microscopically the effective nucleon-nucleon interaction is
discussed. In Sec. III, the results are presented for the spectral
function taking the neutron and proton pairing gaps as param-
eters. The role of the neutron-proton interaction is discussed
in detail. In Sec. IV, we summarize and draw the conclusions.
Finally, in the Appendix, additional details of the calculations
are given.

II. FORMALISM

For completeness, the generalized random-phase approxi-
mation is here briefly discussed. In multicomponent fermion
systems, the equations for the generalized response functions
� can be written schematically [9,25,27],

�ik (t, t ′) = �0
ik (t, t ′) +

∑
jl

�0
i j (t, t1)v j,l�lk (t1, t ′), (1)

where i, j, . . . label the different components and the corre-
sponding degrees of freedom, v j,l is the effective interaction
between them, and �0 is the free response function. The
time variable with an overline is integrated. In neutron star
matter, one has neutron, proton, and electron components
(neglecting muons) with the possibility for both particle-hole
and pair excitations in the nucleon channels. Since we assume
the presence of both proton and neutron pairings, in terms
of creation and annihilation operators, the indices i, j, . . .
include the following configurations:

a†(p)a(p)|�0〉, a†(p)a†(p)|�0〉, a(p)a(p)|�0〉,
a†(n) a(n)|�0〉, a†(n)a†(n)|�0〉, a(n)a(n)|�0〉,
a†(e)a(e)|�0〉 (2)

where the labels n, p, and e indicate neutrons, protons, and
electrons, respectively, and |�0〉 is the correlated ground state.
If we call Ai|�0〉 the generic configuration, the response
functions can be written

�ik (t, t ′) = −〈�0|T {A†
i (t )Ak (t ′)}|�0〉, (3)

where T is the usual fermion time-ordering operator. The con-
figurations (2) correspond, in fact, to both density and pairing
excitations. In agreement with (2) and (3), Eq. (1) forms, in
general, a 7 × 7 system of coupled equations. However, it
turns out [9,27,28] that two equations can be decoupled to a
good approximation by taking suitable linear combinations of
the pairing additional mode a†a† and pairing removal mode
aa for both neutrons and protons. In this way, the system
reduces to 5 × 5 coupled equations. Details on the equations
and their explicit analytic form are given in the Appendix.
The system has to be solved for the response functions �ik ,
all of which can be obtained by selecting the inhomogeneous
term in Eq. (1). More precisely, one has to select a given
configuration indicated by the right index k and solve the
system for each choice of k. In this way, one gets all the
diagonal and nondiagonal elements of �ik .

One has to notice that the generalized RPA equations are
valid in the collisionless regime so that the only damping of

the modes is the Landau damping, which is very effective
above a certain momentum threshold. In particular, dissipa-
tion due to electron-electron collisions is neglected. This is
justified if the electron mean free path is much larger than the
typical wavelength of the mode. Under the physical conditions
of neutron star matter, i.e., low temperature and density of the
order of the saturation one, the electron mean free path was
estimated in Ref. [29] where it was shown that the collisions
are dominated by the exchange of transverse plasmon modes
and the mean free path extends to a macroscopic size on the
order of 10−3 cm. This also indicates that the collision time is
much longer than the characteristic period of the modes and
that the electron collisions are relevant only for macroscopic
motion, such as viscous flow. We, therefore, neglect in the
following electron dissipation and include only the Landau
damping.

For simplicity, for the single-particle energy spectrum,
we are going to use the bare mass. The introduction of effec-
tive masses is trivial, and we think that it is not going to change
qualitatively the overall pattern of the results, but, of course,
for quantitative results, the effective mass is mandatory. Then,
the main input needed in Eq. (1) is the effective interaction
vi j . The pairing interaction strength U is very sensitive to
many-body effects [30], and it is quite challenging to estimate
its size. We prefer to use the pairing gap as a parameter to be
explored and fix the pairing interaction consistently with the
gap equation (U > 0),

� = U
∫

d3k
(2π )3

�

2Ek
= U

∫
d3k

(2π )3
ukvk, (4)

both for neutrons and for protons. The quasiparticle energy E
and coherence factors u, v have the standard form

Ek =
√

(εk − μ)2 + �2,

v2
k = 1

2

(
1 − εk − μ

Ek

)
, u2

k = 1

2

(
1 + εk − μ

Ek

)
, (5)

where εk is the kinetic energy and μ is the chemical potential.
In the calculations, the values of the pairing gaps �n,p are
fixed at given values, and the effective interaction strengths
Un,p are extracted from the corresponding gap equation (4).
Then, the pairing interaction −U is inserted in the RPA
equations (1).

For the various particle-hole interactions, we focus on
the density response function, i.e., the vector channel, and
then we follow the Landau monopolar approximation. The
corresponding strengths can be estimated on the basis of a
realistic Skyrme interaction. It is also possible to consider the
microscopic many-body equation of state as an energy den-
sity functional. In this approach for Brueckner-Hartree-Fock
(BHF) calculations the interaction strength can be obtained
from the derivative with respect to the density ρ j of the BHF
potential-energy Vi with i, j running on the proton and neutron
components,

vi j =
(

δVi

δρ j
(kFi, ρn, ρp)

)
k,ρi=cst

. (6)

Note that in Eq. (6) the Fermi momenta kFi are kept fixed
in performing the derivative in order to separate the kinetic
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FIG. 1. Spectral functions of neutrons (black thick lines), proton (red thin lines), and electrons (green dashed lines) calculated at the
saturation density of the neutron star matter. The neutron and proton pairing gaps are 1.5 and 1 MeV, respectively. In panel (a), the neutron-
proton interaction has been suppressed, whereas in panel (b), it is included. For convenience, the neutron strength function has been divided
by 15.

contribution associated with effective-mass effects. More de-
tails on that point are given in Ref. [6]. In the case of Skyrme
forces, the possible dependence on momenta is analytic, and
the procedure is trivial. In any case, no strong pairing effects
are considered, e.g., the effective interactions are assumed
to be independent of the pairing gap and calculated for the
normal system.

III. RESULTS

The calculations have been performed by including nuclear
pairing, Coulomb, and density-density nuclear interactions,
but we first summarize some of the standard results when
only some of these interactions are included. They are well
known in the literature, but they can be useful in guiding the
interpretation of the general results.

It is well known that, in a neutral superfluid with only the
pairing interaction, there are two types of excitations. Below
2�, a sharp Goldstone mode is present. It is a consequence
of the breaking of gauge invariance that occurs in the ground
state of a superfluid system, and its energy is linear in momen-
tum for small momenta with a velocity equal to vF /

√
3, vF

being the Fermi velocity. Note that a gauge transformation on
the field operators is equivalent to a U (1) transformation on
the order parameter [31]. This excitation is usually referred
to as a “superfluid phonon.” At increasing momentum, the
energy spectrum deviates from linearity and approaches 2�

for large momenta [7]. Above 2�, another excitation mode
appears, usually indicated as the “pair-breaking” mode be-
cause it corresponds, indeed, to the breaking of a Cooper
pair. It is strongly damped, and it is reflected in a bump of
the spectral function above 2�. The energy of this mode
after increasing with the momentum bends down towards 2�

also. At even higher momentum, the spectral function has no
structure, and any excitation is overdamped [7].

If we consider only the proton component and introduce
the Coulomb interaction, in principle, the Goldstone mode
should disappear, and it should be substituted by a proton
plasma mode which has a finite energy at zero momentum.
However, it has been shown in Ref. [7] that the electrons are
fully screening the proton-proton Coulomb interaction, and a
sound mode reappears below 2�. The (screened) Coulomb
interaction, however, affects the sound velocity, which turns
out to be about three times the Goldstone mode velocity. This
mode can be considered a pseudo-Goldstone mode since it is
still below 2� but with a modified velocity due to the interac-
tion. Details can be found in Ref. [7] where the structure of the
proton spectral function is discussed in detail. Here, we only
comment on the scale of the electron Thomas-Fermi screening
length. This length is given by vF /

√
3ωp, where ωp is the

electron plasma frequency and vF is the Fermi velocity: With
the calculated proton fraction, it is about 18 fm at saturation
density and about 11 fm at twice saturation density. This is
more than one order of magnitude larger than the average
interparticle distance. However, the Coulomb interaction is in
any case screened, and this is enough to suppress the proton
plasma mode.

We now introduce the nuclear interaction, including the
neutron pairing and the proton-neutron nuclear coupling.
The proton fraction is taken from BHF calculations, which
include three-body forces and correctly reproduce the phe-
nomenological saturation point. The corresponding nuclear
interaction strengths are calculated according to Eq. (6). The
values of these physical parameters are reported in Ref. [6].
For simplicity, we assume that the neutron pairing is in the
1S0 channel. The case of neutron pairing in the 3P2 channel
requires a separate treatment due to the complexity of the
possible neutron excitations.

The spectral or strength function S(q, ω) at given mo-
mentum q and energy ω is directly related to the response
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FIG. 2. Spectral functions of neutrons (black thick lines), proton (red thin lines), and electrons (green dashed lines) calculated at the
saturation density of the neutron star matter. The neutron and proton pairing gaps are 0.5 and 1 MeV, respectively. In panel (a), the neutron-
proton interaction has been suppressed, whereas in panel (b), it is included. For convenience, the neutron strength function has been divided
by 15.

function �,

Si(q, ω) = −Im[�ii(q, ω)], (7)

where Im indicates the imaginary part and the index i runs
over the particle-hole configurations of neutrons, protons, and
electrons. It has to be stressed that the particle-hole configura-
tions are coupled to the pairing channels, according to Eqs. (1)
and (3). The strength function is, therefore, dependent on the
pairing gaps.

We start our analysis in the case that the neutron gap
is larger than the proton gap. As a representative matter
density, we choose the saturation density ρ = 0.16 fm−3 for
which the proton fraction is 3.7%, the proton gap �p is
taken equal to 1 MeV, and the neutron gap �n is equal to
1.5 MeV. In Fig. 1(a) are reported the strength functions of the
three matter components at the momentum q = 0.0125 fm−1

and no neutron-proton interaction. The neutron and proton
components are independent, and one can recognize the

n n

p p

p p

n n

p p

e e

(a () b)

FIG. 3. Diagram (a) illustrates the coupling between the neutron
and the proton pairing gap fluctuations. Diagram (b) illustrates the
coupling between the neutron pair fluctuations and the electron
excitations. See the discussion in the text. The labels n, p, and e stand
for neutrons, protons, and electrons, respectively.

pseudo-Goldstone (phonon) mode for the neutron component
below 2�n (black thick lines). The position of the mode is
represented by a sharp line since it is actually a δ function.
Just above 2�n one can see the pair-breaking mode, which
has a wide distribution. Similarly for the proton components
(red thin lines), both modes are apparent. However, in this
case, the pseudo-Goldstone mode has a wide width. As dis-
cussed in Refs. [9,27], this is due to the Coulomb coupling
of the protons with the electrons (green dashed lines). In
fact, the electron strength function follows closely the proton
strength function, and the position of the mode is inside the
electron particle-hole continuum where Landau damping is
active.

In Fig. 1(b), the same strength functions are reported
when the neutron-proton coupling is switched on. The
neutron-proton interaction has different effects on the pseudo-
Goldstone mode. In the energy region of this mode, all three
components are simultaneously excited, so the phonon is just
a neutron-proton-electron excitation. The coupling produces a
small shift of the neutron peak to a smaller energy, and at the
same time the whole mode acquires a substantial width. The
width can be considered as induced by the width of the proton
and electron components. The proton strength is strongly
modified and partly shifted towards the neutron strength peak
position forming a double peak. The electron strength still
follows closely the proton one. The pair-breaking modes look
only marginally affected.

The presence of a width W in the phonon strength function
can have a drastic effect on the processes where they are
involved. In fact, the phonon has a finite lifetime τ , and it
can propagate only for a finite distance l . An estimate of this
distance can be obtained by multiplying the lifetime by the
phonon velocity vG,

l = τvG = h̄

W
vG. (8)
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FIG. 4. Spectral functions of neutrons (black thick lines), protons (red thin lines), and electrons (green dashed lines) calculated at saturation
density of the neutron star matter with the same pairing gaps as in Fig. 2 but at higher momentum. In panel (a), the neutron-proton interaction
has been suppressed, whereas in panel (b), it is included. For convenience, the neutron strength function has been divided by 15.

Assuming a width of a fraction of MeV and a phonon velocity
of few times the neutron Fermi velocity, one gets an order of
magnitude estimate for l of a few hundreds of femtometers.
This is a microscopic distance, and all phenomena involving
macroscopic phonon mean free paths are suppressed.

In Fig. 2, the neutron pairing gap has been reduced to
0.5 MeV below the proton pairing gap of 1 MeV. A similar
trend is observed. Also, in this case, the proton strength
function is shifted to lower energy by the neutron-proton inter-
action with a characteristic double-peak structure. In addition,
the proton pair-breaking mode, which is apparent without
neutron-proton coupling, is suppressed when the interaction
is introduced.

The superfluid phonons of Figs. 1(b) and 2(b) correspond
to the simultaneous fluctuation of neutron and proton pairing

gaps. The reason for the coupling between the two fluctuations
can be understood from the diagram of Fig. 3(a), which is
automatically included in the RPA equations. In this diagram,
a line with a double arrow indicates an anomalous propagator.
One can see that the propagation of a neutron pair is coupled
to a proton pair, even if there is not a direct interaction
between the two pairs, which is due to the anomalous neutron
and proton propagators and the particle-hole neutron-proton
interaction. Any fluctuation of the neutron pairing gap is,
therefore, coupled to the fluctuations of the proton pairing gap
and the other way around.

Similarly, one can understand the reason of the phonon
width by considering the diagram of Fig. 3(b), also included in
the RPA equations. One can see that the neutron pairs are cou-
pled indirectly to the electron particle-hole excitations. Since
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FIG. 5. Spectral functions of neutrons (black thick lines), protons (red thin lines), and electrons (green dashed lines) calculated at twice
saturation density of the neutron star matter with the same pairing gaps as in Fig. 2 for two different momenta. In both cases, the neutron-proton
interaction has been included. For convenience, the neutron strength function has been divided by 15.
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FIG. 6. Spectral functions of neutrons (black thick lines), protons (red thin lines), and electrons (green dashed lines) calculated at twice
saturation density of the neutron star matter with proton gap as in Fig. 2 but taking the neutron pairing gap as vanishing. In both cases, the
neutron-proton interaction has been included. For convenience, the neutron strength function has been divided by 15.

the latter are inside the Landau damping region, the overall
mode is damped through the neutron-proton interaction.

As already mentioned, at higher momentum, the energy of
the phonon moves towards twice the pairing energy where
it joins with the pair-breaking mode. The spectral function
changes accordingly. This can be seen in Fig. 4. In panel (a)
are reported the spectral functions at q = 0.05 fm−1 with the
same pairing gaps and at the same density in the case of no
neutron-proton interaction. One can see that now the phonon
position, marked by a sharp line, is very close to 2�n. The
independent proton phonon is still below 2�p but as expected
is substantially damped by the coupling with the electrons.
Note that the electrons are now not able to follow closely the
proton oscillations due to the higher frequency of the mode,
and the electron strength function is substantially smaller than
the proton one.

When the neutron-proton coupling is switched on and
the phonon is only slightly shifted downward, it acquires a
small proton component and is substantially damped. Note,
however, that an appreciable proton strength function remains
at the position of the previous proton phonon but with a broad
distribution. It is clear that the proton strength function is quite
fragmented. The electron strength function is further reduced.
In any case, the strength function is dominated by the phonon
peak.

To analyze its density dependence, the strength function
has been calculated at twice saturation density. For the same
pairing gap values and the neutron-proton interaction in-
cluded, it is reported in Fig. 5 at two different momenta.
The interaction is again the microscopic one, reported in
Table II of Ref. [6]. At the lower momentum panel (a),
one notes the usual phonon peak with a substantial damping
and the fragmented proton strength function. The electron
strength function follows extremely closely the proton one. At
higher momentum panel (b), the neutron and proton strength
functions look completely independent. The proton strength
function is characterized by a broad phonon peak, just below

2�p, whereas the neutron strength function has no phonon
peak anymore. Instead, the neutron strength function presents
a broad peak at higher energy, well above 2�n. The latter
can be interpreted as the zero-sound mode of the neutron
component. In fact, as was shown in Ref. [9], in a superfluid
liquid at increasing momenta, the phonon peak disappears,
whereas the pair-breaking mode develops in the zero-sound
mode of the system, which can be strongly damped because
the particle-hole channel is coupled to the pair-breaking pro-
cess.

To see this more clearly, we have reported in Fig. 6 the
strength functions under the same physical conditions but as-
suming the neutron gap vanishing small, i.e., a normal neutron
component. One can see that now the broad neutron peak at
the higher momentum has become a relatively narrow peak,
which indicates that the apparent damping of the neutron peak
in Fig. 5(b) is due to the presence of neutron pairing. It has
to be stressed that the calculated microscopic interaction in
the neutron particle-hole channel is repulsive at this density,
whereas it is attractive at saturation density. This means that
the zero-sound mode of Fig. 6 is shifted outside the (normal)
neutron particle-hole continuum, and Landau damping is not
present. The width of the mode is, therefore, entirely due to
the coupling with the protons. This can be clearly seen in
panel (a) where the peak just above the neutron particle-hole
continuum is apparent.

IV. SUMMARY AND CONCLUSIONS

In the homogeneous core of a neutron star, the dense matter
is expected to be composed mainly by neutrons, protons,
and electrons. The collective elementary excitations of the
medium are determined, in general, by the coupling among
the three components, and the corresponding spectral function
has three components. According to the different regions of
the core, the neutrons and the protons can be in the normal
state or in the superfluid state. Extending a previous work
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[27] where only the proton component was assumed to be a
superfluid, we have considered the case where both neutrons
and protons are superfluids with particular emphasis on the
effects of the coupling between the two components. Besides
the Coulomb interaction between protons and electrons and
the pairing correlation, we included the nuclear interaction
among the nucleons. The effective nuclear forces were de-
rived from Bruckner-Hartree-Fock calculations that include
three-body forces and correctly reproduce the nuclear matter
saturation point. If the neutron-proton interaction is neglected,
both neutron and proton strength functions at low momenta
are characterized by the presence of a sharp phonon excitation
below twice the pairing gap and a broad pair-breaking mode
above it. At higher momenta, the phonon peak disappears,
and the pair-breaking mode merges in the zero-sound mode
of the system. With the introduction of the neutron-proton
interaction, the phonon becomes a collective neutron-proton
excitation, and it is damped, i.e., the phonon peak has a
substantial width. The reason of the width is in the position
of the mode on the energy-momentum plane, which lies
inside the electron particle-hole continuum. This introduces
a Landau damping, which, in turn, is acting on all three
components through the nuclear neutron-proton interaction
and the proton-electron Coulomb interaction. All that appears
clearly from the calculated spectral functions. The presence
of damping can affect all physical processes that involve the
phonon degrees of freedom inside the neutron-star core. The
neutron pair-breaking modes are only marginally affected by
the neutron-proton interaction. However, at higher momen-
tum, the neutron zero-sound mode is strongly damped by

the coupling between the particle-hole continuum and the
pair-breaking processes.

The neutron component in the core could be superfluid
in the 3P2 channel especially at high density, and an overlap
with proton superfluidity is possible. This depends, of course,
on the extension of the proton pairing in the core. For pure
neutron matter, the elementary excitations have been studied
in the RPA framework in Ref. [32]. It would be interesting to
include the proton component and its coupling. This study is
left to a future work.

Finally, we remark that the effective nuclear interaction
among nucleons can be derived also from Skyrme effective
forces. In Ref. [27], it has been shown that the quantitative fea-
tures of the spectral functions are model dependent with dif-
ferences appearing among Skyrme forces and between these
and BHF results. However, the qualitative conclusions are not
affected. It is recognized that microscopic calculations are
more reliable to extrapolate the high density and asymmetry
behavior of nuclear interactions, and actually, modern Skyrme
forces use microscopic equations of the state as constraints
away from nuclear data. For these reasons, we have chosen
the microscopic forces as a scheme of reference for the present
paper.

APPENDIX

In this appendix, we write down the explicit expressions
of the system of Eq. (1) in the main text for the response
functions �i j . In extended form, the system can be written
as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − X p
+Upair −2X −

GF vpp 2X −
GF vc −2X −

GF vpn 0

X p
GFUp 1 − 2X ph

p vpp 2X ph
p vc −2X ph

p vpn 0

0 2X evc 1 − 2X evc 0 0

0 −2X ph
n vnp 0 1 − 2X ph

n vnn X n
GFUn

0 −2n
GF vnp 0 −2X n

GF vnn 1 − 2X p
+Un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
(p)
S

�
(ph,p)
S

�
(ph,e)
S

�
(ph,n)
S

�
(n)
S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
(p)
0,S

�
(ph,p)
0,S

�
(ph,e)
0,S

�
(ph,n)
0,S

�
(n)
0,S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

Here, we have introduced the notation,

X+ = 1
2 [XGG(q) + XGG(−q)] + XFF (q), (A2)

X ph = X ph
GG(q) − XFF (q), (A3)

XGF = XGF (q) − XGF (−q) (A4)

valid for both protons and neutrons [superscript p, n in Eq. (A1)]. The different terms are the following four-dimensional
integrals:

X ph
GG(q) = 1

i

∫
dk

(2π )4
G(k)G(k + q), X ph

GG(−q) = X ph
GG(q), (A5)

XGG(q) = 1

i

∫
dk

(2π )4
G(k)G(−k + q), (A6)

XGG(−q) = 1

i

∫
dk

(2π )4
G(k)G(−k − q), (A7)

XGF (q) = 1

i

∫
dk

(2π )4
G(k)F (k + q), (A8)
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XGF (−q) = 1

i

∫
dk

(2π )4
G(k)F (k − q), (A9)

XFF (q) = 1

i

∫
dk

(2π )4
F (k)F (k + q), XFF (−q) = XFF (q). (A10)

In the last equations, G and F are the normal and anoma-
lous single-particle Green’s functions for protons and neu-
trons. Finally, X e is the relativistic electron Lindhard function
[33] and vc is the Coulomb interaction with the positive sign.
The proton-proton interaction vpp is assumed to include it.

The response functions appearing in Eq. (A1) are labeled
according to the operator that appears on the left of the
time-ordered product of Eq. (3), according to the list (2). So
the labels (p), (n) stand for the configurations [a†(p)a†(p) −
a(p)a(p)]|�0〉 and [a†(n)a†(n) − a(n)a(n)]|�0〉, respectively,
whereas the labels (ph, p), (ph, n), and (ph, e) stand for the
particle-hole configurations a†(p)a(p)|�0〉, a†(n)a(n)|�0〉,
and a†(e)a(e)|�0〉. The same labeling is used for the free
response functions �0 appearing on the right-hand side.

Let us stress that the quantity �0 and � are the free and the
full response function respectively, see Eq. (3), and therefore
they are 5×5 matrices. The index j on the right side of
both response functions in Eq. (1) is not indicated here for
simplicity of notation, since it is mainly a dummy index and
it can indicate any one of the above mentioned configurations.
For each choice of the configuration j on the right side the free
response functions will change properly and the correspond-
ing correlated response functions can be calculated. In this
way the whole 5×5 matrix � can be obtained. The subscript
S in the response functions specifies that they are calculated
for the spin zero (scalar) case.

The analytic expressions for the integrals of Eqs. (A5)–
(A10) can be found in Ref. [9].
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