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We compute the matrix elements for elastic scattering of dark matter (DM) particles off light nuclei (2H, 3H,
3He, 4He, and 6Li) using quantum Monte Carlo methods. We focus on scalar-mediated DM-nucleus interactions
and use scalar currents obtained to next-to-leading order in chiral effective theory. The nuclear ground states are
obtained from a phenomenological nuclear Hamiltonian that includes the Argonne v18 two-body interaction and
the three-body Urbana IX interaction. Within this approach, we study the impact of one- and two-body currents
and discuss the size of nuclear uncertainties, including for the first time two-body effects in A = 4 and A = 6
systems. Our results provide the nuclear structure input needed to assess the sensitivity of future experimental
searches of (light) dark matter using light nuclei, such as 3He and 4He.
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I. INTRODUCTION

Observational evidence for dark matter (DM) in the uni-
verse is extremely strong, coming from both astrophysics and
cosmology [1]. While searches for signals from direct, indi-
rect, and accelerator experiments have yet to be successful, a
vibrant worldwide experimental program exists. In particular,
the so-called “direct detection” search for weakly interacting
massive particles through nuclear recoils is very active, and
there is a growing emphasis on covering a broader DM mass
range, extending to the sub-GeV scale [2].

As emphasized already in early studies [3], to interpret
direct detection experiments and disentangle the origin of
possible future signals, it is important to have a solid theo-
retical control of nuclear effects. In recent years, a variety of
approaches based on effective field theory (EFT) have been
proposed to tackle the physics of DM-nucleus interactions.
EFT methods have been applied at different levels: (i) nonrel-
ativistic DM-nucleus interactions [4]; (ii) nonrelativistic DM-
nucleon interactions [5]; and (iii) DM-nucleon interactions
derived from DM-quark and DM-gluon interactions in the
framework of chiral EFT [6–12], to be used in nuclear few-
and many-body calculations. First-principles, lattice QCD
calculations have also been performed for matrix elements of
scalar, axial, and tensor currents [13,14].

We work within approach (iii), which is the only one suit-
able for matching to higher scales and performing a consistent
phenomenology of direct, indirect, and collider DM searches.
In this approach, several classes of operators arise at the
DM-quark and DM-gluon level (see, for example, Ref. [12]
and references therein). In this work, we focus on scalar-
mediated DM-quark and DM-gluon interactions, which could,
for example, arise from the exchange of particles from an
extended Higgs sector in UV models. However, we emphasize
that our nuclear matrix elements apply also to the case of

“light” scalar mediators, with masses below the electroweak
scale (the expression for the DM-nucleus scattering amplitude
would have to be multiplied in that case by the appropri-
ate light scalar propagator). The choice of scalar-mediated
interactions for this exploratory study is motivated by the
fact that two-nucleon currents arise in this case already at
next-to-leading order (NLO) in the chiral counting, while they
are relatively more suppressed for other interactions [9].

We focus on DM scattering off a variety of light nuclei,
namely 2H, 3H, 3He, 4He, and 6Li. Our study has a twofold
motivation. First, for such light nuclei, first-principles cal-
culations of the nuclear wave functions are possible, once
nucleon-level interactions are specified. Therefore one can
reliably study the effect of one- and two-nucleon currents for
different spin and isospin structures. Second, light nuclear
targets are of great interest because they provide a better
kinematic match for light DM and allow one to probe sub-
GeV DM masses [2]. In fact, both 3He and 4He isotopes
are being considered for future direct detection experiments
[15–19], including directional detection [20]. So our study
goes beyond the benchmarking scope and will be relevant in
the interpretation of results from these experiments.

In our study we follow a hybrid approach in which the
scalar-mediated DM-nucleon interactions are derived in the
framework of chiral EFT up to NLO in the Weinberg counting
[7], and the nuclear wave functions are obtained from a
phenomenological nuclear Hamiltonian that includes accurate
two-body [21] and three-body interactions [22]. This allows
us to take advantage of quantum Monte Carlo methods, which
in recent years have proven to be extremely successful in de-
scribing light and medium-heavy nuclei from first principles
[23–25]. Within this framework, the impact of two-body cur-
rents has been previously studied in electron scattering [26,27]
and neutral-current neutrino scattering [27,28] [finding effects
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up to O(10%)], as well as in β decays [29] (finding effects of
a few percent).

First-principles studies of DM-nucleus scattering for light
nuclei already exist in the recent literature [11,30]. Reference
[11] focuses on systems with A = 2 and 3 and performs a self-
consistent analysis of scalar-mediated DM-nucleus scattering
using both chiral currents and chiral potentials for the nuclear
wave functions. Reference [30], on the other hand, focuses on
3He and 4He isotopes and uses a hybrid approach (different
from ours) in which nuclear wave functions are obtained in
the no-core shell model with next-to-next-to-leading-order
chiral potential while general one-body “currents” (not just
scalar-mediated) are parametrized in the nonrelativistic EFT
framework of Ref. [5]. While overlapping with these studies,
our work provides the first results for two-nucleon currents
in systems with A = 4 and 6, including the 4He isotope of
experimental interest.

The paper is organized as follows: we summarize the
relevant scalar-mediated DM-nucleon interactions in Sec. II.
In Sec. III we give the details of the nuclear Hamiltonian
and wave functions used for the calculations of the elastic
scattering cross section and in Sec. IV we present our results.
We give our conclusions and outlook in Sec. V.

II. SCALAR INTERACTION

A general, model-independent interaction for DM and
quarks can be built using higher dimension operators of the
form (see, for example, Ref. [12])

O = χ̄�χχψ̄�ψψ, (1)

where �χ/ψ ∈ {1, γ 5, γ μ, γ μγ 5} are Dirac bilinears, χ and χ̄

are the DM fields, and ψ and ψ̄ the quark fields.
In this work, we restrict ourselves to scalar interaction

between a DM particle and standard model fields (vector and
axial-vector interactions will be studied in future work). The
DM particle is assumed to be a Dirac fermion of spin-1/2.
The effective Lagrangian describing scalar-mediated DM-
quark and DM-gluon interactions is built from dimension-7
operators [7]:

Leff = 1

�̃3

⎛
⎝ ∑

q=u,d,s

cqχ̄χmqq̄q + cGχ̄χαsG
a
μνGμν

a

⎞
⎠, (2)

where the sum runs over the light quark field q, αs is the
strong coupling constant, and Gμν is the gluon field strength
tensor. We have introduced a new physics scale, �̃, related
to the mass of the mediator (or possibly a new interaction
mechanism) and dimensionless Wilson coefficients cq and cG

that parametrize the interaction. For convenience, we include
the masses of the quarks, mq, in the definition of the operators.

The derivation of the interaction at the nucleon level can
be found in Refs. [7,10,11,31]. The diagrams contributing at
this order are shown in Fig. 1. Here we only summarize the
resulting currents up to NLO, in the context of SU(2) chiral
perturbation theory [10,11].

We assume the following convention for momenta,

N (pi ) + χ (k) → N (p′
i ) + χ (k′), (3)

(a) (b) (c)

FIG. 1. Diagrams contributing to DM-nucleus scattering up to
NLO. Solid black lines denote nucleons; dashed lines denote pions.
(a) Interaction at leading order (LO). (b) One-body interaction at
NLO. (c) Two-body interaction at NLO.

where q = k′ − k = pi − p′
i, and pi and k (p′

i and k′) are
incoming (outgoing) momenta for nucleons and DM particles,
respectively (the index i refers to the ith nucleon).

In momentum space, the one-body current describing the
DM interaction with the ith nucleon up to NLO can be written
as [11,32]

J (1)(qi ) = cis

�̃3

[
σπN − 9g2

Aπm3
π

4(4π fπ )2 F

( |qi|
2mπ

)]

− civ

�̃3

δmN

4
τ z

i + cs

�̃3
(σs − σ̇sq2) − cG

�̃3

8πmG
N

9

F (x) = −x + (1 + 2x2) arctan x

3x
, (4)

where σπN is the nucleon σ term, δmN = (mn − mp)strong,

σs = ms〈N |s̄s|N〉, mG
N = mN − σπN − σs, and σ̇s = (0.3 ±

0.2) GeV−2 [33]. Moreover, we define the isoscalar and
isovector couplings cis and civ as the appropriate linear com-
binations of the Wilson coefficients appearing in Eq. (2):

cis = cumu + cd md

mu + md
, (5)

civ = 2
cd md − cumu

md − mu
. (6)

The numerical values for the single-nucleon quantities used in
calculations are taken from Refs. [34] and [35]; i.e.,

σπN = (59.1 ± 3.5) MeV, δmN = (2.32 ± 0.17) MeV .

(7)

Even though we use the value for the σ term obtained
from a Roy-Steiner analysis of pion-nucleon scattering in
Ref. [34], our numerical results can be easily extended to other
values coming, for example, from lattice QCD calculations
(see Ref. [36] and references therein).

As noted in Sec. IV, the σ term is factored out of the cross
section so the numerical input used will only affect the relative
size of the momentum-dependent part of the one-body current.

The two-body current appearing at NLO Fig. 1(c), is given
by

J (2)
ππ (qi, q j ) = − cis

�̃3

(
gA

2Fπ

)2

m2
πτ i · τ j

σ i · qiσ j · q j(
q2

i + m2
π

)(
q2

j + m2
π

) .

(8)

The coordinate-space expressions of the currents are pro-
vided in the Appendix. Two-nucleon currents proportional to
cG appear formally at next-to-next-to-next-to-leading order
[7,11,32].
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The elastic scattering cross section is given by

dσ

dq2
= 1

4πv2
χ

1

2 j + 1

×
j∑

mj ,m′
j=− j

∣∣〈ψ jm′
j

∣∣J (q)
∣∣ψ jm j

〉∣∣2
, (9)

where vχ is the velocity of the DM particle and we are
adopting normalization of nonrelativistic states for the DM
particle and the nucleus. The nuclear matrix element for a
given nucleus with the ground state |ψ jm j 〉 is characterized by
total spin j and spin polarization mj and is calculated using
J (q), given by the sum of one- and two-body contributions
from Eqs. (4) and (8).

III. NUCLEAR WAVE FUNCTIONS

The evaluation of nuclear matrix elements required in
Eq. (9) is performed using the variational Monte Carlo
method. We use variational wave functions |ψ〉 that minimize
the expectation value of

EV = 〈ψ |H |ψ〉
〈ψ |ψ〉 , (10)

which provides an upper bound to the energy of the ground
state.

The phenomenological Hamiltonian used in this work has
an Argonne v18 potential [21] for the two-body interaction and
an Urbana IX potential [22] for the three-body interaction:

H =
∑

i

Ti +
∑
i< j

vi j +
∑

i< j<k

vi jk . (11)

The variational wave function for a given nucleus in the J
state is

|ψ〉 =
⎡
⎣S

A∏
i< j

(1 + Ui j )

⎤
⎦

⎡
⎣ ∏

i< j<k

fc(ri jk )

⎤
⎦|�(JMT T3)〉 ,

(12)

where S is a symmetrization operator acting on two- and
three-body correlation operators, fc is a spin- and isospin-
independent two- and three-body correlation, � is an an-
tisymmetric wave function containing the correct quantum
numbers for the state of interest, and the two-body spin- and
isospin-dependent correlations are constructed as

Ui j =
∑

p

f p(ri j )O
p
i j , (13)

where the operators are

Op
i j = τ i · τ j, σ i · σ j, (τ i · τ j )(σ i · σ j ), Si j, Si jτ i · τ j, (14)

and f p are radial functions. For more details see Ref. [23] and
references therein.

Finally, the currents entering Eq. (9) are given by

J (q) =
∑

i

eiq·ri J (1)(q) +
∑
i< j

J (2)
ππ (q; ri, r j ), (15)

obtained by Fourier transforming the expressions in Eqs. (4)
and (8), as reported in the Appendix.

IV. RESULTS

Here we present the results of our calculations, for a variety
of light nuclei. Considering for the moment only the isoscalar
part [the contributions of civ, cs, and cG are easily included
according to Eq. (17) below], it is convenient, as in Ref. [11],
to expand the total cross section in terms of nuclear response
functions:

dσ

dq2
= c2

is

�̃6

σ 2
πN A2

4πv2
χ

∣∣F (0)
is (q2) + F (1)

is,2b(q2) + F (1)
is,r (q2)

∣∣2
,

(16)

where we factorized the isoscalar coupling σ term and the
number of nucleons A. Each function F (ν)

a,i carries the index
ν referring to the chiral order, the label a to distinguish be-
tween isoscalar and isovector contributions, and the label i for
contributions of two-body currents and for the so-called “nu-
cleon radius” correction, given by the one-body momentum-
dependent correction in Eq. (4) proportional to F ( |qi|

2mπ
). With

our choice of normalization, we have F (0)
is (0) = 1.

In what follows we concentrate on the case cis �= 0 while
setting civ,s,G/cis = 0, because to the order we work the
additional couplings do not introduce independent nuclear
responses. In fact, from Eq. (4) one can obtain the cross
section for general couplings civ,s,G �= 0 by rescaling F (0)

is (q2)
in Eq. (16) by the factor

1−
(

civ

cis

)
δmN

4σπN

2Z − A

A
+

(
cs

cis

)
σs − σ̇s q2

σπN
−

(
cG

cis

)
8πmG

N

9σπN
.

(17)

The maximum momentum transfer q considered in the
calculations is 100 MeV, which is appropriate for light nuclei
and a DM mass of about 1 GeV. In this scenario q ranges
from a few to tens of MeV. In Fig. 2 we present the results
for isoscalar terms in Eq. (16). For each nucleus, we compare
the results for LO and NLO contributions. As we can see, the
order (ν = 1) corrections slightly increase the cross section at
low momenta. At larger momenta, the contribution from the
radius correction is greater than the two-body contribution and
of opposite sign, making the total cross section decrease as q
increases. This behavior is consistent for all the nuclei consid-
ered here. Nonetheless, in the range of values considered, the
deviation from LO results is at the few percent level.

To assess the effect of the two terms appearing at order
(ν = 1), it is useful to consider their relative contribution to
the total cross section. First, we define the radius correction in
the following way [11]:

�(r) =
∣∣F (0+1)

is (q2)
∣∣2 − ∣∣F (0)

is (q2) + F (1)
is,2b(q2)

∣∣2

∣∣F (0+1)
is (q2)

∣∣2 , (18)

where F (0+1)
is (q2) is defined by the sum of the three isoscalar

terms on the right-hand side of Eq. (16). Working at NLO and
expanding for small order (ν = 1) corrections, this expression
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(a) (b)

(c) (d)

FIG. 2. Isoscalar matrix elements for nuclei from A = 2 to 6. Dashed blue lines correspond to LO calculations, and orange solid ones
correspond to NLO.

reduces to

�(r) ∼ 2F (1)
is,r (q2)

F (0+1)
is (q2)

∼ − 2

σπN

9g2
Aπm3

π

4(4π fπ )2 F

( |q|
2mπ

)
. (19)

The nuclear effects drop out and the correction is given only
by the momentum dependence of Eq. (4). This expression
agrees with the complete nuclear calculations, in the range of
the momenta considered here. For this reason, we only present

FIG. 3. Percentual radius correction for 4He.

the radius correction for 4He in Fig. 3 and note that all the
other nuclei show the same behavior, up to minor differences
due to the two-body contribution and higher-order terms in
the expansion (19). The radius correction vanishes at zero
momentum transfer and grows to about 6% at q = 100 MeV.

Similarly to Eq. (18), the relative contribution of two-body
currents is given by [11]

�(2b) =
∣∣F (0+1)

is (q2)
∣∣2 − ∣∣F (0)

is (q2) + F (1)
is,r (q2)

∣∣2

∣∣F (0+1)
is (q2)

∣∣2 . (20)

In Fig. 4 we present the percentual correction given by two-
body operators entering at NLO with respect to the total con-
tribution up to NLO. All two-body corrections are of modest
size, with nuclei with A = 3 giving a smaller contribution
compared to 2H and 4He and being almost exactly equal. The
two-body corrections tend to increase with the nucleus size at
large momenta and this effect might be even more pronounced
for larger nuclei. We notice however that at low momenta the
correction in the 2H nucleus is somehow larger than A = 3
and 4 nuclei. Overall, the role of two-body operators increases
with the momentum transferred, from about 2% up to about
4%. This is true only for very large cutoff. Note, however,
that the actual size of the correction depends on our choice
civ,s,G = 0 and can be computed in the general case through the
rescaling introduced in Eq. (17) above. Also, radius and two-

025501-4



QUANTUM MONTE CARLO CALCULATIONS OF DARK … PHYSICAL REVIEW C 99, 025501 (2019)

FIG. 4. Percentual two-body correction to the total cross section
for various nuclei.

body corrections for different values of the nucleon σ term can
be obtained from our data by multiplying by the appropriate
constant. Lower values of the σ term as in Ref. [36] increase
the relative size of NLO contributions.

Finally, we discuss the cutoff dependence of the nuclear
matrix elements due to the short-distance regulator introduced
in the Fourier transforms (see the Appendix). All the results
reported so far were obtained in the limit of infinite cutoff �

in Eq. (A3). Ideally, one should consider a cutoff in the current
consistent to the one used in the nuclear Hamiltonian, but this
is not possible in our hybrid approach. In fact, because we
use a phenomenological potential in the nuclear Hamiltonian,
there are no “strong” low-energy constants that allow for
a variation of the cutoff when obtaining the nuclear wave
function. In practice, because the Argonne v18 interaction has
a very strong hard core, we might expect its effective cutoff
to be very high. In such situations, a possible strategy would

FIG. 5. Percentual two-body correction to the total cross section
for various nuclei.

FIG. 6. Cutoff dependence of the two-body contribution for q = 0.

be to fix the cutoff in the currents, fit the “weak” low-energy
constants to reproduce some observable, and predict proper-
ties of larger nuclei. For Argonne Hamiltonians this has been,
for example, explored in β-decay calculations [29]. However,
in the present case, up to the order we work, there are no new
low-energy constants in the currents and this approach is not
viable. So to explore the cutoff dependence we have simply
calculated �(2b) for different values of �. The calculations
are presented in Figs. 4 and 5 where we show the fractional
two-body corrections at � = 500 MeV and � = 10 GeV,
respectively, as a function of q. In Fig. 6 we show the
two-body corrections for all the nuclei considered here as a
function of the cutoff � for a fixed q = 0.

Two features emerge from our results. First, for � ∈
[500, 1000] MeV there is a strong cutoff dependence of
the two-body contribution, so that it even changes signs for
some nuclei. For example, the two-body correction is always
positive for 2H, but it changes sign in A = 3 nuclei and 6Li for
� ∼ 700 MeV and above 800 MeV for 4He. This is due to the
fact that there is a large cancellation between the operators
in Eq. (A3). We illustrate this point by reporting in Table I
the fractional contributions to the total cross section at q = 0,
which arise entirely from the operators O1 (∼σ1 · σ2) and O2

(∼σ1 · r̂ σ2 · r̂) in Eq. (A3). The second feature is that the
two-body contribution saturates for large values of �, starting
around 2 GeV. This might reflect the fact that the phenomeno-
logical nuclear Hamiltonian considered here effectively has a
very large cutoff. Overall, the cutoff dependence of the two-
body current contribution is the largest source of uncertainty

TABLE I. Percentual two-body correction to the total cross sec-
tion for nonvanishing operators contributing at q = 0.

Nucleus � (MeV) �(2b) (%)

O1 O2 O1 + O2

2H 500 −3.4 4.2 0.7
10 000 −4.9 7.9 3.0

4He 500 −13.2 10.7 −2.4
10 000 −19.2 21.9 2.7
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in our approach. Attempts to remove this “systematic” effect
will necessarily involve the use of wave functions obtained by
a chiral potential, as discussed in Ref. [11].

V. CONCLUSIONS

We have studied the elastic scattering of DM particles
off a number of light nuclei (2H, 3H, 3He, 4He, and 6Li)
with different spin and isospin using quantum Monte Carlo
methods. We have focused on scalar-mediated interactions,
parametrized by four Wilson coefficients related to the me-
diator mass and its coupling to DM and quarks. We have used
the resulting hadronic currents up to NLO in the chiral ex-
pansion, containing both nucleon “scalar radius” corrections
and two-body effects. We have followed a hybrid approach in
which the chiral EFT currents are used in combination with
nuclear wave functions obtained from a phenomenological
nuclear Hamiltonian that includes the Argonne v18 two-body
interaction and the three-body Urbana IX interaction.

We find that for the momentum transfers of interest, the
overall size of the NLO corrections is at the few percent
level, perhaps smaller than suggested by chiral counting. The
NLO correction due to the nucleon scalar radius is essentially
free of nuclear structure uncertainties and grows from zero to
≈ −2% at q = 60 MeV and ≈ − 6% at q = 100 MeV. On the
other hand, the corrections due to scalar two-body currents—
estimated for A = 4 and 6 for the first time in this work—start
at q = 0 at the 2–3% level (depending on the nucleus) and
mildly grow with q. For A = 2 and 3, our results are in
qualitative agreement with Ref. [11].

We can also compare our findings for 3He and 4He with
those of Ref. [30]. This reference considers only the one-body
current, generated by the operator Ô1 in the NREFT operator
basis of Ref. [5]. While a detailed numerical comparison is
beyond the scope of our work, for the one-body contribution

we find a good qualitative agreement with the results of
Ref. [30].

Even assigning a conservative uncertainty as large as
the variation of the two-body matrix element between � =
500 MeV and � = 2 GeV, the total cross section is still known
quite precisely, namely at the few percent level. Therefore,
our results in combination with Refs. [11,30] already provide
the reasonable nuclear structure input needed to assess the
sensitivity of future experimental searches of light dark matter
using 3He and 4He targets.

Further refinements are certainly warranted. Interesting
directions for future studies include: (i) moving beyond the
hybrid approach, in the spirit of Ref. [11], by using chiral
interactions (as opposed to the Argonne v18 potential) in
combination with quantum Monte Carlo to obtain the nuclear
wave functions; and (ii) exploring the consistency of Wein-
berg power counting in various channels of DM-nucleon two-
body interactions, and matching to lattice QCD calculations
[13,14], to determine the relevant low-energy constants.
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APPENDIX

The one- and two-body DM-nucleon currents need to be Fourier transformed so that they can be used in a variational Monte
Carlo calculation in coordinate space. To tame the short-distance singularities we use a Gaussian regulator of the form

S�(k2) = e− k2

2�2 , (A1)

with cutoff parameter �. The two-body current is obtained from

J (2)
ππ (q; r1, r2) =

∫
d3k1

(2π )3

d3k2

(2π )3 eik1·r1 eik2·r2 S�

(
k2

1

)
S�

(
k2

2

)
(2π )3δ(3)(k1 + k2 − q)J (2)

ππ (k1, k2). (A2)

The coordinate space expression for two-body currents can be calculated analytically, except for one integration over an auxiliary
variable y. It reads

J (2)
ππ (q; r1, r2) = − 1

�3

(
gA

2Fπ

)2

cism
2
πτ1 · τ2

1

2
eiq·R

∫ 1

−1
dye−iq·ry/2

×
[

(σ1 · q)(σ2 · q)
1 − y2

4
s(r, y) + (σ1 · q)(σ2 · r̂)

(
−i

1 + y

2

)
∂

∂r
s(r, y)

+ (σ1 · r̂)(σ2 · q)

(
i
1 − y

2

)
∂

∂r
s(r, y) + (σ1 · σ2)

1

r

∂

∂r
s(r, y) + (σ1 · r̂)(σ2 · r̂)r

∂

∂r

1

r

∂

∂r
s(r, y)

]
, (A3)
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where r = r2 − r1, R = r2+r1
2 , and the radial functions have the following expressions:

s(r, y) = eL2/�2

8πL�r

[
erfc

(
L

�
+ �r

2

)
eLr

(
L

�
+ �r

2

)
− erfc

(
L

�
− �r

2

)
e−Lr

(
L

�
− �r

2

)]
, (A4)

∂

∂r
s(r, y) = eL2/�2

8π�2r2

[
erfc

(
L

�
+ �r

2

)
eLr

(
−1 + Lr + �2r2

2

)

+ erfc

(
L

�
− �r

2

)
e−Lr

(
1 + Lr − �2r2

2

)]
− e−�2r2/4

4π3/2�r
, (A5)

r
∂

∂r

1

r

∂

∂r
s(r, y) = eL2/�2

8π�2r3

[
erfc

(
L

�
+ �r

2

)
eLr

(
3 − 3Lr + L2r2 − �2r2

2
+ Lr�2r2

2

)

+ erfc

(
L

�
− �r

2

)
e−Lr

(
−3 − 3Lr − L2r2 + �2r2

2
+ Lr�2r2

2

)]
+ 3e−�2r2/4

4π3/2�r2
, (A6)

r2 ∂

∂r

1

r

∂

∂r

1

r

∂

∂r
s(r, y) = eL2/�2

8π�2r4

[
erfc

(
L

�
+ �r

2

)
eLr

(
−10 + 10Lr − 5L2r2 + L3r3 − Lr�2r2 + L2r2�2r2

2

)

+ erfc

(
L

�
− �r

2

)
e−Lr

(
10 + 10Lr + 5L2r2 + L3r3 − Lr�2r2 − L2r2�2r2

2

)]

− e−�2r2/4(10 + L2r2 + �2r2)

4π3/2�r3
, (A7)

L(q; y) =
√

m2 + (1 − y2)
q2

4
. (A8)

As a useful cross-check, we can see that in the limit of q = 0 and � → ∞ the above expression reduces to

1

8πr
[(σ1 · r̂)(σ2 · r̂)(1 + mr) − (σ1 · σ2)]e−mr, (A9)

which corresponds to Eqs. (5.8) and (5.9) in Ref. [7].
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