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Low energy kaon-hyperon interaction
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In this work we study the low energy kaon-hyperon interaction, considering effective chiral Lagrangians that
include kaons, σ mesons, hyperons, and the corresponding resonances. We calculate the scattering amplitudes,
and then the total cross sections, angular distributions, polarizations, and the S and P phase shifts.
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I. INTRODUCTION

A subject that is very interesting and remains not very well
studied is low energy hyperon interactions. Despite the fact
that experimental data for many hyperon processes are not
available (for example the K� and K� interactions) and that
on the theoretical side they are not fully described, this kind
of interaction is a fundamental element for several physical
systems of interest.

In the study of hypernuclei structure [1–4], the knowledge
of nucleon-hyperon and hyperon-hyperon interactions is an
essential aspect. In order to understand these interactions, and
to determine the potentials of interest, an accurate understand-
ing of meson-hyperon interactions is needed.

Another system where hyperon interactions are required is
in the study of hyperon stars. Since the proposal of the hy-
pothesis that hyperons could be produced inside neutron stars
at high densities, many models have been proposed, as for
example in [5–8], and the effect of the presence of hyperons in
the equations of state, and consequently in the determination
of the star masses, has been studied. The indeterminations
in the nucleon-hyperon and hyperon-hyperon potentials cause
difficulties in the understanding of these stars.

In high energy physics also this kind of interaction is very
important. When studying hyperon polarization, produced
in proton-nucleus and nucleus-nucleus collisions [9–18],
in [19–21] the final interactions of the hyperons and antihy-
perons with the produced pions are a central ingredient in
order to explain the final polarizations. It has been shown that
the effect of the hyperon interactions with the surrounding hot
medium, composed predominantly of pions, is very important.
The observed differences between the polarizations of hyper-
ons and antihyperons are very difficult to explain in another
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way. The effect of the final kaon-hyperon interactions has
not been considered yet, and it may cause corrections in the
final polarization. For this reason, this work is very important
and this effect must be investigated. Recent results from
BNL Relativistic Heavy Ion Collider (RHIC) [22] and even
the hyperons produced in the CERN Large Hadron Collider
(LHC) may be studied in a similar form, and in order to obtain
accurate results these interactions must be considered.

For these reasons, this work will be devoted to the study
of the kaon-hyperon (KY ) and antikaon-hyperon (KY ) inter-
actions. This work may be considered as a continuation of the
study proposed in [23–25], where the pion-hyperon interac-
tions have been described with a model based on effective chi-
ral Lagrangians where the exchange of mesons and baryons
has been taken into account. In this model [23], the resonances
dominate many channels of the reactions, as may be seen in
the results. This behavior may be considered as an experi-
mental feature, similar to what happens in the low energy
pion-nucleon interactions, where the isospin-3/2 and spin-3/2
channels are dominated by the �++ resonance. Comparison
with the data from the HyperCP experiment [26,27] shows
a very good accord with the results obtained for the π�

scattering in [23]. So, the work that will be shown in this paper
is based on the ideas presented in this model.

This paper will present the following content: in Sec. II,
the basic formalism will be shown. in Secs. III, IV, V, and VI,
we study the kaon-lambda (K�), antikaon-lambda (K�),
kaon-sigma (K�), and antikaon-sigma (K�) interactions.
We present discussions and conclusions in Sec. VII. In the
Appendix, some expressions of interest will be presented.

II. THE METHOD

In order to study KY and KY interactions, we will use
a model proposed with the purpose of studying low energy
pion-hyperon interactions [23–25] that is based on an analogy
with models successfully used to describe πN interactions
considering chiral effective Lagrangians. These interactions
are very well studied, as for example in [28–31], both theo-
retically, where many models have been proposed, and exper-
imentally, with a large amount of experimental data available.
A basic characteristic of this system is the dominance of
resonances in the scattering amplitudes at low energies. The
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�++, for example, dominates the cross section of the π+ p
scattering at low energies. As this particle has spin 3/2 and
isospin 3/2, it may be introduced in the theory by consid-
ering a Lagrangian in the form of Eq. (2). In the study of
pion-hyperon interactions [23], a similar behavior has been
observed, so we expect that in KY interactions it also occurs.

In this section we will present the basic formalism that will
be used to study kaon-hyperon interactions (it is the same one
worked out in the study pion-hyperon interactions [23]) and
how the observables may be obtained. In the method that will
be followed in this work, some important characteristics of
the interacting particles will be implemented: the spin, the
isospin, and the mass of each particle. These characteristics
determine which Lagrangians have to be used in order to build
the model.

For example, in [28], the Lagrangians considered to study
the πN scattering are given by

LπNN = g

2m
(Nγμγ5�τN ) · ∂μ�φ, (1)

LπN� = g�

{
�

μ

[
gμν −

(
Z + 1

2

)
γμγν

]
�MN

}
· ∂ν�φ, (2)

where N , �, and �φ are the nucleon, delta, and pion fields
with masses m, m�, and mπ , respectively, �M and �τ are
the isospin recombination matrices, and Z is a parameter
representing the possibility of the off-shell � having spin 1/2.
The parameters g and g� are the coupling constants. In [23]
similar Lagrangians have been used to study the pion-hyperon
interactions, and in this work the same procedure will be
adopted. So, in the following sections these Lagrangians will
be adapted to the kaon-hyperon systems.

Calculating the diagrams, considering the interactions de-
scribed by the Lagrangians above for an arbitrary process, the
scattering amplitudes may be written in the form

T βα
πN =

∑
I

T I〈β|PI |α〉 =
∑

I

T I Pβα
I , (3)

that is, a sum over all the I isospin states where PI is a
projection operator; the indices α and β are relative to the
initial and final isospin states of the π , and T I is an amplitude
for a given isospin state that may be written as

T I = u(�p′)
[
AI + 1

2
(/k + /k′)BI

]
u(�p), (4)

where u(�p) is a spinor representing the initial baryon, incom-
ing with four-momentum pμ. The final baryon has a spinor
u(�p′), four-momentum p′

μ, and kμ and k′
μ are the incoming

and outgoing meson four-momenta. The amplitudes AI and
BI are calculated from the diagrams. So, if these amplitudes
are determined, the T I amplitudes may be obtained and then
we will be able to compute the observables of interest.

The scattering matrix for an isospin state is given by the
expression

MI = T I

8π
√

s
, (5)

which may be decomposed into the spin-non-flip and spin-
flip amplitudes f I (k, θ ) and gI (k, θ ), defined in terms of the

momentum k = |�k| and x = cos θ , with θ the scattering angle,
as

MI = f I (k, x) + gI (k, x)�σ · n̂, (6)

where n̂ is a vector normal to the scattering plane, and may be
expanded in terms of the partial-wave amplitudes al± with

f I (k, x) =
∞∑

l=0

[
(l + 1)aI

l+(k) + laI
l−(k)

]
Pl (x), (7)

gI (k, x) = i
∞∑

l=1

[
aI

l−(k) − aI
l+(k)

]
P(1)

l (x). (8)

These amplitudes may be calculated using the Legendre poly-
nomials orthogonality relations

aI
l±(k) = 1

2

∫ 1

−1

[
Pl (x) f I

1 (k, x) + Pl±1(x) f I
2 (k, x)

]
dx, (9)

with

f I
1 (k, x) = (E + m)

8π
√

s
[AI + (

√
s − m)BI ], (10)

f I
2 (k, x) = (E − m)

8π
√

s
[−AI + (

√
s + m)BI ], (11)

where E is the baryon energy in the center-of-mass frame and√
s is given by a Mandelstam variable (see the Appendix).

At low energies the S (l = 0) and P (l = 1) waves dominate
the scattering amplitudes, and for higher values of l the
amplitudes are much smaller (almost negligible), so they may
be considered as small corrections.

Calculating the amplitudes at the tree level, the results
obtained will be real, and then violate the unitarity of the S
matrix. As is usually done, we may reinterpret these results
as elements of the K reaction matrix [23–25] and then obtain
unitarized amplitudes

aU
l± = al±

1 − ikal±
. (12)

The differential cross sections may be calculated using the
previous results,

dσ

d�
= | f |2 + |g|2, (13)

and integrating this expression over the solid angle we obtain
the total cross sections

σT = 4π
∑

l

[
(l + 1)

∣∣aU
l+

∣∣2 + l
∣∣aU

l−
∣∣2]

, (14)

and the phase shifts are given by

δl± = tan−1(ka±). (15)

An important task to achieve is to determine the coupling
constant for each resonance that will be considered. We will
adopt the same procedure considered in [23], comparing the
amplitude obtained in the calculations with the relativistic
Breit-Wigner expression, that is determined in terms of ex-
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FIG. 1. Diagrams for the K� interaction.

perimental quantities

δl± = tan−1

[
�0

(
k
k0

)2J+1

2(mr − √
s)

]
, (16)

where �0 is the width, k0 = |�k0| is the momentum at the peak
of the resonance in the center-of-mass system, mr is its mass,
and J the angular momentum, considering the data from [32].
We will consider the coupling constant that better fits this
expression in each case.

In the following sections we will apply this formalism in
the study of the reactions of interest.

III. KAON-LAMBDA INTERACTION

Since the � hyperon has isospin 0, the scattering amplitude
for the K� interaction will have the form

TK� = ū(�p′)
[

A(k, θ ) +
(

/k + /k′

2

)
B(k, θ )

]
u(�p), (17)

with the variables defined in Sec. II. Comparing this expres-
sion with (3), we have a simple result, Pβα

1/2 = 1, as the kaon
has isospin 1/2, and just one isospin amplitude.

In Fig. 1 we show the diagrams and the particles considered
to formulate the K� interaction. The particles considered for
each diagram are shown in Table I.

For the calculation of the contribution of particles with
spin-1/2 (N and �) in the intermediate state [Figs. 1(a)
and 1(c)], the Lagrangian of interaction is [considering the
necessary adaptations from Eq. (1)]

L�KB = g�KB

2m�

(Bγμγ5�)∂μφ + H.c., (18)

TABLE I. Particles considered in the K� interaction.

Jπ I Mass (MeV)

N 1/2+ 1/2 938
N (1650) 1/2− 1/2 1650
N (1710) 1/2+ 1/2 1710
N∗(1875) 3/2− 1/2 1875
N∗(1900) 3/2+ 1/2 1900
� 1/2+ 1/2 1320
�∗(1820) 3/2− 1/2 1820

where φ represents the kaon field, B the intermediate baryon
field with mass mB, and � the hyperon field, with mass m�.

Calculating the Feynman diagrams and comparing with
Eq. (17), we find the amplitudes for the N (spin-1/2) particles
contribution

AN = g2
�KN

4m2
�

(mN + m�)

(
s − m2

�

s − m2
N

)
, (19)

BN = −g2
�KN

4m2
�

[
2m�(m� + mN ) + s − m2

�

s − m2
N

]
, (20)

and for the � (spin-1/2) hyperon in the crossed diagram
[Fig. 1(c)] the contribution is

A� = g2
�K�

4m2
�

(m� + m�)

(
u − m2

�

u − m2
�

)
, (21)

B� = g2
�K�

4m2
�

[
2m�(m� + m�) + u − m2

�

u − m2
�

]
, (22)

where s and u are Mandelstam variables, defined in the
Appendix, and g�KN (�) are the coupling constants.

In a similar way, we adapted the interaction Lagrangian (2)
for the exchange of spin-3/2 resonances, shown in Figs. 1(b)
and 1(d):

L�KB∗ = g�KB∗

{
B

∗μ

[
gμν −

(
Z + 1

2

)
γμγν

]
�

}
∂νφ + H.c.

(23)
Calculating the amplitude for the exchange of a spin-3/2

N∗ [Fig. 1(b)] we have

AN∗ = g2
�KN∗

6

[
2Â + 3(m� + mN∗ )t

m2
N∗ − s

+ a0

]
, (24)

BN∗ = g2
�KN∗

6

[
2B̂ + 3t

m2
N∗ − s

− b0

]
, (25)

where

Â = 3(m� + mN∗ )(qN∗ )2 + (mN∗ − m�)(EN∗ + m�)2, (26)

B̂ = 3(qN∗ )2 − (EN∗ + m�)2, (27)

a0 =− (m� + mN∗ )

m2
N∗

(
2m2

N∗ + m�mN∗−m2
�+2m2

K

)

+ 4

m2
N∗

[(mN∗ + m�)Z+(2mN∗ + m�)Z2]
[
s−m2

�

]
, (28)

b0 = 8

m2
N∗

[(
m2

� + m�mN∗ − m2
K

)
Z + (

2m�mN∗ + m2
�

)
Z2

]

+ (m� + mN∗ )2

m2
N∗

+ 4Z2

m2
N∗

[
s − m2

�

]
. (29)
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TABLE II. Parameters for the K� interaction.

mπ 140 MeV
mK 496 MeV
m� 1116 MeV
Z −0.5

g�KN 11.50
g�KN (1650) 9.90 GeV−1

g�KN (1710) 5.20 GeV−1

g�KN∗ (1875) 0.53 GeV−1

g�KN∗ (1900) 2.60 GeV−1

g�K� 0.24
g�K�∗ (1820) 1.80 GeV−1

For the spin-3/2 �∗ resonance [Fig. 1(d)], the amplitudes are

A�∗ = g2
�K�∗

6

[
2Â′+3(m�+m�∗ )t

m2
�∗ − u

+c0 + cz
(
u − m2

�

)]
, (30)

B�∗ = g2
�K�∗

6

[
−2B̂′ + 3t

m2
�∗ − u

+ d0 + dz
(
u − m2

�

)]
, (31)

where

c0 = − (m� + m�∗ )

m2
�∗

(
2m2

�∗ + m�m�∗ − m2
� + 2m2

K

)
, (32)

cz = 4

m2
�∗

[(m�∗ + m�)Z + (2m�∗ + m�)Z2], (33)

d0 = 8

m2
�∗

[(
m2

� + m�m�∗ − m2
K

)
Z + (

2m�m�∗ + m2
�

)
Z2

]

+ (m� + m�∗ )2

m2
�∗

, (34)

dz = 4Z2

m2
�∗

, (35)

where t, qN∗ , EN∗ are defined in the Appendix and mK , mN∗
are the kaon and the N∗ masses respectively. For Â′ and B̂′ we
change the N∗ parameters, inserting the �∗ ones in Eqs. (26)
and (27). g�KN∗(�∗ ) are the coupling constants.

For the last diagram, Fig. 1(e), the scalar σ meson ex-
change, a parametrization of the amplitude has been consid-
ered [23–25]:

Aσ = a + bt, (36)

Bσ = 0, (37)

with a = 1.05m−1
π , b = −0.8m−3

π and the pion mass mπ .
Some discussions about this term may be found in [24,33–36].

The parameters considered in the K� interaction are
shown in Table II; the masses are taken from [32].

The coupling constants g�KN and g�K� are determined
in (38) and (39), but the other coupling constants of the model
must be determined. Considering SU(3) in the quark model,

FIG. 2. Breit-Wigner fit for the N (1650) resonance.

we have the relations [37,38]

g�KN = − 1√
3

f (1 + 2α), (38)

g�K� = − 1√
3

f (4α − 1), (39)

g�KN = f (1 − 2α), (40)

g�K� = f , (41)

where f = gπNN = 13.40 [39], and from the relation gπ�� =
2 f (1 − α)/

√
3, with gπ�� = 11.70 [40], we find α = 0.244,

which is in accord with the value found in [38].
For higher mass particle exchanges we consider the fact

that the scattering amplitudes are dominated by these res-
onances when the energies are close to their masses, and
then the phase shifts have the approximate form of the
Breit-Wigner expression (16), so, by comparing the calcu-
lated amplitudes with Eq. (16), the coupling constants may
be determined in the same way it was done in [23]. Fig-
ure 2 shows one example. The obtained results are shown in
Table II.

In Figure 3, we show our results for the total elastic
cross section and the phase shifts as functions of the kaon
momentum k, defined in the center-of-mass frame.

Observing the figure, we can note that the resonances, and
especially the N (1650) contribution, dominate the total cross
section when k ∼ 150 MeV, as expected. At higher energies,
the other resonances also have an important effect.

IV. ANTIKAON-LAMBDA INTERACTION

The K� interations may be studied exactly in the same way
as was done in the last section for the the K� interactions.
Now we have the contributions presented in Fig. 4, where the
Lagrangians take into account the N , �, �, and φ′ (represent-
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FIG. 3. Total cross section and phase shifts of the K� scattering.

ing the antikaon) fields:

L�KB = g�KB

2m�

(Bγμγ5�)∂μφ′, (42)

L�KB∗ = g�KB∗

{
B

∗μ

[
gμν −

(
Z + 1

2

)
γμγν

]
�

}
∂νφ′. (43)

The parameters considered are those given before, mK =
mK , and for the crossed diagrams in Figs. 4(c) and 4(d) we
have considered only N(938), N(1650), and N∗(1900), which
are the most important processes. The amplitudes (36) and
(37) have been calculated and the results are shown in Fig. 5.

FIG. 4. Diagrams for the K� interaction.

FIG. 5. Total cross section and phase shifts of the K� scattering.

V. KAON-SIGMA INTERACTION

In this case the interacting particles have isospins 1/2 and
1 (K and � respectively). So, we have two possible total
isospin states, 1/2 and 3/2, which allow also the exchange
of � particles.

The scattering amplitude has the general form

T βα

K� = ū(�p′)
{[

A+ +
(

/k + /k′

2

)
B+

]
δβα

+
[

A− +
(

/k + /k′

2

)
B−

]
iεβαcτc

}
u(�p), (44)

and the considered projection operators are

Pβα
1
2

= 1

3
δβα + i

3
εβαcτc, (45)

Pβα
3
2

= 2

3
δβα − i

3
εβαcτc, (46)

where the indices α and β are relative to the initial and final
isospin states of the �.

The contributing diagrams are shown in Fig. 6 and the
considered particles in Table III. The Lagrangians (1) and (2)
now become

L�KB = g�KB

2m�

(Bγμγ5�τ .��)∂μφ, (47)

L�KB∗ = g�KB∗

{
B

∗μ

[
gμν −

(
Z + 1

2

)
γμγν

]
�Q.��

}
∂νφ, (48)
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FIG. 6. Diagrams for the K� interaction.

where �Q is the �M matrix for � (I = 3/2) or �τ matrix for the
N∗ and �∗ (I = 1/2).

The resulting amplitudes for nucleons in the intermediate
state [Fig. 6(a)] are

A+
N = g2

�KN

4m2
�

(mN + m� )

(
s − m2

�

s − m2
N

)
, (49)

B+
N = −g2

�KN

4m2
�

[
2m� (m� + mN ) + s − m2

�

s − m2
N

]
, (50)

A−
N = g2

�KN

4m2
�

(mN + m� )

(
s − m2

�

s − m2
N

)
, (51)

B−
N = −g2

�KN

4m2
�

[
2m� (m� + mN ) + s − m2

�

s − m2
N

]
, (52)

and for the � exchange in the diagram 6(d)

A+
� = g2

�K�

4m2
�

(m� + m� )

(
u − m2

�

u − m2
�

)
, (53)

B+
� = g2

�K�

4m2
�

[
2m� (m� + m�) + u − m2

�

u − m2
�

]
, (54)

A−
� = −g2

�K�

4m2
�

(m� + m� )

(
u − m2

�

u − m2
�

)
, (55)

B−
� = −g2

�K�

4m2
�

[
2m� (m� + m�) + u − m2

�

u − m2
�

]
. (56)

Figure 6(b) gives

A+
N∗ = g2

�KN∗

6

[
2Â + 3(m� + mN∗ )t

m2
N∗ − s

+ a0

]
, (57)

B+
N∗ = g2

�KN∗

6

[
2B̂ + 3t

m2
N∗ − s

− b0

]
, (58)

TABLE III. Resonances of the K� interaction.

Jπ I Mass (MeV)

N 1/2+ 1/2 938
N (1710) 1/2+ 1/2 1710
N∗(1875) 3/2− 1/2 1875
N∗(1900) 3/2+ 1/2 1900
�(1920) 3/2+ 3/2 1920
� 1/2+ 1/2 1320
�∗(1820) 3/2− 1/2 1820

A−
N∗ = g2

�KN∗

6

[
2Â + 3(m� + mN∗ )t

m2
N∗ − s

+ a0

]
, (59)

B−
N∗ = g2

�KN∗

6

[
2B̂ + 3t

m2
N∗ − s

− b0

]
, (60)

and for the crossed diagram shown in Fig. 6(e), where a �∗
exchange is taken into account,

A+
�∗ = g2

�K�∗

6

[
2Â′ + 3(m� + m�∗ )t

m2
�∗ − u

+ c0 + cz
(
u − m2

�

)]
,

(61)

B+
�∗ = g2

�K�∗

6

[
2B̂′ + 3t

m2
�∗ − u

− d0 − dz
(
u − m2

�

)]
, (62)

A−
�∗ = −g2

�K�∗

6

[
2Â′ + 3(m� + m�∗ )t

m2
�∗ − u

+ c0 + cz
(
u − m2

�

)]
,

(63)

B−
�∗ = g2

�K�∗

6

[
2B̂′ + 3t

m2
�∗ − u

− d0 − dz
(
u − m2

�

)]
, (64)

where the expressions for Â, B̂, Â′, B̂′, a0, b0, c0, d0, cz, and
dz are the same ones presented in Sec. III, but replacing the �

hyperon for the � hyperon.
For the spin-isospin-3/2 � resonance in Fig. 4(c), we have

the amplitudes

A+
� = g2

�K�

9

{[
2Â′′ + 3(m� + m�)t

m2
� − s

]
+ a′′

0

}
, (65)

B+
� = g2

�K�

9

{[
2B̂′′ + 3t

m2
� − s

]
− b′′

0

}
, (66)

A−
� = g2

�K�

18

{[
2Â′′ + 3(m� + m�)t

m2
� − s

]
+ a′′

0

}
, (67)

B−
� = g2

�K�

18

{[
2B̂′′ + 3t

m2
� − s

]
− b′′

0

}
, (68)

where the expressions for Â′′, B̂′′, a′′
0 and b′′

0 are given
in (26), (27), (28) and (29), replacing � for � and N∗
for �.

For the σ exchange [Fig. 6(f)] the parametrization from
Eqs. (36) and (37) will be considered.

Thus, to calculate the observables for each reaction we use
(45) and (46), resulting in the amplitudes

A
1
2 = A+ + 2A−, (69)

B
1
2 = B+ + 2B−, (70)

A
3
2 = A+ − A−, (71)

B
3
2 = B+ − B−, (72)

and the parameters are shown in Tables II and IV.
To determine the coupling constants g�KN and g�K�

[Eqs. (40) and (41)] and the ones with resonances we take
into account the same arguments presented in Sec. III.
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TABLE IV. Parameters for the K� interaction.

m� 1190 MeV

g�KN 6.90
g�KN (1710) 6.85 GeV−1

g�KN∗ (1875) 0.70 GeV−1

g�KN∗ (1900) 1.30 GeV−1

g�K�(1920) 1.70 GeV−1

g�K� 13.40
g�K�∗ (1820) 1.80 GeV−1

Using the isospin formalism for the elastic and the charge
exchange scattering, we can determine the amplitudes for the
reactions (that we name Ci, for simplicity)

〈�+K+|T |�+K+〉 = 〈�−K0|T |�−K0〉 = T3
2

≡ C1, (73)

〈�+K0|T |�+K0〉 = 〈�−K+|T |�−K+〉
= 1

3
T3

2
+ 2

3
T1

2
≡ C2, (74)

〈�0K0|T |�0K0〉 = 〈�0K+|T |�0K+〉 = 2

3
T3

2
+ 1

3
T1

2
≡ C3,

(75)

〈�0K0|T |�−K+〉 = 〈�+K0|T |�0K+〉
= 〈�−K+|T |�0K0〉 = 〈�0K+|T |�+K0〉

=
√

2

3

(
T3

2
− T1

2

)
≡ C4, (76)

and with these amplitudes we can calculate all observables of
interest. The total elastic cross sections and the phase shifts as
functions of the kaon momentum are shown in Fig. 7.

VI. ANTIKAON-SIGMA INTERACTION

In this case, we will proceed in the same way as in the last
section for the K� interaction. The diagrams to be considered
are shown in Fig. 8.

The Lagrangians are very similar to the ones used to study
the K� interaction, (47) and (48), replacing N and N∗ for �

and �∗. Then, if these changes are implemented, we may use
the same amplitudes given by (49)–(64) and (69)–(72).

In this case we have the following reactions:

〈K0
�+|T |K0

�+〉 = 〈K−�−|T |K−�−〉 = T3
2

≡ D1, (77)

〈�+K−|T |�+K−〉 = 〈�−K
0|T |�−K

0〉 = 1

3
T3

2
+ 2

3
T1

2
≡ D2,

(78)

〈�0K
0|T |�0K

0〉 = 〈�0K−|T |�0K−〉 = 2

3
T3

2
+ 1

3
T1

2
≡ D3,

(79)

〈�0K−|T |�−K
0〉 = 〈�+K−|T |�0K

0〉
= 〈�−K

0|T |�0K−〉 = 〈�0K
0|T |�+K−〉

=
√

2

3

(
T3

2
− T1

2

)
≡ D4. (80)

FIG. 7. Total cross section and phase shifts of the K� scattering.

For diagram 8(c) the resonances to be considered are
N (938) and N (1710), and for diagram 8(d) the resonance
is N∗(1900). Using the parameters given in Table IV we
obtained the results for the K� scattering shown in Fig. 9.
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FIG. 8. Diagrams for the K� interaction.

VII. DISCUSSION AND RESULTS

In this work the low energy K�, K�, K�, and K�

interactions have been studied considering a model based on
effective Lagrangians where mesons, baryons, and baryonic
resonances have been taken into account. The coupling con-
stants were determined and then the S and P phase shifts, cross
sections and polarizations were calculated and shown in the
figures of the previous sections. As expected, for many chan-
nels the resonances dominated the cross sections, and for this
reason we believe in the formulation of the proposed model at
low energies (k < 0.4 GeV). In [23] a similar behavior were
observed, and the predictions of the model, when compared
with the HyperCP data, were shown to be very accurate.

For the K� scattering, at the � hyperon mass (m� =
1672 MeV), δP1 = 1.71◦, δP3 = 5.50◦, δD3 = −0.0008◦, and
δD5 = −0.00012◦. These strong phases may be used in a
possible search of CP violation in the � → K� decay, in
addition to the weak CP violating phases, in the same way as
done in [25] (even considering that, for other similar decays,
no CP violation has been observed [26,27]).

In the study of high energy hyperon polarization, produced
in proton-nucleus and in heavy ion collisions, if we consider
the polarizations obtained in the final-state interactions, the
processes studied in this work may have some effect in the
final polarization of the �, �, �, and � hyperons produced
in these reactions. Especially, in some reactions considerable
polarization may be observed, and some signs of this fact may
be observed in the � and in the � polarizations. Probably
this effect is smaller than the one obtained when considering
the πY interactions [19,21], but as these interactions (KY )
provide polarizations of different signs, it is possible to ob-
tain some differences in the final results. Certainly, a more
accurate final result will be obtained.

These reactions are also important in the determination
of nucleon-hyperon and hyperon-hyperon potentials, as they
are subprocesses of these interactions, and, as discussed be-
fore, these interactions have a fundamental importance in the
structure of hypernuclei and in hyperon stars. For example,
in the reactions YY → YY , where Y may be � or �, the
interactions discussed in this paper are part of loop diagrams
with K exchange, for example the ones shown in Fig. 10,
and a calculation with this procedure may be compared with

FIG. 9. Total cross section and phase shifts of the K� scattering.

the works of the Nijmegen group. These calculations will be
presented in a future work. The YY interaction is also related
to experiments that seek S = −2 hypernuclei.

The study of the � hyperons and other related reactions has
been left for future works.

FIG. 10. Examples of kaon exchange in the YY interaction.
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We have shown that the study presented in this work is very
important for many physical systems of interest, and for this
reason it must be continued and improved in future works.
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APPENDIX

Considering a process where p and p′ are the initial and
final hyperon four-momenta and k and k′ are the initial and
final meson four-momenta, the Mandelstam variables are
given by

s = (p + k)2 = (p′ + k′)2 = m2 + m2
K + 2Ek0 − 2�k · �p,(A1)

u = (p′ − k)2 = (p − k′)2 = m2 + m2
K − 2Ek0 − 2�k′ · �p,(A2)

t = (p − p′)2 = (k − k′)2 = 2|�k|2x − 2|�k|2. (A3)

In the center-of-mass frame, the energies will be defined as

k0 = k′
0 =

√
|�k|2 + m2

K , (A4)

E = E ′ =
√

|�k|2 + m2, (A5)

and the total momentum is null,

�p +�k = �p′ +�k′ = 0. (A6)

We also define the variable

x = cos θ, (A7)

where θ is the scattering angle. Other variables of interest are

νr = m2
r − m2 − k.k′

2m
, (A8)

ν = s − u

4m
= 2Ek0 + |�k|2 + |�k|2x

2m
, (A9)

k.k′ = m2
K + |�k|2 − |�k|2x = k2

0 − |�k|2x, (A10)

where m, mr , and mK are the hyperon mass, the resonance
mass and the kaon mass, respectively.

For the energy and the three-momentum of the intermedi-
ary particles we also have the relations

(EB∗ ± m) = (mB∗ ± m)2 − m2
K

2mB∗
, (A11)

(qB∗ )2 = |�qB∗ |2 = E2
B∗ − m2 = (EB∗ + m)(EB∗ − m), (A12)

where EB∗ and �qB∗ are the energy and the momentum of inter-
mediary baryon B∗ in the center-of-mass frame, respectively.
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