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Updated analysis of recent results on electron and positron elastic scattering on the proton
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We discuss recent experimental results concerning the cross section ratio of positron over electron elastic
scattering on protons, and compare with the predictions of a pre-existent calculation. The deviation from unity
of this ratio, i.e., a charge asymmetry different from zero, is the signature of contributions beyond the Born
approximation. After reviewing the published results, we compare the elastic data to a calculation which includes
the diagram corresponding to two-photon exchange. It turns out that all the data on the cross section ratio, in the
limit of their precision, do not show evidence of enhanced two-photon contribution beyond the expected percent
level. Our results confirm that experimental evidence for a large contribution of two-photon exchange is not yet
found.
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I. INTRODUCTION

Elastic electron-proton scattering has been the subject of
large experimental and theoretical efforts for many decades.
Since the works that valued the Nobel Prize to Hofstadter in
1967, it is a privileged way to learn about the proton internal
structure. Assuming that the interaction occurs through the
exchange of one virtual photon with four-momentum q2 < 0
(q2 = −Q2) a simple and elegant formalism allows to ex-
press the proton electromagnetic current in terms of two
electromagnetic—Pauli (F1) and Dirac (F2)—or, alternatively,
the Sachs form factors (FFs): GE and GM . The experimental
observables as the cross section and the polarization observ-
ables allow to directly access these quantities (for a review,
see [1]).

In recent years large experimental and theoretical work has
been devoted to this subject due to the possibility of very
precise measurements at large transferred momentum. The de-
velopment of 100% duty cycle electron machines at Jefferson
Laboratory (JLab), with highly polarized electron beams, the
construction of large solid angle spectrometers, and detectors,
the development of proton polarimetry in the GeV region
made possible to apply the polarization method suggested by
Akhiezer and Rekalo at the end of the 1960s [2,3]. These
authors pointed out that the polarization transferred from a
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longitudinally polarized electron beam to a polarized proton
target (or the measurement of the polarization of the recoil
proton) in elastic electron-proton scattering contains an in-
terference term between the electric and magnetic amplitudes
that is more sensitive to a small electric contribution and also
to its sign.

Earlier, the privileged method to extract FFs was based
to the ‘Rosenbluth separation’ [4]: the measurement of the
unpolarized cross section for a fixed Q2 at different angles.
It turns out that this method is limited by the precision on
the extraction of the electric FF, at large Q2, as the magnetic
contribution is enhanced by a factor of τ = Q2/4M2, M being
the proton mass.

The data on the FFs ratio, collected mostly by the GEp
collaboration at JLab ([5] and references therein) show that
not only the precision is larger as expected but also that the
ratio deviates from unity, as previously commonly accepted.
Meaningful data were collected up to Q2 � 9 GeV2. A
Q2-increasing discrepancy appeared between polarized and
unpolarized elastic scattering experiments, giving rise to a
large number of publications and speculations. Several is-
sues were discussed: radiative corrections [6–8], parameter
correlations [9], relative normalization within a set of data
and among sets of data [10,11], as well as the validity of
the one-photon exchange approximation. This last point is of
main interest for the present work. It is intended that the two-
photon exchange (2γ E ) contribution is of the order of α2 (α =
1/137 is the fine structure constant of the electromagnetic
interaction, and Z the target charge number), but the 2γ E
contribution discussed here corresponds to the interference
term between one- and two-photon exchange. Such interfer-
ence is, in principle, of the order of α [12,13] and contains
several contributions, as discussed below in more details.
Among them, the enhancement of model dependent terms
not included in standard radiative corrections (the ‘hard box’
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contributions, where both virtual photons carry a large part
of the transferred momentum) has been the subject of several
recent model calculations that are, however, controversial, and
quantitatively disagree at a few percent level (for a recent
review, see [14] and references therein).

It is fair to remind the reader that in the 1970s the presence
of a possible 2γ E contribution was under the scrutiny of
experimental and theoretical investigations [15–17]. It was
theoretically predicted that a possible large effect could arise
from 2γ E when Q2 increases due to the fact that a reac-
tion mechanism where the transferred momentum is equally
shared between the two photons can compensate the scaling
in α due to the steep decreasing of the form factors with Q2.
As a conclusion of a series of measurements (for a review,
see [18]), no experimental evidence was found, in limits
of the precision of the data, and, since that time, the one
photon exchange approximation was assumed a priori. Two
(n)-photon exchanges can therefore contribute, although the
size of the amplitude is scaled by the factor Zα ((Zα)n). In
this context, it is expected that 2γ E becomes more important
when

(1) Q2 increases;
(2) the charge Z of the target increases.

Model independent statements, derived from symmetry
properties of the strong and electromagnetic interactions, give
reliable predictions of the 2γ E contribution to the observables
[19–21]:

(i) FFs acquire an imaginary part, and one additional
charge-odd amplitude, of the order or α, enters in the
expression of the current.

(ii) instead of two FFs, functions only of Q2, these
three new amplitudes are complex functions of two
variables (E , θ ) or (Q2, ε), where ε = [1 + 2(1 +
τ ) tan2(θ/2)]−1 is the linear polarization of the virtual
photon, and E (θ ) is the energy (angle) of the scattered
electron in the laboratory (lab) system.

(iii) nonlinearities arise in the Rosenbluth fit, i.e., in
the unpolarized (reduced) cross section versus ε at
fixed Q2.

(iv) due to the charge-odd (C-odd) terms, a nonvanish-
ing charge-asymmetry should be observed in e± p
scattering:

Aodd = σ (e+ p → e+ p) − σ (e− p → e− p)

σ (e+ p → e+ p) + σ (e− p → e− p)
. (1)

Summarizing, it can be stated from these general features
that, in the presence of a sizable 2γ E contribution, one
expects: ε nonlinearities in the Rosenbluth plot, a charge
asymmetry (differences in e± p elastic cross sections, in the
same kinematical conditions), and nonvanishing parity-odd
polarization observables. All these effects would increase
with Q2.

Note that for the crossed channels (the annihilation chan-
nels e+ + e− ↔ p + p̄) 2γ E effects would be seen as an
asymmetry in the unpolarized angular distribution [22], i.e.,
the presence of odd terms with respect to cos θ̃ [where θ̃ is the
center of mass (c.m.) angle of the produced particle].

In Ref. [23], an exact QED calculation was performed for
e±μ− scattering, and for the crossed process. This calculation
was then applied to ep scattering in Ref. [24]. The obtained
charge asymmetry is expressed as the sum of the contribution
of two virtual photon exchange, (more exactly the interference
between the Born amplitude and the box-type amplitude) and
a term from soft photon emission.

In the total contribution from hard 2γ E , in addition to
the contribution of elastic proton form factors, intermediate
excited proton states should be taken into account [23]. Based
on sum rules developed in QED, it is possible to show that
these two contributions are mutually canceled, and that only
the point-like 2γ E should be taken into account for the
hard 2γ E contribution. This is also in agreement with some
model calculations that find corrections with opposite signs
for elastic nucleon and � or N∗(1535) excitation [25].

In this work we compile and discuss the results of three
recent experiments that were especially built to detect a pos-
sible charge asymmetry through the measurement of the cross
section ratio of electron and positron elastic scattering on the
proton. This observable is sensitive to the real part of the 2γ E
amplitude. The recent data are compared with a calculation
[24], where no specific model dependent enhancement of the
2γ E contribution is added.

II. GENERAL CONSIDERATIONS

Assuming one photon exchange, the unpolarized elastic
cross section dσel for lepton-hadron elastic scattering in the
Born approximation can be expressed in terms of two struc-
ture functions, A and B, which depend on the momentum
squared of the transferred photon, Q2, only:

dσel (e
±h → e±h) = dσMott

[
A(Q2) + B(Q2) tan2 θ

2

]
, (2)

where dσMott is the cross section for point-like particles. This
is a very general expression that holds for any hadron of
any spin S. The structure functions depend on the 2S + 1
electromagnetic form factors, where S is the spin of the
hadron. In the Born approximation, the elastic cross section
is identical for positrons and electrons. Two kinematical vari-
ables characterize this process, usually the polarization of the
virtual photon ε and the momentum transfer squared, Q2, or
the incident energy E and the electron scattering angle θ .

Note that the Born elastic cross section is intended to be
the measured cross section, dσmeas, after applying radiative
corrections that take into account photon radiation from the
charged particles, δ±. More precisely,

dσ±
meas = dσel (1 + δ±), dσel = dσ±

meas

(1 + δ±)
, (3)

where δ±, besides charge-even terms, contains charge-odd
terms (that change sign for positron scattering). The sign
+ (−) stands for scattering on positrons (electrons): δ± =
∓δodd + δeven One can write the odd term δodd as the sum of a
“hard” (2γ ) and a “soft” (s) contributions:

δodd = δ2γ + δs. (4)
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FIG. 1. Radiative correction factor as a function of ε for e− p (a) and e+ p (b), from Ref. [26] (solid black line), Ref. [27] (dashed red line),
Ref. [30] (dash-dotted blue line) for Q2 = 1 GeV2 and �E = 0.01 E ′.

In the experimental works considered here, only δs was
included in the radiative corrections, although the splitting
(4) may differ in different formalisms. Different calculations
were applied to the data considered here, see Refs. [26–29].
As an example we illustrate the difference of δ± from some
first-order calculations in Fig. 1(a) for electron and in Fig. 1(b)
for positron scattering, as a function of ε for Q2 = 1 GeV2.
The soft corrections depend on the inelasticity parameter �E
taken here as 1% of the scattered energy, E ′. The difference
among the calculations is of the order of a few percent,
depending on ε, Q2, and �E . Note that a larger value,
�E � 0.03E ′, is closer to the typical experimental cut, but
a smaller value enhances the effect and is taken here for
illustration. This suggests that effects of the order of percent
may be attributed to different procedures of applying odd soft
corrections to the data.

A deviation from unity of the ratio

Rmeas = dσ meas(e+ p → e+ p)

dσ meas(e− p → e− p)
= 1 + δeven − δ2γ − δs

1 + δeven + δ2γ + δs
(5)

is a clear signature of (soft and hard) charge-odd contributions
to the cross section.

A C-odd effect is enhanced in the ratio of e+ p → e+ p over
e− p → e− p cross sections, R, with respect to the asymmetry,
Aodd:

Aodd = dσ (e+ p → e+ p) − dσ (e− p → e− p)

dσ (e+ p → e+ p) + dσ (e− p → e− p)

= δodd

1 + δeven
= R − 1

R + 1
, R = 1 + Aodd

1 − Aodd
. (6)

In Eq. (5) of Ref. [18], a (small) correction was added
in the asymmetry, taking into account the even radiative
corrections. This correction is indeed small, but depends on
the elasticity cut and on the way the radiative corrections
were implemented. δeven from Ref. [26] was implemented. The
results were given for an inelasticity cut �E/E = 0.03, that is
consistent with most experiments. Let us stress however that
our result for the hard 2γ contribution does not depend on this
term and on the cut.

The charge asymmetry that includes soft and hard 2γ

contributions at first order in α is calculated in Ref. [24]:

AK
odd = dσ e+p − dσ e− p

dσ e+p + dσ e− p

= 2α

π (1 + δeven )

[
ln

1

ρ
ln

(2�E )2

ME
− 5

2
ln2 ρ + ln x ln ρ

+ Li2

(
1 − 1

ρx

)
− Li2

(
1 − ρ

x

)]
, (7)

ρ =
(

1 − Q2

s

)−1

= 1 + 2
E

M
sin2 θ

2
, x =

√
1 + τ + √

τ√
1 + τ − √

τ
.

The term containing �E gives the largest contribution to the
asymmetry and has a large ε dependence.

By correcting the data for the contributions of the vertex-
type corrections δeven and soft two-photon contributions δs,
Rmeas from Eq. (5) reduces to

R2γ � 1 − δ2γ

1 + δ2γ

, (8)

where δ2γ is the contribution of hard virtual two-photon
exchange. Building the ratio R2γ enhances those contributions
to the two-photon amplitudes that depend on off-mass shell
proton states.

The data on R2γ have been corrected for those radiative
corrections that depend on the inelasticity cut and contain
the term proportional to �E . The largest odd contribution,
indeed, arises from this term. In order to compare the results
from different experiments, it would be wise to use the same
ansatz for radiative corrections, what turns out not to have
been the case. Therefore, we must take into account that a
difference of 1 or 2% in the data may be attributed to the
different corrections. The issue of the approximations used in
the past, where mainly first-order radiative corrections were
considered [26,27,30,31], has been recently discussed in a
series of articles [7,8,18] as well as in a recent review [1],
whereas the role of higher order corrections was pointed out
in [6,9].
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The odd radiative correction term is usually splitted in the
following parts:

(1) Bremstrahlung process with emission of a real photon:
this part of the contribution is strictly dependent on
the experimental cuts over measured energy and angles
of detected particles. This term is large, and contains
the infrared singularities which cancels with one from
virtual two photon contribution.

(2) virtual two photon corrections, which are splitted in
two parts due to the uncertainties of the calculation
with respect to proton form factors and intermediate
proton state contributions:
(a) soft part of two photon virtual contribution, that

includes the case when one of the virtual photons
is soft. In this case the intermediate proton and
electron are almost on mass shell, and one can
treat this term as one photon exchange contri-
bution, with some factor of additional soft vir-
tual photon. This part of the contribution can be

exactly calculated in QED, and contains infrared
singularities which cancels with the real soft pho-
ton contribution;

(b) hard part, where both virtual photons are hard.
In this case one has to consider six proton form
factors instead of two, where one of the protons
is off-shell, and in addition, some intermediate
proton states, as � resonance, etc. This part of
the contribution is strictly dependent over different
theoretical assumptions and is the object of the
experimental measurements.

The splitting of the two photon contribution into the soft
and hard parts is not uniquely defined and may differ from
one author to another. The answers differ by some finite
expression, which depends on kinematical invariants, and can
be explained by different methods of calculation. The gen-
erally adopted approach is the splitting that was considered
in the works of two groups [26,27]. The soft part of two-γ
contribution, calculated by Mo and Tsai generally used in the
experiments is [27]

δsoft Tsai = −α

π

[
2 ln ρ

(
2 ln

E

�E
− 3 ln ρ

)]
+ Li2

(
−M − E ′

E

)
− Li2

[
M(M − E ′)
E4E ′ − ME

]
+ Li2

[
2E ′(M − E ′)
2E4E ′ − ME

]

+ ln

∣∣∣∣2E4E ′ − ME

E (M − 2E ′)

∣∣∣∣ ln
M

2E ′ − Li2

(
−E4 − E ′

E ′

)
+ Li2

[
M(E4 − E ′)
2E4E − ME ′

]
− Li2

[
2E (E4 − E ′)
2E4E − ME ′

]

− ln

∣∣∣∣2E4E − ME ′

E ′(M − 2E )

∣∣∣∣ ln
M

2E ′ − Li2

(
−M − E

E

)
+ Li2

(
M − E

E

)
− Li2

[
2(M − E )

M

]

− ln

∣∣∣∣ M

2E ′ − M

∣∣∣∣ ln
M

2E
+ Li2

(
−M − E ′

E ′

)
− Li2

(
M − E ′

E ′

)
+ Li2

[
2(M − E ′)

M

]
+ ln

∣∣∣∣ M

2E ′ − M

∣∣∣∣ ln
M

2E ′ . (9)

Here, E ′(E4) is the energy of scattered electron(proton) E4 =
E + M − E ′, and M is the proton mass, Li2 is the Spence
function. A similar but not equal expression is given in
Eq. (5.2) for the work of Ref. [26].

III. COMPILATION OF RECENT e± p RESULTS

Three results from recent experiments that measured the
ratio R2γ from a radiatively corrected cross section ratio,
Rmeas, Eq. (5), are shown as a function of ε in Fig. 2(a) and
as a function of Q2 in Fig. 2(b), with the corresponding linear
fits. Most of the data deviate from unity by less than 2%.
A slight increase with decreasing ε is seen. The authors of
the VEPP experiment, Ref. [32], point out a significant 2γ E
effect increasing with Q2, but this is not confirmed by the
OLYMPUS data [33]. For OLYMPUS, when not explicitly
mentioned, the data set (a), i.e., corrected from Mo-Tsai to
order α3 are considered. Note that, however, the VEPP results,
that are the most precise, lack an absolute normalization.
The weighted average of the ratio R2γ for all data and for
the individual data set, to be compared to unity for no 2γ E
contribution, is shown in Table I. The compatibility with a
constant R2γ = 1 is indicated by χ2/N (1). One may see that
a deviation of about 3σ is visible for the VEPP data, where

χ2/N is much larger than 1. The average for this data set
is larger than unity, whereas it is smaller for the CLAS and
OLYMPUS data. Adding a parameter decreases the χ2/N ,
that falls below unity for these two last sets of data. The
results of the linear fit are also reported in Table I. The fact
that χ2/N � 2.0 for all data sets is much larger than for each
individual set shows the large difference between the VEPP
data compared to the two others data sets.

In the analysis of the experimental data, the radiative
correction codes are embedded in the Monte Carlo used to
analyze the data, and it is not straightforward to unfold the
effects from the acceptance and the efficiency of the setup.
Note that the �E term is by far the most sizable among
the odd terms, becoming larger when the inelasticity cut is
smaller. At the elastic peak it becomes infinite.

It may be difficult to evaluate the size of the applied
radiative corrections and their dependence on the relevant
kinematical variables from the published results. However,
it is always possible to calculate radiative corrections for
different energy cuts to compare different models and study,
at least qualitatively, their effect in comparison to the data.
In particular we consider the calculations from Refs. [26]
and [27], that were most often used in the experimental
papers.
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FIG. 2. Radiatively corrected ratio of positron to electron cross sections R2γ = σ (e+ p)/σ (e− p) with the corresponding linear fits as a
function of ε (a) and Q2 (b) from OLYMPUS [33] (red circles and red solid line), CLAS [34] (green squares and green dashed line), and
VEPP-3 [32] (blue triangles and blue dotted line). The black dash-dotted line corresponds to the global linear fit.

As radiative corrections applied to the data may differ from
one paper to another by some finite expression (which de-
pends on kinematical invariants), in order to be less sensitive
to model corrections, we consider the total odd contribution
from Ref. [24] and remove the odd correction from the calcu-
lations used in the data. This means that we have to proceed
from Rmeas to R2γ :

RK
2γ = 1 − AK

odd(1 + δeven ) + δM

1 + AK
odd(1 + δeven ) − δM

, (10)

where δM can be calculated from Ref. [27], here reported in
Eq. (9), or from the corresponding correction of Ref. [26].

We calculate the asymmetry AK
odd from Eq. (7), then the

ratio RK
2γ from Eq. (10) to be compared to the data. The

ratio depends on two variables, Q2 and ε. First we study
the Q2 and ε dependence separately, then, in order to have
all the data and the calculation in a plot, we consider the
absolute difference between each data point and Eq. (7), cal-
culated for the corresponding values of the two variables, Q2

and ε.

A. The VEPP experiment

The experiment, published in Refs. [32,35], was performed
at the VEPP-3 storage ring. The e± p cross section was mea-
sured for two beam energies, 1.6 and 1 GeV and different lep-
ton scattering angles, spanning such ε, Q2 kinematical ranges:
0.272 < ε < 0.932, and 0.298 < Q2 < 1.0332 GeV/c2.

The measured (uncorrected) ratio R is shown as solid blue
squares in Fig. 3 for the VEPP-3 experiment [32]. They
correspond to the raw ratio, before applying radiative correc-
tions. The deviation from unity is due to the odd terms that
are due to soft corrections and hard 2γ E terms. The ratio
of the radiatively corrected cross section, R2γ (blue circles),
deviates from unity only in the presence of a hard two photon
contribution not included in the radiative corrections. The
radiative corrections applied to the data are based on the
ESEPP generator developed in Ref. [29] (dot-dashed line).

In order to compare separately the ε and Q2 dependencies,
we report in Fig. 3 the calculation from Ref. [24] fixing Q2 to
an average value of 1 GeV2 (a) and ε = 0.4 in the right side
(b). The total odd contribution is in good agreement with the
uncorrected experimental ratio. The hard 2γ contribution is

TABLE I. Weighted average of the ratio R2γ for all data and for the individual data sets (the OLYMPUS data corresponding to the set (a)
of Ref. [33]), to be compared to unity for no 2γ E contribution. The compatibility with a constant R2γ = 1 is indicated by χ 2(1). The results
from linear fits in ε and Q2 are also given.

All data OLYMPUS CLAS VEPP
Experiment

〈R2γ 〉 0.999 ± 0.001 0.999 ± 0.001 0.997 ± 0.002 1.006 ± 0.002
χ 2/N(1) 69.3/35 = 1.98 19/19 = 1.00 12.1/11 = 1.1 23.7/3 = 7.9
R2γ = a0 + a1ε a0 1.023 ± 0.005 1.002 ± 0.014 1.026 ± 0.018 1.026 ± 0.005

a1 −0.031 ± 0.006 −0.012 ± 0.017 −0.034 ± 0.020 −0.027 ± 0.007
χ 2/N 38.6/34 = 1.13 5.44/18 = 0.3 9.72/10 = 0.97 3.08/2 = 1.5
R2γ = b0 + b1Q2 b0 0.981 ± 0.004 0.990 ± 0.005 0.990 ± 0.004 0.992 ± 0.004

b1 0.014 ± 0.003 0.002 ± 0.005 0.011 ± 0.006 0.026 ± 0.006
χ 2/N 68.3/34 = 2.0 5.74/18 = 0.32 8.4/10 = 0.8 0.05/2 = 0.02
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FIG. 3. Ratio of cross sections σ (e+ p)/σ (e− p) as a function of ε (a) and of Q2 (b) from VEPP-3 [32]: raw ratio R (blue squares) and soft
corrected ratio R2γ (blue circles). Solid (open) symbols correspond to E � 1.6(1) GeV. The calculation from Ref. [24], Eq. (7) is shown as a
solid line, after correction for the soft contribution from Refs. [26] (dashed line) and [27] (dotted line) (see text). Thick (thin) lines correspond
to E = 1.6(1) GeV.

shown after subtraction from Ref. [24] of the soft correction
from Refs. [27] (dotted line) and [26] (dashed line). The
quantitative effect is discussed below.

B. The OLYMPUS experiment

This experiment, published in Ref. [33], was performed at
the DORIS storage ring at DESY, using 2.01 GeV electron and
positron beams impinging on an internal hydrogen gas target.
Twenty values of the ratio R were measured in the range:
0.456 < ε < 0.978, and 0.165 < Q2 < 2.038 GeV/c2. Most
of these values lie within |R| < 1.02 with a mild tendency to
increase at large Q2 and/or small ε. The ε (Q2) dependence of
the data is shown in Fig. 4(a) [Fig. 4(b)].

Four options of radiative corrections were implemented,
following Mo-Tsai at first order (solid red circles) (a) or
including approximately high orders by exponentiation (solid
red squares) (b), and following Maximon-Tjon [26] at first

order (solid red triangles) (c) or exponentiation (solid red
stars) (d). The difference among these options is a few per
thousand and induces at most a difference of 1.5% in the
extracted ratios.

The statistical error is evaluated to be <1% and the system-
atical error is <1.5%, the largest source being attributed to the
selection of the elastic events. As we are interested in a global
difference, for the comparison with the calculation we report
the points of Table II of Ref. [33], with systematic, statistical
correlated, and uncorrelated errors summed in quadrature.

The calculation is shown in Fig. 4 for the corresponding
fixed beam energy, E = 2.01 GeV.

The total odd contribution from Ref. [24] is shown as a
red solid line, and after subtraction of the soft correction from
Refs. [27] (dotted line) and [26] (dashed line).

The calculations after subtraction, for both choices of the
radiative correction ansatz, fall within the errors of most data
points.

ε0.4 0.5 0.6 0.7 0.8 0.9

p)-
(eσ

p)
/

+
(eσ

0.98

1

1.02

1.04

1.06 (a)  (a)γ2R
 (b)γ2R
 (c)γ2R
 (d)γ2R

]2[GeV2Q
0.5 1 1.5

R(MT)

R(MTs)

R(Th)

(b)

FIG. 4. Ratio of cross sections R = σ (e+ p)/σ (e− p), as a function of ε (a) and of Q2 (b) and the calculation from Eq. (7) for E = 2.01 GeV.
The considered experiment is OLYMPUS [33] (red circles, squares, triangles, and stars). Lines as in Fig. 3.
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p)-
(eσ

p)
/

+
(eσ 1

1.05

(a)
R 

 γ2R
 2=0.85 GeV2R(Th) q

R(MT) 
R(MTs) 

]2[GeV2Q
0.5 1 1.5

=0.45 εR(Th) 

R(MT)

R(MTs)

(b)

FIG. 5. Ratio of cross sections R = σ (e+ p)/σ (e− p), as a function of ε (a) for two values of Q2: Q2 = 0.85 GeV2 (thick lines) Q2 =
1.45 GeV2 (thin lines) and as a function of Q2 (b) for ε = 0.88 (thick lines) and ε = 0.45 (thin lines). The considered experiment is CLAS
[34] (green circles and squares). Lines as in Fig. 3.

C. The CLAS experiment

The CLAS experiment [34] published a list of 19 points
of the ratio, for two Q2 values, 0.85 and 1.45 GeV2 and
several ε values in the range 0.39 < ε < 0.91. The electron
and positron where produced by converting a photon beam
into e± pairs, which explains partly the largest uncertainty
of these data compared to the two previous experiments.
Overlapping kinematics reduce the set to 12 independent data
points, for comparison to the other data and calculations. The
data were radiatively corrected following Ref. [28]. It is a
first-order calculation, developed for inelastic scattering to be
implemented in Monte Carlo programs and it is based on a
similar approximation as Ref. [27].

The data are plotted in Fig. 5 for the ratio R (solid green
squares) and the corresponding calculation from Ref. [24] as
a solid green line. For the corrected ratio R2γ (solid green
circles), the calculation is shown after subtraction of the soft
correction from Refs. [27] (dotted line) and [26] (dashed
line). The two average values of Q2 = 0.85 GeV2 and Q2 =

1.45 GeV2 are considered for the ε dependence, and of ε =
0.88 and 0.45 for the Q2 dependence.

Also in this case the calculations after subtraction, for both
choices of the radiative correction ansatz, fall within the errors
of most data points.

IV. POINT BY POINT COMPARISON

The previous analysis wants to evidence the general ε

and Q2 dependence of data and calculations, showing, when
available, the full asymmetry as well as the asymmetry after
subtraction of radiative corrections. As the ratio depends on
both variables ε and Q2 the difference point by point from
the experimental value and the calculation is considered here,
which is more rigorous than taking an average value of one
variable when plotting along the second one. The results are
shown in Figs. 6(a) and 6(b) for the ε and Q2 dependence
where the calculation from Eq. (7), Ref. [24] is plotted after
removing the odd corrections as in Eq. (10) with δM from

∈
0.2 0.4 0.6 0.8

T
h

-R γ2
R

0.02−

0

0.02

OLYMPUS

CLAS

VEPP

]2[GeV2Q
0.5 1 1.5 2 2.5

(a) (b)

FIG. 6. Point to point difference between the calculation from Eq. (7), Ref. [24] and the data for the ratio R, with the corresponding linear
fits as a function of ε (a) and Q2 (b) from OLYMPUS [33] (red circles and red solid line), CLAS [34] (green squares and green dashed line),
and VEPP-3 [32] (blue triangles and blue dotted line), after removing the odd corrections as in Eq. (10) with δM from Ref. [26]. The black
dash-dotted line corresponds to the global linear fit.

025205-7



V. V. BYTEV AND E. TOMASI-GUSTAFSSON PHYSICAL REVIEW C 99, 025205 (2019)

0.2 0.4 0.6 0.8

T
h

-R γ2
R

0.02−

0

0.02

OLYMPUS

CLAS

VEPP

]2[GeV2Q
0.5 1 1.5 2 2.5
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FIG. 7. Same as Fig. 6, where δM is calculated from Ref. [27].

Ref. [26]. Similarly for Fig. 7, where the procedure is applied
with δM calculated from Ref. [27].

The calculation of the hard 2γ e extracted in this way is
consistent with the data within the errors. A Q2-dependent
discrepancy appears in the data from VEPP that have different
signs than the other experiments. To quantify the difference
between data and calculations we report in Table II the
average values of this difference for all data as well as for
the individual data set and the χ2 for a least squares fit. The
average ratio is compatible with one, within the error, except
for the VEPP data that show also a χ2 very different for unity.
The linear fit finds a mild positive slope for the CLAS and
VEPP data, and an intercept compatible with unity at percent
level. The χ2 � 1 indicates that the number of parameters
may be redundant: a two parameter fit may exceed in some
cases the precision of the data.

The difference point by point between data and theory
shows in general a discrepancy at per-thousand level in most
cases, what is beyond the theoretical and experimental preci-
sions, with a slight ε and Q2 dependencies.

For the OLYMPUS data, the sensitivity to different ansatz
of radiative corrections is shown in Table III. Also the
weighted average of the ratio R2γ for all data slightly changes
according to the four different ansatz used to extract the
data. The difference between theory and data for the different
radiative corrections is shown in Table IV.

V. CONCLUSIONS

This paper compares the calculation from Ref. [24] to the
recent and precise data on elastic scattering of electrons and
positrons on protons. The ratio contains the information on

TABLE II. Weighted average of the difference RT h − R2γ for all data and for the individual data set [the OLYMPUS data corresponding
to the set (a)], to be compared to zero for no 2γ E contribution. The compatibility with a constant RT h − R2γ = 0 is given by χ 2/N (0). The
difference between the data and the calculation of Ref. [24] is given after subtraction of the soft corrections from Refs. [26,27]. The results
from linear fits in ε and Q2 are also given.

All data OLYMPUS CLAS VEPP

Difference Theory-experiment

〈RT h − R2γ 〉MT j 0.003 ± 0.001 0.009 ± 0.002 0.003 ± 0.002 −0.004 ± 0.002
χ 2/N(0) 64.1/35 = 1.83 33.2/19 = 1.75 10.0/11 = 0.91 7.5/3 = 2.5
(RT h − R2γ )MT j = c0 + c1ε c0 −0.002 ± 0.005 −0.003 ± 0.014 −0.018 ± 0.018 −0.022 ± 0.005

c1 0.027 ± 0.006 0.009 ± 0.017 0.025 ± 0.021 0.024 ± 0.007
χ 2/N 24.1/34 = 0.72 4.27/18 = 0.24 8.85/10 = 0.89 2.1/2 = 1.05
(RT h − R2γ )MT j = d0 + d1Q2 d0 0.003 ± 0.002 0.007 ± 0.005 0.009 ± 0.004 0.007 ± 0.003

d1 −0.004 ± 0.003 −0.002 ± 0.005 −0.009 ± 0.006 −0.022 ± 0.006
χ 2/N 46.6/34 = 1.37 4.4/18 = 0.24 8.17/10 = 0.82 0.01/2 = 0.005
〈RT h − R2γ 〉MT s 0.002 ± 0.001 0.002 ± 0.001 0.004 ± 0.002 −0.005 ± 0.002
χ 2/N(0) 59.5/35 = 1.7 23.9/19 = 1.26 11.9/11 = 1.08 17.34/3 = 5.78
(RT h − R2γ )MT s = e0 + e1ε e0 −1.025 ± 0.005 0.012 ± 0.014 −0.009 ± 0.018 −0.013 ± 0.005

e1 0.017 ± 0.006 −0.003 ± 0.017 0.014 ± 0.021 0.012 ± 0.007
χ 2/N 40.2/34 = 1.18 5.2/018 = 0.29 8.77/10 = 0.88 1.95/2 = 0.9
(RT h − R2γ )MT s = f0 + f1Q2 f0 0.001 ± 0.002 0.008 ± 0.005 0.007 ± 0.004 0.007 ± 0.004

f1 0.003 ± 0.003 0.002 ± 0.005 −0.007 ± 0.006 −0.013 ± 0.006
χ 2/N 48.5/34 = 1.42 5.1/18 = 0.28 7.8/10 = 0.8 0.47/2 = 0.2
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TABLE III. Experimental data for the four OLYMPUS analysis. The weighted average of the ratio R2γ to be compared to 1 for no 2γ E
contribution. The compatibility with a constant R2γ = 1 is indicated by χ 2(1) per number of point; the weighted average of the ratio R2γ for
all data slightly changes when the four different assets for soft radiative correction are applied. The results of a linear fit in ε and Q2 are also
shown.

OLYMPUS Experiment

(a) (b) (c) (d)

〈R2γ 〉 0.992 ± 0.001 0.997 ± 0.001 0.994 ± 0.001 0.994 ± 0.002
χ 2/N(1) 23.2/18 = 1.29 11.5/18 = 0.64 15.0/18 = 0.85 8.64/18 = 0.48
All Data 〈R2γ 〉 0.999 ± 0.001 0.999 ± 0.001 1.000 ± 0.001 1.000 ± 0.002
All Data χ 2/N(1) 69.3/35 = 1.98 56.7/35 = 1.62 60.5/35 = 1.73 53.6/35 = 1.53
R2γ = a0 + a1ε a0 1.002 ± 0.014 1.025 ± 0.014 1.001 ± 0.014 1.0167 ± 0.0145

a1 −0.012 ± 0.017 −0.035 ± 0.017 −0.007 ± 0.017 −0.024 ± 0.0174
χ 2/N 5.44/18 = 0.30 5.04/18 = 0.28 7.76/18 = 0.43 4.49/18 = 0.25
R2γ = b0 + b1Q2 b0 0.990 ± 0.0046 0.989 ± 0.0045 0.9935 ± 0.0047 0.992 ± 0.055

b1 0.0019 ± 0.0046 0.0082 ± 0.0046 0.0013 ± 0.0046 0.0055 ± 0.0046
χ 2/N 5.74/18 = 0.32 5.95/18 = 0.33 7.87/18 = 0.44 4.98/18 = 0.61

charge-odd contributions to the cross section and to an even-
tual contribution of two photon exchange. The raw ratio, when
published data are available, is in agreement with the odd
contribution deriving mainly from the interference between
initial and final state emission.

This work completes (and is consistent with) the analysis
published in Ref. [18] that reviewed the data of interest for
the problem discussed here that were present before the recent
experiments.

We stress that the extraction of the ‘hard’ two photon
contribution is somewhat ambiguous as it depends on the
model used for the implemented radiative corrections, the
main problem being the subtraction of the infrared divergent
part. If this subtraction may be straightforward in the calcu-
lation, it definitely originates differences in the Monte Carlo

implementation. Even if the same model for the radiative
correction is used in the different experiments, which is not
the case, the data are corrected with dedicated Monte Carlo,
implemented for the specific experiment. The numerical ap-
proximations and cuts, that depend on the relevant kinemat-
ical variables, are handled differently by the different col-
laborations. Moreover radiative corrections are implemented
together with acceptance and efficiency corrections, that are
specific to the individual set-up, making impossible a quanti-
tatively precise comparison.

Nevertheless, we would like to stress that R2γ , as mea-
sured in the experiment, is the ratio of even and odd cor-
rections and all corrections due to the efficiency of the de-
tector are factorized in the Born-like terms and cancel in
the ratio. So the measured ratio must be independent of the

TABLE IV. Difference between the data and the calculation, for the four OLYMPUS analyses: weighted average of the ratio R2γ to be
compared to 1 for no 2γ E contribution. The compatibility with a constant R2γ = 1 is indicated by χ 2 (1) per number of point; the weighted
average of the ratio R2γ for all data slightly changes when the four different assets for soft radiative correction are applied (third line). The
difference between the data and the calculation of Ref. [24] is reported after subtraction of the soft corrections from Refs. [26,27]. The
compatibility of such difference with a zero constant is seen from χ2 (0). The linear fit in ε and Q2 is also shown.

OLYMPUS Experiment

Difference Theory-experiment

(a) (b) (c) (d)

〈RT h − R2γ 〉MT j 0.009 ± 0.002 0.003 ± 0.001 0.002 ± 0.001 0.001 ± 0.001
χ 2/N(0) 31.5/18 = 1.75 10.8/18 = 0.65 21.9/18 = 1.22 10.7/18 = 0.59
〈RT h − R2γ 〉MT j = c0 + c1ε c0 0.021 ± 0.014 −0.003 ± 0.014 1.001 ± 0.014 1.0167 ± 0.0145

c1 −0.013 ± 0.017 0.0099 ± 0.017 −0.018 ± 0.018 −0.024 ± 0.0174
χ 2/N 4.49/18 = 0.25 4.27/18 = 0.24 7.29/18 = 0.41 3.88/18 = 0.22
R2γ = d0 + d1Q2 b0 0.006 ± 0.0046 0.0068 ± 0.0046 0.0024 ± 0.0046 0.0041 ± 0.0046

b1 0.0043 ± 0.0046 −0.0018 ± 0.0046 0.0005 ± 0.0046 0.0009 ± 0.0046
χ 2/N 4.19/18 = 0.23 4.42/18 = 0.25 7.17/18 = 0.40 3.86/18 = 0.21
〈RT h − R2γ 〉MT s = e0 + e1ε e0 0.012 ± 0.014 −0.013 ± 0.014 −0.003 ± 0.014 0.0068 ± 0.0046

e1 −0.003 ± 0.017 −0.0073 ± 0.017 0.009± −0.0017 ± 0.005
χ 2/N 5.20/18 = 0.25 4.84/18 = 0.24 7.63/18 = 0.41 4.33/18 = 0.22
R2γ = f0 + f1Q2 f0 0.0082 ± 0.0046 0.0095 ± 0.0046 0.0051 ± 0.0046 0.0068 ± 0.0046

f1 0.0018 ± 0.0046 −0.0044 ± 0.0046 0.0024 ± 0.0046 −0.0017 ± 0.0046
χ 2/N 5.08/18 = 0.23 5.29/18 = 0.25 7.52/18 = 0.40 4.48/18 = 0.21
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different experimental setups, at least at the leading terms of
corrections.

We minimized this effect by subtracting the applied ra-
diative corrections and replacing with the calculation from
Ref. [24]. For the VEPP and CLAS experiments, when the raw
data are available before implementing radiative corrections,
we evaluated the effect of the deconvolution between the soft
and hard terms.

The procedure of subtracting two models of radiative cor-
rections, in the same kinematical conditions, enhances the
model-dependent difference. A similar procedure was vali-
dated in previous works, for example [6,10] for a reanalysis
of the Andivahis elastic ep scattering data. Not having data
and Monte Carlo in hand, we can still compare the effect of
different calculations: they depend only on one parameter, the
elasticity cut, �E , that can be reasonably estimated. We stress
that the final result on R2γ remains independent from �E .

The conclusions of the recent experimental papers are far
from being definite statements. The common issue is that
measurements at large Q2 are necessary. All existing model
dependent and independent estimations predict a small effect
at low Q2. In absence of specific nuclear effects, QED predicts
a hard 2γ E contribution of the percent level with respect to
the main (Born) contribution, with mild ε and Q2 dependence
[36], which is indeed seen. Other explanations to fully explain
the discrepancy between the unpolarized and polarized form
factor ratio experiments are likely to be preferred.

In the OLYMPUS paper it is clearly stated that “We do not
agree with the conclusions of earlier papers [25,26]. The data
shown in Fig. 3 clearly favors a smaller R2y.... To clarify the
situation, the size of TPE (Two Photon Exchange) at large Q2
has to be determined in future measurements.”

The VEPP publication concludes “on a significant two-
photon exchange effect”, nuanced by a discussion on the
used normalization and by the statement that the data are “in

moderate agreement with several TPE predictions explaining
the form factor discrepancy at high Q2....”

In the CLAS publications one finds the following statement
in the abstract: “Our results .. demonstrate a nonzero contribu-
tion from TPE effects and are in excellent agreement with the
calculations that include TPE effects and largely reconcile the
form-factor discrepancy up to Q2 � 2 GeV2” somehow nu-
anced in the Conclusions “experiments ... to extend the mea-
surements to Q2 > 3 GeV2 ... are needed before one can defi-
nitely state that TPE effects are the reason of the discrepancy”.

We do not enter here in the comparison and the virtues
of the model dependent 2γ E calculations. Let us note that,
if a qualitative agreement is found on reproducing the dif-
ference between polarized and unpolarized FF ratios, the
agreement disappears when compared to another observable,
the ε dependence of PL/Pt [37]. Does the discrepancy between
the unpolarized and polarized form factor ratio experiments
really exist? Following the recent work [1] a problem of
renormalization of the low ε data in the previous Rosenbluth
analysis, in particular in Ref. [38], was pointed out. Then,
the discrepancy remains only for the data from Ref. [39],
for which, however, the applied radiative corrections are not
known, and a 100% correlation of the parameters was illus-
trated in Ref. [9].

We confirm the conclusions of that paper of no evident
enhancement of the 2γ E contribution in the considered data.
Our works support alternative explanations to the issue of the
form factor discrepancy, if any.

ACKNOWLEDGMENTS

We acknowledge V. Fadin and D. Nikolenko for interest in
this work and useful discussions. Thanks are due to B. Raue
for clarifying issues concerning the JLab CLAS Collaboration
results and providing data in a tabulated form.

[1] S. Pacetti, R. B. Ferroli, and E. Tomasi-Gustafsson, Phys. Rep.
550–551, 1 (2015).

[2] A. I. Akhiezer and M. P. Rekalo, Dokl. Akad. Nauk Ser. Fiz.
180, 1081 (1968) [Sov. Phys. Dokl. 13, 572 (1968)].

[3] A. I. Akhiezer and M. P. Rekalo, Fiz. Elem. Chast. Atom. Yadra
4, 662 (1973) [Sov. J. Part. Nucl. 4, 277 (1974)].

[4] M. Rosenbluth, Phys. Rev. 79, 615 (1950).
[5] A. J. R. Puckett et al., Phys. Rev. C 96, 055203 (2017).
[6] Y. M. Bystritskiy, E. A. Kuraev, and E. Tomasi-Gustafsson,

Phys. Rev. C 75, 015207 (2007).
[7] A. V. Gramolin and D. M. Nikolenko, Phys. Rev. C 93, 055201

(2016).
[8] R. E. Gerasimov and V. S. Fadin, Yad. Fiz. 78, 73 (2015) [Phys.

At. Nucl. 78, 69 (2015)].
[9] E. Tomasi-Gustafsson, Phys. Part. Nucl. Lett. 4, 281 (2007).

[10] S. Pacetti and E. Tomasi-Gustafsson, Phys. Rev. C 94, 055202
(2016).

[11] J. Arrington, Phys. Rev. C 68, 034325 (2003).
[12] A. De Rujula, J. M. Kaplan, and E. De Rafael, Nucl. Phys. B

35, 365 (1971).

[13] A. De Rujula, J. M. Kaplan, and E. De Rafael, Nucl. Phys. B
53, 545 (1973).

[14] A. Afanasev, P. G. Blunden, D. Hasell, and B. A. Raue, Prog.
Part. Nucl. Phys. 95, 245 (2017).

[15] J. Gunion and L. Stodolsky, Phys. Rev. Lett. 30, 345 (1973).
[16] V. Boitsov, L. Kondratyuk, and V. Kopeliovich, Sov. J. Nucl.

Phys. 16, 287 (1973).
[17] V. Franco, Phys. Rev. D 8, 826 (1973).
[18] E. Tomasi-Gustafsson, M. Osipenko, E. Kuraev, and Y.

Bystritsky, Phys. At. Nucl. 76, 937 (2013).
[19] M. P. Rekalo and E. Tomasi-Gustafsson, Eur. Phys. J. A 22, 331

(2004).
[20] M. Rekalo and E. Tomasi-Gustafsson, Nucl. Phys. A 740, 271

(2004).
[21] M. Rekalo and E. Tomasi-Gustafsson, Nucl. Phys. A 742, 322

(2004).
[22] M. P. Rekalo, E. Tomasi-Gustafsson, and D. Prout, Phys. Rev.

C 60, 042202 (1999).
[23] E. A. Kuraev, V. V. Bytev, Y. M. Bystritskiy, and E. Tomasi-

Gustafsson, Phys. Rev. D 74, 013003 (2006).

025205-10

https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1103/PhysRev.79.615
https://doi.org/10.1103/PhysRev.79.615
https://doi.org/10.1103/PhysRev.79.615
https://doi.org/10.1103/PhysRev.79.615
https://doi.org/10.1103/PhysRevC.96.055203
https://doi.org/10.1103/PhysRevC.96.055203
https://doi.org/10.1103/PhysRevC.96.055203
https://doi.org/10.1103/PhysRevC.96.055203
https://doi.org/10.1103/PhysRevC.75.015207
https://doi.org/10.1103/PhysRevC.75.015207
https://doi.org/10.1103/PhysRevC.75.015207
https://doi.org/10.1103/PhysRevC.75.015207
https://doi.org/10.1103/PhysRevC.93.055201
https://doi.org/10.1103/PhysRevC.93.055201
https://doi.org/10.1103/PhysRevC.93.055201
https://doi.org/10.1103/PhysRevC.93.055201
https://doi.org/10.1134/S1063778815010081
https://doi.org/10.1134/S1063778815010081
https://doi.org/10.1134/S1063778815010081
https://doi.org/10.1134/S1063778815010081
https://doi.org/10.1134/S1547477107040012
https://doi.org/10.1134/S1547477107040012
https://doi.org/10.1134/S1547477107040012
https://doi.org/10.1134/S1547477107040012
https://doi.org/10.1103/PhysRevC.94.055202
https://doi.org/10.1103/PhysRevC.94.055202
https://doi.org/10.1103/PhysRevC.94.055202
https://doi.org/10.1103/PhysRevC.94.055202
https://doi.org/10.1103/PhysRevC.68.034325
https://doi.org/10.1103/PhysRevC.68.034325
https://doi.org/10.1103/PhysRevC.68.034325
https://doi.org/10.1103/PhysRevC.68.034325
https://doi.org/10.1016/0550-3213(71)90460-3
https://doi.org/10.1016/0550-3213(71)90460-3
https://doi.org/10.1016/0550-3213(71)90460-3
https://doi.org/10.1016/0550-3213(71)90460-3
https://doi.org/10.1016/0550-3213(73)90461-6
https://doi.org/10.1016/0550-3213(73)90461-6
https://doi.org/10.1016/0550-3213(73)90461-6
https://doi.org/10.1016/0550-3213(73)90461-6
https://doi.org/10.1016/j.ppnp.2017.03.004
https://doi.org/10.1016/j.ppnp.2017.03.004
https://doi.org/10.1016/j.ppnp.2017.03.004
https://doi.org/10.1016/j.ppnp.2017.03.004
https://doi.org/10.1103/PhysRevLett.30.345
https://doi.org/10.1103/PhysRevLett.30.345
https://doi.org/10.1103/PhysRevLett.30.345
https://doi.org/10.1103/PhysRevLett.30.345
https://doi.org/10.1070/PU1973v016n02ABEH005177
https://doi.org/10.1070/PU1973v016n02ABEH005177
https://doi.org/10.1070/PU1973v016n02ABEH005177
https://doi.org/10.1070/PU1973v016n02ABEH005177
https://doi.org/10.1103/PhysRevD.8.826
https://doi.org/10.1103/PhysRevD.8.826
https://doi.org/10.1103/PhysRevD.8.826
https://doi.org/10.1103/PhysRevD.8.826
https://doi.org/10.1134/S106377881308022X
https://doi.org/10.1134/S106377881308022X
https://doi.org/10.1134/S106377881308022X
https://doi.org/10.1134/S106377881308022X
https://doi.org/10.1140/epja/i2004-10039-3
https://doi.org/10.1140/epja/i2004-10039-3
https://doi.org/10.1140/epja/i2004-10039-3
https://doi.org/10.1140/epja/i2004-10039-3
https://doi.org/10.1016/j.nuclphysa.2004.04.111
https://doi.org/10.1016/j.nuclphysa.2004.04.111
https://doi.org/10.1016/j.nuclphysa.2004.04.111
https://doi.org/10.1016/j.nuclphysa.2004.04.111
https://doi.org/10.1016/j.nuclphysa.2004.07.009
https://doi.org/10.1016/j.nuclphysa.2004.07.009
https://doi.org/10.1016/j.nuclphysa.2004.07.009
https://doi.org/10.1016/j.nuclphysa.2004.07.009
https://doi.org/10.1103/PhysRevC.60.042202
https://doi.org/10.1103/PhysRevC.60.042202
https://doi.org/10.1103/PhysRevC.60.042202
https://doi.org/10.1103/PhysRevC.60.042202
https://doi.org/10.1103/PhysRevD.74.013003
https://doi.org/10.1103/PhysRevD.74.013003
https://doi.org/10.1103/PhysRevD.74.013003
https://doi.org/10.1103/PhysRevD.74.013003


UPDATED ANALYSIS OF RECENT RESULTS ON … PHYSICAL REVIEW C 99, 025205 (2019)

[24] E. A. Kuraev, V. V. Bytev, S. Bakmaev, and E. Tomasi-
Gustafsson, Phys. Rev. C 78, 015205 (2008).

[25] O. Tomalak, B. Pasquini, and M. Vanderhaeghen, Phys. Rev. D
96, 096001 (2017).

[26] L. C. Maximon and J. A. Tjon, Phys. Rev. C 62, 054320
(2000).

[27] L. W. Mo and Y.-S. Tsai, Rev. Mod. Phys. 41, 205
(1969).

[28] R. Ent, B. W. Filippone, N. C. R. Makins, R. G. Milner,
T. G. O’Neill, and D. A. Wasson, Phys. Rev. C 64, 054610
(2001).

[29] A. V. Gramolin, V. S. Fadin, A. L. Feldman, R. E. Gerasimov,
D. M. Nikolenko, I. A. Rachek, and D. K. Toporkov, J. Phys. G
41, 115001 (2014).

[30] N. Meister and D. Yennie, Phys. Rev. 130, 1210 (1963).
[31] Y.-S. Tsai, Phys. Rev. 122, 1898 (1961).
[32] I. A. Rachek, J. Arrington, V. F. Dmitriev, V. V. Gauzshtein,

R. E. Gerasimov, A. V. Gramolin, R. J. Holt, V. V. Kaminskiy,

B. A. Lazarenko, S. I. Mishnev, N. Y. Muchnoi, V. V. Neufeld,
D. M. Nikolenko, R. S. Sadykov, Y. V. Shestakov, V. N. Sti-
bunov, D. K. Toporkov, H. deVries, S. A. Zevakov, and V. N.
Zhilich, Phys. Rev. Lett. 114, 062005 (2015).

[33] B. S. Henderson et al. (OLYMPUS Collaboration), Phys. Rev.
Lett. 118, 092501 (2017).

[34] D. Rimal et al. (CLAS Collaboration), Phys. Rev. C 95, 065201
(2017).

[35] D. M. Nikolenko et al., Yad. Fiz. 78, 423 (2015) [Phys. At. Nucl.
78, 394 (2015)].

[36] E. A. Kuraev, M. Shatnev, and E. Tomasi-Gustafsson, Phys.
Rev. C 80, 018201 (2009).

[37] M. Meziane et al. (GEp2gamma Collaboration), Phys. Rev.
Lett. 106, 132501 (2011).

[38] L. Andivahis, P. E. Bosted, A. Lung, L. Stuart, J. Alster et al.,
Phys. Rev. D 50, 5491 (1994).

[39] I. Qattan, J. Arrington, R. Segel, X. Zheng, K. Aniol et al., Phys.
Rev. Lett. 94, 142301 (2005).

025205-11

https://doi.org/10.1103/PhysRevC.78.015205
https://doi.org/10.1103/PhysRevC.78.015205
https://doi.org/10.1103/PhysRevC.78.015205
https://doi.org/10.1103/PhysRevC.78.015205
https://doi.org/10.1103/PhysRevD.96.096001
https://doi.org/10.1103/PhysRevD.96.096001
https://doi.org/10.1103/PhysRevD.96.096001
https://doi.org/10.1103/PhysRevD.96.096001
https://doi.org/10.1103/PhysRevC.62.054320
https://doi.org/10.1103/PhysRevC.62.054320
https://doi.org/10.1103/PhysRevC.62.054320
https://doi.org/10.1103/PhysRevC.62.054320
https://doi.org/10.1103/RevModPhys.41.205
https://doi.org/10.1103/RevModPhys.41.205
https://doi.org/10.1103/RevModPhys.41.205
https://doi.org/10.1103/RevModPhys.41.205
https://doi.org/10.1103/PhysRevC.64.054610
https://doi.org/10.1103/PhysRevC.64.054610
https://doi.org/10.1103/PhysRevC.64.054610
https://doi.org/10.1103/PhysRevC.64.054610
https://doi.org/10.1088/0954-3899/41/11/115001
https://doi.org/10.1088/0954-3899/41/11/115001
https://doi.org/10.1088/0954-3899/41/11/115001
https://doi.org/10.1088/0954-3899/41/11/115001
https://doi.org/10.1103/PhysRev.130.1210
https://doi.org/10.1103/PhysRev.130.1210
https://doi.org/10.1103/PhysRev.130.1210
https://doi.org/10.1103/PhysRev.130.1210
https://doi.org/10.1103/PhysRev.122.1898
https://doi.org/10.1103/PhysRev.122.1898
https://doi.org/10.1103/PhysRev.122.1898
https://doi.org/10.1103/PhysRev.122.1898
https://doi.org/10.1103/PhysRevLett.114.062005
https://doi.org/10.1103/PhysRevLett.114.062005
https://doi.org/10.1103/PhysRevLett.114.062005
https://doi.org/10.1103/PhysRevLett.114.062005
https://doi.org/10.1103/PhysRevLett.118.092501
https://doi.org/10.1103/PhysRevLett.118.092501
https://doi.org/10.1103/PhysRevLett.118.092501
https://doi.org/10.1103/PhysRevLett.118.092501
https://doi.org/10.1103/PhysRevC.95.065201
https://doi.org/10.1103/PhysRevC.95.065201
https://doi.org/10.1103/PhysRevC.95.065201
https://doi.org/10.1103/PhysRevC.95.065201
https://doi.org/10.1134/S1063778815020234
https://doi.org/10.1134/S1063778815020234
https://doi.org/10.1134/S1063778815020234
https://doi.org/10.1134/S1063778815020234
https://doi.org/10.1103/PhysRevC.80.018201
https://doi.org/10.1103/PhysRevC.80.018201
https://doi.org/10.1103/PhysRevC.80.018201
https://doi.org/10.1103/PhysRevC.80.018201
https://doi.org/10.1103/PhysRevLett.106.132501
https://doi.org/10.1103/PhysRevLett.106.132501
https://doi.org/10.1103/PhysRevLett.106.132501
https://doi.org/10.1103/PhysRevLett.106.132501
https://doi.org/10.1103/PhysRevD.50.5491
https://doi.org/10.1103/PhysRevD.50.5491
https://doi.org/10.1103/PhysRevD.50.5491
https://doi.org/10.1103/PhysRevD.50.5491
https://doi.org/10.1103/PhysRevLett.94.142301
https://doi.org/10.1103/PhysRevLett.94.142301
https://doi.org/10.1103/PhysRevLett.94.142301
https://doi.org/10.1103/PhysRevLett.94.142301



