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Background: Relativistic treatments of quantum mechanical systems are important for understanding hadronic
structure and dynamics at subnucleon scales. Relativistic invariance of a quantum system means that there is an
underlying unitary representation of the Poincaré group. This is equivalent to the requirement that the quantum
observables (probabilities, expectation values, and ensemble averages) for equivalent measurements performed
in different inertial reference frames are identical. Different representations are used in practice, including
Poincaré covariant forms of dynamics, representations based on Lorentz covariant wave functions, Euclidean
covariant representations, and representations generated by Lorentz covariant fields.
Purpose: The purpose of this work is to illustrate the relation between the different equivalent representations
of states in relativistic quantum mechanics.
Method: The starting point is a description of a particle of mass m and spin j using irreducible representations
of the Poincaré group. Since any unitary representation of the Poincaré group can be decomposed into a direct
integral of irreducible representations, these are the basic building blocks of any relativistically invariant quantum
theory. The equivalence is established by constructing equivalent Lorentz covariant irreducible representations
from Poincaré covariant irreducible representations and constructing equivalent Euclidean covariant irreducible
representations from Lorentz covariant irreducible representations.
Results: Equivalent descriptions for positive mass representations of arbitrary spin are presented in each of these
frameworks. Dynamical realizations of the different representations are briefly discussed.
Conclusion: Poincaré covariant, Lorentz covariant, and Euclidean covariant realizations of relativistic dynamics
are shown to be equivalent by explicitly relating the positive-mass positive-energy irreducible representations of
the Poincaré group that appear in the direct integral.
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I. INTRODUCTION

Relativistic quantum mechanical models are important for
modeling hadronic structure. Experiments using electromag-
netic and weak probes are designed to investigate the structure
of hadronic targets. The relevant theoretical quantities are
matrix elements of current operators between initial and final
hadronic states in different inertial frames. As the resolution
of the probe increases, the momentum difference between
the initial and final hadronic states becomes larger. First
principles calculations of the initial and final hadronic wave
functions with quantifiable errors are challenging, especially
when they are needed in different inertial frames. Relativistic
models of the hadronic states provide a consistent treat-
ment of initial and final states in different inertial reference
frames.

There are many different formulations of relativistic quan-
tum mechanical models. In this work, the relation between
different quantum mechanical descriptions of relativistic par-
ticles is systematically developed. In order to take advantage
of the relations discussed in this work, it is necessary to
first have a dynamical model. While it is beyond the scope
of this paper to give a detailed discussion of dynamical
models, typical relativistic wave functions are matrix elements
of a relativistic state in a dynamical model and a noninter-

acting relativistic basis state. For example, in describing a
nucleus as a system of constituent nucleons, the nuclear state
is the solution of a dynamical equation expressed in a basis
of free nucleon states. In this work, the focus is on de-
riving the relation between different relativistic descriptions
of these particle states. This applies to both the interact-
ing relativistic states and the relativistic free-particle basis
states.

In 1939, Wigner [1] showed that the relativistic invariance
of a quantum system is equivalent to the requirement that
there is a unitary ray representation of the Poincaré group
on the Hilbert space of the quantum system. This is the
mathematical formulation of the physical requirement that
quantum observables (probabilities, expectation values, and
ensemble averages) for equivalent measurements performed
in different inertial reference frames are identical. Physically,
this means that equivalent quantum measurements in isolated
systems cannot be used to distinguish inertial frames. This
quantum mechanical formulation of relativistic invariance
focuses on the invariance of measurements, rather than the
transformation properties of equations, which is used in the
classical formulation of relativistic invariance.

Relativistically invariant quantum systems are represented
using Poincaré covariant methods, Lorentz covariant methods,
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Euclidean covariant methods and Lorentz covariant fields.
Each method provides a different representation of the same
physical system. Each representation has different advantages.
The purpose of these notes is to exhibit the relation between
these different representations. While most of the content of
this exposition can be found in Refs. [1–11], it is difficult to
find all of the relations in one place.

The starting point is the realization that any unitary rep-
resentation of the Poincaré group can be decomposed into a
direct sum or integral of irreducible representations. These
are the basic building blocks of any relativistically invariant
quantum theory. The construction of the direct integral is
the dynamical problem, which is mathematically equivalent
to the simultaneous diagonalization of the Casimir operators
(mass and spin) of the Poincaré Lie algebra. This is the
relativistic analog of diagonalizing a nonrelativistic center-
of-mass Hamiltonian. It is a nontrivial dynamical problem.
Wave functions of these irreducible states are matrix elements
of these states with free-particle relativistic basis states. The
free-particle states could be irreducible basis states or tensor
products of irreducible basis states. The relevant observation
of this work is that once these wave functions are found in
one representation, the results of this work can be applied
to determine the corresponding relativistic wave functions in
different representations.

Because of this, it is sufficient to understand the relation
between the different representations of the irreducible repre-
sentations. This work considers only positive-mass positive-
energy representations of the Poincaré group [4–10,12–15].
These are the relevant representations for hadronic states.

The next section summarizes the notation used in the rest
of this paper and gives a brief description of the essential
elements of the Poincaré group. Section III discusses the con-
struction of positive-mass, positive-energy unitary irreducible
representations of the Poincaré group for a particle of any
(positive) mass and spin. Single-particle states are represented
by simultaneous eigenstates of a complete set of commuting
observables that are functions of the infinitesimal generators
of the Poincaré group. These basis states span a one-particle
subspace, and the structure of the unitary representation of
the Poincaré group on that subspace is fixed by the choice of
commuting observables and group theory. For a given choice
of commuting observables, there is a largest subgroup of the
Poincaré group where the transformations are independent of
the mass. These subgroups are called kinematic subgroups.
Dirac [2] identified basis choices with the largest kinematic
subgroups. He referred to them as defining “forms of dynam-
ics.” Kinematic subgroups are useful because for transforma-
tions in this subgroup, dynamical Poincaré transformations on
interacting states can be computed by applying the inverse
kinematic transformation to the free-particle basis states. This
avoids the need to explicitly compute the dynamical transfor-
mations.

Section IV gives an introduction to SL(2, C), which
is related to the Lorentz group like SU(2) is related to
SO(3). SL(2, C) plays a central role in the construction of
Lorentz covariant descriptions of particles, Euclidean covari-
ant descriptions of particles, and Lorentz covariant fields.
This section includes a complete description of all of the

properties of SL(2, C) that are needed in relativistic quantum
theories.

Section V discusses Lorentz covariant descriptions of par-
ticles. In these representations, the SU(2) Wigner rotations
are decomposed into products of SL(2, C) matrices. The
momentum-dependent parts are absorbed into the definition
of the wave functions. The result is a new wave function that
transforms in a Lorentz covariant way. In this representation,
the Hilbert space inner product acquires a nontrivial kernel,
which removes the momentum dependence that was absorbed
in the wave functions. The resulting kernel is a free-particle
Wightman function. In addition, the SU(2) identity, R =
(R†)−1 for the SU(2) Wigner rotations leads to two inequiv-
alent decompositions of the Wigner rotation into products
of SL(2, C) matrices. The inequivalent representations are
related by space reflection. The treatment of space reflection
in these representations is discussed.

Section VI exhibits Euclidean covariant Green’s functions
that lead to all of the covariant representations constructed in
Sec. V. The interesting feature of this representation is that no
analytic continuation is needed to show equivalence with the
Lorentz covariant representation.

Section VII discusses the construction of free Lorentz
covariant fields using the occupation number representation
in the Lorentz covariant description of particles. In Sec. VIII
the covariant fields are used to construct local covariant fields.
Section IX discusses the role of dynamics in these representa-
tions. Section X contains a brief summary.

II. THE POINCARÉ GROUP

The Poincaré group is the group of space-time coordinate
transformations that preserve the form of the source-free
Maxwell’s equations. It is also the group that relates different
inertial coordinate systems in special relativity.

In what follows, the space and time coordinates of events
are labeled by components of a four-vector

xμ = (ct, x1, x2, x3). (1)

The convention for the Lorentz metric tensor is

ημν = ημν :=

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ (2)

and repeated indices are assumed to be summed. This choice
of metric is natural for developing the relation with Euclidean
representations.

The Poincaré group is the group of point transformations
that preserve the proper time between events:

�τ 2
xy = (x0 − y0)2 − |x − y|2 = −ημν (xμ − yμ)(xν − yν ).

(3)

The general form of a point transformation, x′μ = f μ(x), that
preserves (3) is

f μ(x) = x′μ = �μ
νxν + aμ, (4)
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where aμ and �μ
ν are constants and the Lorentz transforma-

tion �μ
ν satisfies

ημν = �μ
α�ν

βηαβ. (5)

These relations can be derived by differentiating

[ f μ(x) − f μ(y)][ f ν (x) − f ν (y)]ημν

= (xμ − yμ)(xν − yν )ημν (6)

with respect to x, setting x to 0, and then doing the same with
y. In matrix form, Eq. (5) has the form

η = �η�t , (7)

which indicates that � is a real orthogonal transformation
with respect to the Lorentz metric. Equations (4) and (7)
are relativistic generalizations of the fundamental theorem
of rigid-body motion, which asserts that any motion that
preserves the distance between points in a rigid body is a com-
position of an orthogonal transformation and a translation.

Equation (7) implies that

det(�)2 = 1,
(
�0

0

)2 = 1 +
(∑

i

�0
i

)2

. (8)

It follows from (8) that the Lorentz group has four topologi-
cally disconnected components distinguished by

det(�) = 1, �0
0 � 1, (9)

det(�) = 1, �0
0 � −1, (10)

det(�) = −1, �0
0 � 1, (11)

det(�) = −1, �0
0 � −1. (12)

The component with det(�) = 1 and �0
0 � 1 contains the

identity and is a subgroup. These Lorentz transformations
are called proper Lorentz transformations. This subgroup is
the symmetry group of special relativity. The other three
components involve space and/or time reflections, which are
not symmetries of the weak interaction. In what follows,
all Lorentz transformations will be assumed to be proper
transformations unless otherwise specified.

The requirement that quantum observables are independent
of inertial coordinate system requires that equivalent states in
different inertial coordinate systems are related by a unitary
(ray) representation of the proper subgroup of the Poincaré
group. The Poincaré group has 10 infinitesimal generators that
can be expressed as components of operators that transform
as a four-vector and an antisymmetric rank-2 tensor under the
unitary representation, U (�), of the Lorentz group:

Pμ = (H, P), (13)

Jμν =

⎛
⎜⎜⎜⎝

0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

⎞
⎟⎟⎟⎠, (14)

U (�)PμU †(�) = (�−1)μνPν, (15)

U (�)JμνU †(�) = (�−1)μα (�−1)νβJαβ. (16)

The Pauli-Lubanski vector is the four-vector operator defined
by

W μ = − 1
2εμαβγ PαJβγ . (17)

The Lie algebra has two independent polynomial invariants,

M2 = −PμPμ and W 2 = W μWμ = −M2j2. (18)

When the spectrum of the mass operator, σ (M ) > 0, is posi-
tive, spin operators are defined by

(0, jx ) := − 1

M
B−1

x (P/M )μνW ν, (19)

where B−1
x (P/M )μν is a matrix of operators that transform Pμ

to (M, 0, 0, 0):

B−1
x (P/M )μνPμ = (M, 0). (20)

A standard choice is the canonical (rotationless) boost
Bc(P/M ) defined by

Bc(V := P/M ) =
(

V 0 V

V δi j + V iV j

1+V 0

)
. (21)

The subscript x indicates that both Bx(P/M ) and jx are not
unique since for any P-dependent rotation Rxy(P/M )

By(P/M )μν := Bx(P/M )μρRxy(P/M )ρν (22)

gives another matrix of operators with property (20); how-
ever, for any choice (x) the Poincaré commutation relations
imply

j2
x = j2 = W 2/M2, (23)[

jl
x, jm

x

] = i
∑

n

εlmn jn
x , (24)

[
ji
x, ,P

μ
] = 0. (25)

It follows from (19) that the different spin operators are related
by

(0, jx )μ := B−1
x (P/M )μρBy(P/M )ρν (0, jy)ν . (26)

The rotation

Rxy(P/M ) := B−1
x (P/M )By(P/M ) (27)

that relates different spin observables is called a generalized
Melosh rotation [16]. The interpretation of jx is that it is the
spin that would be measured in the rest frame of a particle if it
was Lorentz transformed to the rest frame with the Lorentz
transformation B−1

x (P/M ). This provides a mechanism to
compare spins in different inertial frames. Different kinds of
spin arise because products of rotationless Lorentz boosts can
generate rotations. This means that the spin measured in the
rest frame depends on the Lorentz transformation to the rest
frame. Note that in spite of the four indices in (26), the spin
is not a 4-vector. This is because B−1

x (P/M )μρ in Eq. (19) is a
matrix of operators.
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The spin can alternatively be expressed as

ji
x = εi jkB−1

x (P/M ) j
μB−1

x (P/M )k
νJμν, (28)

which can be interpreted as the angular momentum in the
particle’s rest frame, which again depends on the Lorentz
transformation used to get to the rest frame.

Representations of the Poincaré group can be built up
out of irreducible representations. The classification of the
irreducible representations depends on the spectrum of in-
variant operators M2 and W 2 and the sign of P0. Wigner
[1] classified six classes of irreducible representations by the
spectral properties of P2 and P0:

I. P2 < 0, P0 > 0,

II. P2 < 0, P0 < 0,

III. P2 > 0,

IV. P2 = 0, P0 > 0,

V. P2 = 0, P0 < 0,

VI. Pμ = 0.

The physically interesting representations for particles are the
ones with −P2 = M2 > 0, P0 > 0 (I), and P2 = 0, P0 > 0
(IV), which are associated with massive and massless particles
respectively. The irreducible representations are induced from
a subgroup that leaves a standard vector invariant in each of
these classes.

III. POINCARÉ COVARIANT POSITIVE MASS UNITARY
IRREDUCIBLE REPRESENTATIONS

For a particle of mass m > 0 the mass, spin, and three
components of the linear momentum, and one component of jx

are a maximal set of commuting self-adjoint functions of the
infinitesimal generators of the Poincaré group. The standard
vector can be taken as (m, 0, 0, 0). The rotation group is called
the little group for these representations because it leaves the
standard vector invariant. The mass and spin2 eigenvalues are
fixed and label an irreducible subspace. Basis vectors can
be taken as simultaneous eigenstates of this maximal set of
commuting operators

|(m, j)p, μ〉. (29)

In what follows, the normalization convention

〈(m, j)p′, μ′|(m, j)p, μ〉 = δ(p′ − p)δμ′μ (30)

is used. The eigenvalue spectrum of both p and jx · ẑ is fixed
by j and group properties [p can be boosted to any real
value, and the spin components satisfy SU(2) commutation
relations (24)].

An irreducible unitary representation of the Poincaré group
in this basis can be constructed by considering the action
of elementary Poincaré transformations on the rest, (p = 0),
eigenstates. On these states, rotations can only affect the spin
variables since they leave the rest four-momentum (standard
vector) unchanged. The total spin constrains the structure
of the transformation; it must be a 2 j + 1 dimensional irre-
ducible unitary representation of SU(2):

U (R, 0)|(m, j)0, μ〉 = |(m, j)0, ν〉D j
νμ[R], (31)

where (see the Appendix)

D j
νμ[R] = 〈 j, ν|U (R, 0)| j, μ〉

=
j+μ∑
k=0

√
( j + ν)!( j − ν)!( j + μ)!( j − μ)!

k!( j + ν − k)!( j + μ − k)!(k − ν − μ)!

× Rk
++R j+ν−k

+− R j+μ−k
−+ Rk−ν−μ

−− (32)

are the 2 j + 1 dimensional unitary representations of SU(2)
in the | j, μ〉 basis, where

R = e
i
2 θθθ ·σσσ = σ0 cos(θ/2) + iθ̂θθ · σσσ sin(θ/2)

=
(

R++ R+−
R−+ R−−

)
. (33)

Here σ0 is the 2 × 2 identity and σσσ are the Pauli spin matrices.
The Wigner function D[R] is a degree 2 j polynomial in
the components of R. It follows from (32) that D j

νμ[R∗] =
(D j

μν[R])∗ and D j
νμ[Rt ] = D j

μν[R].
Space-time translations of the rest state introduce a phase

U (I, a)|(m, j)0, μ〉 := e−ia0m|(m, j)0, μ〉, (34)

while Lorentz boosts are unitary operators that change the
rest vector to pμ = (

√
m2 + p2, p). A different type of spin is

associated with each type of Lorentz boost. The x spin is the
spin that is unchanged when the basis vector is transformed to
a rest vector with the inverse boost B−1

x (p/m). The following
definition is consistent with the requirement that the x spin
is unchanged when transformed to the rest frame with the
inverse boost B−1

x (p/m):

U (Bx(p/m), 0)|(m, j)0, μ〉 := |(m, j)p, μ〉
√

ωm(p)

m
,

(35)

where ωm(p) :=
√

m2 + p2 is the energy of the particle. The
Jacobian is chosen to make the boost unitary for states with
the normalization (30). This can be seen by considering the
Lorentz invariant measure∫

d4 pδ(p2 + m2)θ (p0) =
∫

dp
2ωm(p)

=
∫

dp′

2ωm(p′)
,

(36)

where p′ = �p. It follows that

I =
∫

|p〉dp〈p| =
∫

|p′〉dp′〈p′|

=
∫

|p〉 dp
dp′ dp′〈p|

=
∫

|p〉 2ωm(p)

2ωm(p′)
dp′〈p|, (37)

which leads to the identification

|p′(p)〉 = |p〉
√

ωm(p)

ωm(p′)
. (38)
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A general unitary representation of the Poincaré group on any basis state can be expressed as a product of these elementary
transformations on rest states using the group representation property:

U (�, a)|(m, j)p, ν〉 = U (I, a)U (�, 0)|(m, j)p, ν〉

= U (I, a)U (�, 0)U (Bx(p/m), 0)|(m, j)0, ν〉
√

m

ωm(p)

= U (Bx(�p/m), 0)U
(
B−1

x (�p/m), 0
)
U (I, a)U (�, 0)U (Bx(p/m), 0)|(m, j)0, ν〉

√
m

ωm(p)

= U (Bx(�p/m), 0)U
(
I, B−1

x (�p/m)a
)
U

(
B−1

x (�p/m), 0
)
U (�, 0)U (Bx(p/m), 0)|(m, j)0, ν〉

√
m

ωm(p)

= ei�p·a|(m, j)���p, μ〉D j
μν

[
B−1

x (�p/m)�Bx (p/m)
]√ωm(���p)

ωm(p)
. (39)

The rotation

Rwx(�, p) := B−1
x (�p/m)�Bx(p/m) (40)

is called a spinx Wigner rotation. The final result is the mass-m spin- j irreducible unitary representation of the Poincaré group
in the momentum-spin-x basis:

U (�, a)|(m, j)p, μ〉 = ei�p·a|(m, j)���p, ν〉D j
νμ[Rwx(�, p)]

√
ωm(���p)

ωm(p)
. (41)

Since U (�, a) is defined as a product of unitary transformations, it is unitary.
The momentum labels can be replaced by any three independent functions, f (p) = f (p, m), of the four-momentum pμ and the

spins can be replaced by any type of spin. These replacements correspond to choosing a basis using a different set of commuting
observables. Each replacement is just a unitary change of basis. The general form of the change of basis transformation is

|(m, j)f, μ〉y = |(m, j)p(f, m), ν〉xD j
νμ[Rxy(p/m)]

√∣∣∣∣∂p(f, m)

∂f

∣∣∣∣. (42)

Combining this with (39) gives the resulting unitary representation of the Poincaré group in the transformed basis

U (�, a)|(m, j)f, μ〉y = ei�p( f )·a|(m, j)f (�p), ν〉yD j
νμ

[
B−1

y (�p(f )/m)�By(p(f )/m)
]√∣∣∣∣∂f (�p)

∂f (p)

∣∣∣∣. (43)

There are four choices of commuting observables that are commonly used. They involve a choice of continuous variables and
a choice of spin degrees of freedom. They are distinguished by having some simplifying properties:

f = p, Bx(p/m) = Bc(p/m),
∂f (�p)

∂f (p)
= ωm(���p)

ωm(p)
, (44)

f = v = p/m, Bx(p/m) = Bc(p/m) = Bc(v),
∂f (�p)

∂f (p)
= ω1(���v)

ω1(v)
, (45)

f = p̃ := (p+, p⊥), Bx(p/m) = B f (p/m),
∂f (�p)

∂f (p)
= (�p)+

p+ , p+ := p0 + p3; p⊥ = (p1, p2) (46)

f = p, Bx(p/m) = Bh(p/m),
∂f (�p)

∂f (p)
= ωm(���p)

ωm(p)
; (47)

these choices are associated with instant, point, front-form, [2] or Jacob-Wick helicity dynamics [11]. The boost Bc(p/m) is a
rotationless boost, B f (p/m) is a light-front-preserving boost, and Bh(p/m) is a helicity boost. These choices lead to different spin
observables. The different types of boosts will be defined later. The first three cases are distinguished by the choice of a kinematic
subgroup. The kinematic subgroup is the subgroup of the Poincaré group where �p(f ) · a, B−1

y (�p(f )/m)�By(p(f )/m), and
∂f (�p)
∂f (p) are all independent of m. Since the transformations (42) that relate these representations involve the mass, they will

generally have different kinematic subgroups. The choices (44)–(46) have the largest kinematic subgroups. Kinematic subgroups
are useful in dynamical theories because transformations, U (�, a), for (�, a) in the kinematic subgroup can be computed exactly
without having to diagonalize the mass and spin operators using

〈φ0|UI (�, a)|φI〉 = 〈φI |U †
0 (�, a)|φ0〉∗. (48)
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Explicit forms of the unitary irreducible representations of the Poincaré group in each of these bases are given below:

U (�, a)|(m, j)p, ν〉c = ei�p·a|(m, j)���p, μ〉cD j
μν[Rwc(�, p)]

√
ωm(���p)

ωm(p)
(49)

(instant form),

U (�, a)|(m, j)p̃, ν〉 f = ei�p·a|(m, j)�̃��p, μ〉 f D j
μν[Rw f (�, p)]

√
(�p)+

p+ (50)

(front form),

U (�, a)|(m, j)v, ν〉v = ei�v·a|(m, j)���v, μ〉vD j
μν[Rwc(�, v)]

√
ω1(���v)

ω1(v)
(51)

(point form) and

U (�, a)|(m, j)p, ν〉h = ei�p·a|(m, j)���p, μ〉hD j
μν[Rjwh(�, p)]

√
ωm(���p)

ωm(p)
(52)

(Jacob-Wick form). These bases are called instant-form, front-
form, point-form, and Jacob Wick helicity bases.

In the instant-form case, the kinematic subgroup is the
six-parameter, three-dimensional Euclidean group. In the
point-form case, the kinematic subgroup is the six-parameter
Lorentz group, and in the light-front case, the kinematic sub-
group is the seven-parameter subgroup that leaves the plane
x+ = x0 + x3 = 0 invariant.

The light-front boosts have the distinguishing feature that
they form a subgroup, so light-front Winger rotations of light-
front boosts are the identity. The light-front representation has
the largest kinematic subgroup. It is a natural representation
for deep inelastic scattering.

The canonical boost has the distinguishing property that
the Wigner rotation of a rotation is the rotation. This property
is unique to the canonical boost and is useful for adding
angular momenta. Both the point-form and instant-form rep-
resentations use canonical boosts to define the spins.

The helicity boost has the property that the Wigner rotation
of any Lorentz transformation is a phase. The helicity spin is
related to the canonical spin by [17] jh · ẑ = jc · p̂.

These are the most commonly used Poincaré covariant
representations of single-particle states. They are equivalent
representations of a free mass-m spin- j particle. They are
related by the unitary transformations (42). These unitary
equivalences also apply to dynamical theories after the mass
and spin are diagonalized.

These representations are the closest representations of
single-particle states to nonrelativistic representations, but
they are not the only representations used to describe relativis-
tic particles. In addition to these, there are representations that
are manifestly Lorentz covariant and representations that are
also Euclidean covariant. In order to understand the relation of
these representations to the Poincaré covariant representations
constructed in this section, it is useful to introduce the group
SL(2, C), of complex 2 × 2 matrices with unit determinant,
which is the covering group of the Lorentz group. The relation
between SL(2, C) and the Lorentz group is analogous to the

relation between SU(2) and the rotation group SO(3). It will
be developed in the next section.

IV. SL(2, C)

In order to motivate the connection of SL(2, C) with the
Lorentz group, it is useful to represent space-time coordinates
by 2 × 2 Hermitian matrices

X = xμσμ =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
:=

(
x+ x∗

⊥
x⊥ x−

)
. (53)

The inverse is

xμ = 1
2 Tr(σμX ) = 1

2 Tr(Xσμ), (54)

which follows from properties of the Pauli matrices

σiσ j = δi jσ0 + iεi jkσk, (55)

Tr(σi ) = 0, Tr(σ0) = 2, Tr(AB) = Tr(BA). (56)

The determinant of X is the square of the proper time:

det(X ) = (x0)2 − x · x = −ημνxμxν = τ 2. (57)

Taking complex conjugates of (54) gives

xμ∗ = 1
2 Tr(σ ∗

μX ∗) = 1
2 Tr((σ ∗

μX ∗)t ) = 1
2 Tr(X †σ †

μ)

= 1
2 Tr(X †σμ) = 1

2 Tr(σμX †). (58)

This will be equal to xμ if and only if X = X †.
It follows that any linear transformation that preserves both

the Hermiticity and the determinant of X must be a real
Lorentz transformation.

A general linear transformation of the matrix X has the
form

X ′ = AXB. (59)

Hermiticity of X ′ requires

AXB = B†XA† (60)
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or

A−1B†X = XBA−1† (61)

for any Hermitian X . If X is set to the identity, this becomes

C := BA−1† = A−1B† = C†. (62)

Using (62) in (61) gives

CX = XC. (63)

This means that for any Hermitian X

[X,C] = 0. (64)

Since this must be true for X = σμ and any complex matrix
can be expressed as M = mμσμ, it follows that C commutes
with every complex 2 × 2 matrix, so it must be proportional
to the identity, C = cI , with a real constant c (by Hermiticity).
This leads to the relation

B = cA†. (65)

The condition on the determinant requires

c2|det(A)|2 = 1. (66)

The magnitude of c can be absorbed into the matrices by
redefining A → A′ = 1√|c|A. Then c = ±1, which gives

B = ±A†. (67)

The (−1) changes the sign of all components of X so it cor-
responds to a space-time reflection, which is not in the proper
subgroup of the Lorentz group (the component connected to
the identity). It follows that

X ′ = AXA†, det(A) = 1. (68)

The determinant could be allowed to have a phase, but the †
will cause the phases to cancel, so there is no loss of generality
in choosing the determinant to be 1.

It follows that any SL(2, C) matrix A defines a real proper
Lorentz transformation by

�μ
ν = 1

2 Tr(σμAσνA†). (69)

A. General form of A

A general invertible complex 2 × 2 matrix can always be
expressed in exponential form

A = eM = emμσμ . (70)

The requirement that

1 = det(A) = emμTr(σμ ) = e2m0
(71)

holds for m0 = nπ i. This gives

A = ±ez·σσσ , (72)

where z is a complex vector. The minus sign can be absorbed
in z since

−I = eiπσσσ ·â (73)

for any unit vector â, so a general A ∈ SL(2, C) has the form

A = ez·σσσ . (74)

Note that both A and −A have determinant 1 and lead to the
same Lorentz transformation since the (−) signs cancel in

X ′ = AXA†. (75)

This is the same behavior exhibited by SU(2).
Finally note that A(z) = ez·σ maps the complex plane into

SL(2, C), so any path in SL(2, C) is parameterized by a path
in the complex plane that can be contracted to the identity,
which implies that SL(2, C) is simply connected.

B. Polar decomposition: Generalized Melosh rotations
and canonical boosts

SL(2, C) matrices A have polar decompositions

A = (AA†)1/2(AA†)−1/2A = A(A†A)−1/2(A†A)1/2, (76)

where (AA†)1/2 and (A†A)1/2 are positive Hermitian matrices
and (AA†)−1/2A and A(A†A)−1/2 are SU(2) matrices. Define

Pl := (AA†)1/2, Ur := (AA†)−1/2A, (77)

Pr := (A†A)1/2, Ul := A(A†A)−1/2. (78)

Equation (76) implies that a general SL(2, C) matrix A has
decompositions of the form

A = PlUr = UlPr . (79)

The positive Hermitian SL(2, C) matrices have the form

P = eρρρ·σσσ/2 = cosh(ρ/2)σ0 + ρ̂ρρ · σσσ sinh(ρ/2), (80)

while the unitary SL(2, C) ones have the form

U = eiθθθ ·σσσ/2 = cos(θ/2)σ0 + iθ̂θθ · σσσ sin(θ/2). (81)

The factor of 1/2 is a convention motivated by the 4 × 4
matrix representations of the Lorentz group.

The Lorentz transformation �μ
ν is related to the SL(2, C)

matrix A by

�μ
ν = 1

2 Tr(σμAσνA†). (82)

It can be computed for both real and imaginary z. In the
positive case, it is a rotationless or canonical boost. In the
unitary case, it is a rotation.

SL(2,C) representatives of canonical boosts are given by

A = e
1
2 ρρρ·σσσ . (83)

This A has the property that it transforms (m, 0) to

pμσμ = Amσ0A†, where pμ = (
√

m2 + p2, p)

= 1

2
Tr(σμAmσ0A†), (84)

which represents a Lorentz boost with rapidity ρρρ defined by

ρ̂ρρ = p̂ = v̂ (85)

and

sinh(ρ) = |p|
m

= |v|, (86)

cosh(ρ) = p0

m
= v0, (87)
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sinh(
ρ

2
) =

√
p0 − m

2m
=

√
v0 − 1

2
, (88)

cosh
(ρ

2

)
=

√
p0 + m

2m
=

√
v0 + 1

2
, (89)

with

A = Bc(v) := Bc(p/m) = cosh(ρ/2)σ0 + sinh(ρ/2)v̂ · σ

=
√

v0 + 1

2
σ0 +

√
v0 − 1

2
v̂ · σ

= 1√
2(v0 + 1)

[(v0 + 1)σ0 + v · σ]

= 1√
2m(p0 + m)

[(p0 + m)σ0 + p · σ], (90)

and

B†
c (v) = Bc(v). (91)

The inverse of a canonical boost can be computed by reversing
the sign of p or v or ρ̂ρρ:

B−1
c (v) = σ2B∗

c (v)σ2 = cosh(ω/2)σ0 − sinh(ω2)v̂ · σ

=
√

v0 + 1

2
σ0 −

√
v0 − 1

2
v̂ · σ

= 1√
2(v0 + 1)

[(v0 + 1)σ0 − v · σ]

= 1√
2m(p0 + m)

[(p0 + m)σ0 − p · σ]. (92)

This is not true for a general boost. Note that in all of the
above expressions for the boosts, v0 or p0 represent “on-shell”
quantities.

Finally, an important observation in what follows is

Bc(p/m)2 = eρρρ·σσσ = cosh(ρ)σ0 + p̂ · σσσ sinh(ρ) = 1

m
pμσμ,

(93)

where p0 =
√

m2 + p2. This is a square of the Hermitian
matrix, eρρρ·σσσ/2, so it is a positive Hermitian matrix.

C. Inequivalence of conjugate representation: A �= SA∗S−1

SL(2, C) matrices have some important properties. Both
SL(2, C) and the complex conjugate representation are rep-
resentations, but they are inequivalent. This means that there
is no single similarity transformation S that relates the two
representations

A∗ = SAS−1 (94)

for all A. To show this, note that if (94) holds it follows that
for A = e

1
2 z·σσσ that

z · SσσσS−1 = z∗ · σσσ ∗ (95)

for all complex z. This can be rewritten

z · SσσσS−1 = −z∗ · σ2σσσσ2. (96)

For the special case that z = iy is pure imaginary, this be-
comes

y · SσσσS−1 = y · σ2σσσσ2. (97)

This is because σ2 is imaginary and anticommutes with σ1

and σ2. Thus, for imaginary z, S = σ2C, where C is a matrix
that commutes with σσσ . The only matrix commuting with all
of the Pauli matrices is a constant multiplied by the identity.
It follows that S = cσ2 and S−1 = c−1σ2. The constant factor
can be taken as 1 since it does not change the overall similarity
transformation. For real z, this requires

σ2σσσσ2 = σσσ , (98)

which is not true for σ1 and σ3. This shows that in general
there is no S satisfying

A∗ = SAS−1 (99)

for all A ∈ SL(2, C); however, it was demonstrated that

R∗ = σ2Rσ2 (100)

for all A = R ∈ SU(2).
Equation (100) is special case of the general property of

SL(2, C) matrices:

σ2Aσ2 = (At )−1, σ2A∗σ2 = (A†)−1. (101)

Equations (99) and (100) mean that while SU(2) representa-
tions are equivalent to the complex conjugate representations,
this relation is not true for SL(2, C) representations. This fact
has implications for structure of Lorentz covariant descrip-
tions of free particles and the treatment of space reflections
in these representations.

D. Complex Lorentz transformations

If both A, B ∈ SL(2, C), then for

Y := AXBt (102)

it still follows that

det Y = det X but Y † 
= Y. (103)

This means that the pair (A, B) represents a transformation
that preserves the proper time, −x2 = −y2 with yμ∗ 
= yμ; i.e.,
it is a complex Lorentz transformation.

If σ0 is replaced by iσ0 and σeμ is defined by

σeμ := (iσ0,σσσ ), (104)

then

det
(
xμ

e σeμ
) = −(

x0
e

)2 − x · x, (105)

which is (−) the square of the Euclidean length of xμ
e . The

Euclidean four-vector xμ
e can also be represented by a 2 × 2

matrix,

Xe = xμ
e σeμ, (106)

which can be inverted using

xμ
e = 1

2 Tr(σ †
eμXe). (107)

It follows from (105) that

X ′
e = AXeBt , det(A) = det(B) = 1 (108)
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also preserves the Euclidean distance. This means that

Oμ
ν (A, B) = 1

2 Tr(σ †
eμAσeνBt ) (109)

is a complex four-dimensional orthogonal transformation.
The result of these observations is that SL(2, C) × SL(2, C)
represents both complex Lorentz and complex orthogonal
transformations. The transpose is included in (108) so the
group multiplication property has the form

(A′, B′)(A, B) = (A′A, B′B), (110)

where each factor represents matrix multiplication.
If both A and B are SU(2) matrices, then (A, B) defines

a real four-dimensional orthogonal transformation. To show
reality when A and B are SU(2) matrices, note that the
transformed coordinates are

yμ
e = 1

2 Tr(σ †
eμAXeBt ). (111)

Taking complex conjugates [for A, B ∈ SU(2)]

yμ∗
e = 1

2 Tr(σ †∗
eμA∗X ∗

e Bt∗). (112)

For SU(2) matrices, (100) gives

A∗ = σ2Aσ2, Bt∗ = σ2Btσ2. (113)

Using (113) in (112) gives

yμ∗
e = 1

2
Tr(σ †∗

eμσ2Aσ2X ∗
e σ2Btσ2). (114)

For real xμ
e

σ2X ∗
e σ2 = −Xe, (115)

so (114) becomes

yμ∗
e = 1

2 Tr(−σ †∗
eμσ2AXeBtσ2) (116)

= 1
2 Tr(−σ2σ

†∗
eμσ2AXeBt ) (117)

= 1
2 Tr(σ †

eμAXeBt ) = yμ. (118)

This shows that pairs of SU(2) matrices represent real four-
dimensional orthogonal transformations.

These considerations are relevant for Euclidean represen-
tations of relativistic particles.

E. Rotations and canonical boosts

SU(2) rotations have the form

R = eiθθθ ·σσσ/2 = cos(θ/2)σ0 + iθ̂θθ sin(θ/2) (119)

corresponding to a rotation about the θ̂θθ axis by θ .
The canonical boosts have the important property that the

Wigner rotation of a rotation is the rotation. This is shown
below. The following notation is used: R represents an SU(2)
rotation and R represents the corresponding SO(3) rotation:

Re
1
2 ρρρ·σσσ R† = e

1
2 ρρρ·RσσσR† = e

1
2 ρρρ·(RT σσσ ) = e

1
2 (Rρρρ )·σσσ . (120)

This can be written as

RBc(p/m)R† = Bc(Rp/m) (121)

or

R = B−1
c (Rp/m)RBc(p/m) = Rwc(R, p/m). (122)

This property is unique to canonical boosts. The important
property is that the Wigner rotation of a rotation is the rotation,
independent of p. This means that if a rotation is applied to a
many-particle system, where each particle has a different mo-
mentum, all of the particles’ spins will Wigner rotate the same
way, independent of their momenta. This allows them to be
coupled with ordinary Clebsch-Gordan coefficients. Adding
angular momenta is most easily preformed by transforming
all of the spins to canonical spins.

F. Melosh rotations

In order to add spins, it is necessary to first convert them to
canonical spins so they can be added. After adding the spins,
they can be converted back to their original spin representa-
tion. The matrices that transform the spins are generalized
Melosh rotations (the original Melosh transformation [16]
relates light-front spins to canonical spins).

If a general boost is right multiplied by the inverse of a
canonical boost, the result is a SU(2) rotation, since it maps
zero momentum to zero momentum:

Rcx(p/m) = B−1
c (p/m)Bx(p/m). (123)

This can be expressed in the form

Bx(p/m) = Bc(p/m)Rcx(p/m), (124)

where Rcx(p/m) is the SU(2) (rotation) from the polar de-
composition (77) of Bx(p/m). For A = Bx(p), the generalized
Melosh rotation is given by

Rcx := (AA†)−1/2A = [Bx(p/m)Bx(p/m)†]−1/2Bx(p/m),
(125)

while the associated canonical boost is

Bc(p/m) = (AA†)1/2. (126)

An important observation is that

Bx(p/m)B†
x (p/m) = Bc(p/m)Rcx(p/m)R†

cx(p/m)Bc(p/m)

= B2
c (p/m) = pμσμ

m
(127)

independent of x. This is a consequence of the polar decom-
position of the SL(2, C) matrices. It will be used to show
that Dirac’s forms of dynamics are irrelevant in Lorentz and
Euclidean covariant representations of relativistic quantum
mechanics.

The generalized Melosh rotations are used to change the
type of spins (y → x):

|(m, j)p, μ〉x = U (Bx(p/m))|(m, j)0, μ〉x

√
m

ωm(p)

= U (By(p/m))U
(
B−1

y (p/m)Bx(p/m)
)

× |(m, j)0, μ〉x

√
m

ωm(p)

= U (By(p/m))|(m, j)0, ν〉xD j
νμ

× [
B−1

y (p/m)Bx(p/m)
]√ m

ωm(p)

= |(m, j)p, ν〉yD j
νμ

[
B−1

y (p/m)Bx (p/m)
]
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G. SL(2, C) representations of light-front boosts

The light front is the hyperplane defined by points satis-
fying x+ = x0 + x3 = 0. The kinematic subgroup of the light
front is the subgroup of Poincaré group that preserves x+ = 0.

In SL(2, C), the Lorentz transformations in this subgroup
are represented by lower triangular matrices. SL(2, C) repre-
sentatives of light-front boosts are given by

B f (v) :=
( √

v+ 0

v⊥/
√

v+ 1/
√

v+

)
=

(
α 0

β/α 1/α

)
, (128)

B−1
f (v) :=

(
1/

√
v+ 0

−v⊥/
√

v+ √
v+

)
=

(
1/α 0

−β/α α

)
, (129)

B†
f (v) :=

(√
v+ v∗

⊥/
√

v+

0 1/
√

v+

)
=

(
α β∗/α
0 1/α

)
, (130)

B̃ f (v) :=
(

1/
√

v+ −v∗
⊥/

√
v+

0
√

v+

)
=

(
1/α −β∗/α

0 α

)
,

(131)

where α :=
√

v+ =
√

p+/m and β := v⊥ := (p1 + ip2)/m.
In (131) and in what follows, the notation Ã := (A†)−1 is used.

These lower triangular matrices with real quantities on the
diagonal form a group. This is the subgroup of light-front
boosts. The light-front boost subgroup can be expressed in
terms of the light-front components of the four-momentum
and mass as

B f (p) := 1√
mp+

(
p+ 0
p⊥ m

)
, (132)

B−1
f (p) := 1√

mp+

(
m 0

−p⊥ p+

)
, (133)

B†
f (p) := 1√

mp+

(
p+ p∗

⊥
0 m

)
, (134)

B̃ f (p) := 1√
mp+

(
m −p∗

⊥
0 p+

)
. (135)

These boosts are used to define light-front spins. Since these
boosts form a subgroup, the light-front boosts do not change
the light-front spin.

H. SL(2, C) representations of helicity boosts

Helicity boosts are defined by

Bh(p/m) := Bc(p/m)R(ẑ → p̂) = R(ẑ → p̂)Bc(pz/m),
(136)

where the rotation

R(ẑ → p̂) (137)

is a rotation about the z × p̂ axis through an angle θ =
cos−1(z · p̂) given by

R(ẑ → p̂) =
√

1 + ẑ · p̂
2

σ0 +
√

1 − ẑ · p̂
2

(ẑ × p) · σσσ
|ẑ × p| .

(138)

The associated helicity-spin Wigner rotation is

Rwh(�, p) =R−1(ẑ → �̂��p)B−1
c (�p/m)�Bc(p/m)R(ẑ → p̂),

(139)

which is always a rotation about the z axis. Because of
this property, the Wigner D function (32) of the Jacob-Wick
helicity Wigner rotation is always a phase.

The helicity spin and canonical spin are related by [17]

jh · ẑ = jc · p̂, (140)

so the z component of the helicity spin is the canonical spin
projected in the direction of the momentum. This projection
is the better known definition of the Jacob-Wick helicity.

I. Lorentz spinors

The transformation property of a four-vector represented
by a 2 × 2 Hermitian matrix can be expressed in tensor form
as

X aȧ → X ′aȧ := AabA∗ȧḃX bḃ, (141)

where repeated matrix indices are assumed to be summed over
two values. This looks like a rank-2 tensor with one index
transforming under SL(2, C) and one under the inequivalent
complex conjugate representation.

This motivates the definition of Lorentz spinors. These are
two-component vectors that transform under either of these
representations.

The two-component spinors are characterized by their
transformation properties

ξ a → ξ a′ = Aabξ b, ξ ȧ → ξ ȧ′ = A∗ȧḃξ ḃ, (142)

where a sum over repeated spinor indices is assumed. These
transformation properties define two different types of two
spinors that transform under the regular and complex con-
jugate representations of SL(2, C). The upper undotted or
dotted indices identify the transformation properties. These
are referred to as right- and left-handed spinors respectively.
The reason for this designation will be discussed later.

It is possible to construct Lorentz invariant quadratic forms
with either of these types of spinors. This follows from the
general property of SL(2,C) matrices (101):

σ2Aσ2 = (A−1)t . (143)

This leads to the definition of the metric spinor

εab = −εab = i(σ2)ab, εȧḃ = −ε ȧḃ = i(σ2)ȧḃ, (144)

and lower indexed spinors

ξa := εabξ
b, ξȧ := εȧḃξ

ḃ. (145)

The transformation properties of the lower index spinors are

ξa → ξa′ = εabAbcεcdεdeξ
e = (At )−1abξb (146)

and

ξȧ → ξȧ′ = εȧḃA∗ḃċε ċḋεḋ ėξ
ė = (A†)−1ȧḃξḃ. (147)

The metric spinor, εab could also be taken to be (σ2)ab. It
has the advantage that there are no sign changes on raising
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and lowering indices, but the disadvantage is that it is not real.
Equations (146) and (147) show that the lower undotted and
dotted indices have different transformation properties than
the corresponding upper indices.

The metric spinor can be used to construct Lorentz invari-
ant scalars by contracting upper and lower indexed spinors of
the same type (dotted or undotted):

χ ′
aξ

′a = (At )−1abχbAacξ c = χb(A)−1baAacξ c = χaξ
a (148)

and

χ ′
ȧξ

′ȧ = (A†)−1ȧḃχḃA∗ȧċξ ċ = χḃ(A)∗−1ḃȧA∗ȧċξ ċ = χȧξ
ȧ.

(149)

It follows from the antisymmetry of εab that

ξ aξa = εabξ
aξ b = 0, ξ ȧξȧ = εabξ

ȧξ ḃ = 0. (150)

The tensor product of a 2-spinor with its complex conju-
gate,

X aḃ := ξ aξ ∗ḃ, (151)

defines a real four-vector; since it is Hermitian and the deter-
minant vanishes, this defines a light-like four-vector.

It follows from (148) and (149) that

ξ aχa, ξ ȧχȧ (152)

are both invariant quadratic forms under SL(2,C). These
forms are neither positive nor sesquilinear. Thus, they cannot
be used to construct a positive invariant scalar product. How-
ever, in terms of the spinor indices, it is useful to define the
following 4-momentum-dependent 2 × 2 Hermitian matrices
that transform like products of right- and left-handed spinors

Paȧ := (pμσμ)aȧ, (153)

Paȧ := pμ(σ2σμσ2)aȧ, (154)

Pȧa = (pμσ ∗
μ )aȧ, (155)

Pȧa = (pμσ2σ
∗
μσ2)ȧa. (156)

The matrices (153)–(156) are all positive definite [see (93)]
if p is a timelike positive-energy four-vector. They satisfy the
following covariance properties:

AabPbċA†ċḋ := (�p)μσ aḋ
μ , (157)

(At )−1
ab Pbċ(A∗)−1

ċḋ
:= (�p)μ(σ2σμσ2)aḋ , (158)

A∗ȧḃPḃcAtcd = (�p)μσ ∗ȧd
μ , (159)

(A†)−1
ȧḃ

PḃcA−1
cd = (�p)μ(σ2σ

∗
μσ2)ȧd . (160)

Because they are positive, they can be used as kernels of
the invariant positive sesquilinear forms:

ξaξ
∗
ȧ Paȧ = ξ aξ ∗ȧPaȧ � 0, (161)

ξ ȧ∗ξ aPȧa = ξ ∗
ȧ ξaPȧa � 0. (162)

The following identity is important in what follows,

(pμσ2σ
∗
μσ2)aȧ = (Pp)μσμaȧ, (163)

where P represents a space reflection.
The matrices Paȧ/m, Paȧ/m, Pȧa/m, and Pȧa/m are all

SL(2, C) matrices. The SL(2, C) spins can be added like

SU(2) spins with SU(2) Clebsch-Gordan coefficients. This is
because the SU(2) identities∑

〈 j, μ| j1, μ1, j2, μ2〉D j1
μ1μ

′
1
[R]D j2

μ2μ
′
2
[R]

×〈 j, μ′| j1, μ
′
1, j2, μ

′
2〉 − D j

μμ′[R] = 0, (164)∑
〈 j, μ| j1, μ1, j2, μ2〉D j

μμ′[R]〈 j, μ′| j1, μ
′
1, j2, μ

′
2〉

− D j1
μ1μ

′
1
[R]D j2

μ2μ
′
2
[R] = 0 (165)

also hold when R is replaced by a SL(2, C) matrix A. This
follows because both sides of these equations are finite-degree
polynomials in the four components of R which are entire
analytic functions of real angles. This means that the left
side of these equations are entire functions of three complex
angles that vanish when all three angles are real. It follows
by analytic continuation that they vanish for complex angles.
Thus, they hold when R → A for A ∈ SL(2, C). This means
that there are higher spin versions of the positive kernels
[(153)–(156)]. In the next section, the same method will be
used to show that D j

μμ′[A] is a 2 j + 1 dimensional representa-
tion of SL(2, C).

These relations can be used use to construct 2 j + 1 dimen-
sional representations of SL(2, C) that transform under

D j
μν[A], D j

μν[A∗], D j
μν[(At )−1], or D j

μν[(A†)−1] (166)

from the corresponding two-component j = 1/2 spinors. In
these expressions, the notation using the upper and lower
dotted and undotted indices is not used.

V. LORENTZ COVARIANT REPRESENTATIONS

The unitary representation of the Poincaré group for a
particle of mass m and spin j has the form (41)

U (�, a)|(m, j)p, ν〉 = ei�p·a|(m, j)���p, μ〉D j
μν[Rwx(�, p)]

×
√

ωm(���p)

ωm(p)
. (167)

or one of the related forms (49)–(52).
In what follows, the notation for SL(2, C) matrices

Ã := (A†)−1 = σ2A∗σ2 (168)

is used. The spinx Wigner rotation can be written in either of
two equivalent ways,

D j
νμ

[
B−1

x (�p/m)ABx (p/m)
] = D j

νμ

[
B̃−1

x (�p/m)ÃB̃x(p/m)
]
,

(169)

where A and � are related by (82). This is because R̃ :=
(R†)−1 = R for R ∈ SU(2).

The Wigner function (32)

D j
νμ[e

i
2 θθθ ·σσσ ], (170)

is a finite-degree polynomial of entire analytic functions of
the three components of θθθ . It satisfies the group representation
property (the matrix indices are suppressed),

D j[R2]D j[R1] − D j[R2R1] = 0, (171)
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for R1, R2 ∈ SU(2). Since the left side is an entire function
of all six angle variables, (θθθ1, θθθ2), that is 0 for all real
variables, by analytic continuation the group representation
property holds for complex angles iθθθ → z = ρρρ + iθθθ . It fol-
lows that D j[A] is also a 2 j + 1 dimensional representation of
SL(2, C).

This means that the Wigner rotation can be factored. There
are two possible factorizations that arise because while R̃ = R,
this is not true for the SL(2, C) transformations that are used
to define the Wigner rotation. This is due to the inequivalence
of the two conjugate representations of SL(2, C). This leads
to the following two factorizations of the Wigner rotation:

D j
νμ

[
B−1

x (�p/m)�Bx (p/m)
] = (

D j
[
B−1

x (�p/m)
]
D j[A]D j[Bx(p/m)]

)
νμ

(172)

and

D j
νμ

[
B−1

x (�p/m)�Bx (p/m)
] = (

D j
[
B̃−1

x (�p/m)
]
D j[Ã]D j[B̃x(p/m)]

)
νμ

. (173)

Using these factorizations and the group representation property, (167) can be equivalently written as

U (�, a)|(m, j)p, ν〉xD j
νμ

[
B−1

x (p/m)
]√

ωm(p) = ei�p·a|(m, j)���p, ν〉xD j
να

[
B−1

x (�p/m)
]√

ωm(���p)D j
αμ[A] (174)

or

U (�, a)|(m, j)p, ν〉xDs
νμ

[
B̃−1

x (p/m)
]√

ωm(p) = ei�p·a|(m, j)���p, ν〉xD j
να

[
B̃−1

x (�p/m)
]√

ωm(���p)D j
αμ[Ã]. (175)

This leads to the definition of two types of Lorentz covariant states,

|(m, j)p, μ〉cov := |(m, j)p, ν〉xD j
νμ

[
B−1

x (p/m)
]√

ωm(p) (176)

and

|(m, j)p, ν〉cov∗ := |(m, j)p, ν〉xD j
νμ

[
B̃−1

x (p/m)
]√

ωm(p). (177)

These are called right- and left-handed Lorentz covariant states.
For these states, Eqs. (174) and (175) have the form

U (�)|(m, j)p, μ〉cov = |(m, j)���p, ν〉covD j
νμ[A], (178)

U (�)|(m, j)p, μ〉cov∗ = |(m, j)���p, ν〉cov∗D j
νμ[Ã]. (179)

This appears to violate the condition that there are no finite dimensional unitary representations of the Lorentz group. The reason
that it does not is because the Hilbert space inner product in this representation has a nontrivial momentum-dependent kernel. To
see this, it is instructive to write out the inner product of two vectors in these representations, starting with the Poincaré covariant
representation:

〈ψ |φ〉 =
∫

〈ψ |(m, j)p, μ〉xdpx〈(m, j)p, μ|φ〉

=
∫

〈ψ |(m, j)p, ν〉covD j
νμ[Bx(p/m)B†

x (p/m)]
dp

ωm(p)
cov〈(m, j)p, μ|φ〉

=
∫

〈ψ |(m, j)p, ν〉covD j
νμ[Bc(p/m)Bc(p/m)]2δ(p2 + m2)d4 pθ (p0)cov〈(m, j)p, μ|φ〉

=
∫

〈ψ |(m, j)p, ν〉covD j
νμ[p · σ/m]2δ(p2 + m2)d4 pθ (p0)cov〈(m, j)pμ|φ〉. (180)

This is similar for the left-handed covariant representation:

〈ψ |φ〉 =
∫

〈ψ |(m, j)p, ν〉cov∗D j
νμ[p · σ2σ

∗σ2/m]2δ(p2 + m2)d4 pθ (p0)cov∗〈(m, j)p, μ|φ〉. (181)

Here (127) was used to replace the x boosts by canonical
boosts. The Wigner functions in (180) have the form (sup-
pressing the spin indices)

D j[p · σ/m] = D j
[
B2

c

] = D j[Bc]†D j[Bc] > 0 (182)

and in (181)

D j[p · σ2σ
∗σ2/m] = D j

[
B−2

c

] = D j
[
B−1

c

]†
D j

[
B−1

c

]
> 0
(183)

so they are positive kernels [note that these kernels are
Hermitian since D j

μν[At ] = D j
νμ[A] = (D j

νμ[A∗])∗ follows
from (32)].

The covariant kernels

D j
νμ[p · σ/m]2δ(p2 + m2)d4 pθ (p0) (184)

and

D j
νμ[p · σ2σ

∗σ2/m]2δ(p2 + m2)d4 pθ (p0) (185)
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are (up to normalization) spin j-Wightman functions for right-
and left-handed free spin- j particles. They are 2 j + 1 dimen-
sional representations of the positive forms (153) and (156).

Because

p · σ2σ
∗σ2/m = (Pp) · σ/m, (186)

where P changes the sign of the spatial components of p,
the right- and left-handed representations are related by
space reflection. All of these transformations are invertible,
so starting from any one of them it is possible to return to
any standard Poincaré covariant description. As long as space
reflection is not needed, these are all equivalent descriptions
of a mass-m spin- j particle.

To understand the role of space reflections, note that taking
the complex conjugate of

X ′ = AXA† (187)

implies

X ′∗ = A∗X ∗At . (188)

It follows that X and X ∗ transform under inequivalent repre-
sentations of SL(2, C). The operation X → X ∗ changes the
sign of y, which is equivalent to a space reflection in the x-z
plane. This shows that space reflection maps right-handed to
left-handed representations of the Hilbert space.

In the 2 × 2 matrix representation, the space reflection,
x → −x, is represented by

X → X ′ = σ2X ∗σ2. (189)

This operation changes A to Ã := σ2A∗σ2 = (A†)−1. The
problem with space reflections in Lorentz covariant represen-
tations is that the kernel of the Hilbert space representation
changes to the kernel for an inequivalent representation, so
space reflection cannot be represented in the Hilbert space
with the original Lorentz covariant kernel because it will not
transform correctly with respect to Lorentz transformations.

The way to remedy this is to use a direct sum, where both
kernels appear on the diagonal. Then space reflection can be
realized on the direct sum space by changing the sign of p and
interchanging the components of the direct sum.

In this case, the representation of the Lorentz group is the
chiral representation

S[A] =
(

D j[A] 0
0 D j[Ã]

)
(190)

and the kernel of the Hilbert space inner product is

δ(p2 + m2)θ (p0)

(
D j[p · σ/m] 0

0 D j[p · σ2σ
∗σ2/m]

)

= δ(p2 + m2)θ (p0)

(
D j[p · σ/m] 0

0 D j[(Pp) · σ/m]

)
.

(191)

The operation of space reflection on wave functions in the
doubled space becomes

P

(
cov〈(m, j)p, μ|φ1〉

cov∗〈(m, j)p, μ|φ2〉
)

=
(

cov∗〈(m, j) − p, μ|φ2〉
cov〈(m, j) − p, μ|φ1〉

)
. (192)

The kernels appearing in (191) arise naturally because
they come from the SU(2) equivalence of R and R̃; how-
ever, the spin kernel D j[p · σ/m] could be replaced by
D j[p · σ2σσ2/m] and D j[p · σ2σ

∗σ2/m] could be replaced by
D j[p · σ ∗/m], which involve different equivalent representa-
tions of the right- and left-handed spinor degrees of freedom.

An important observation is that the choice of kinematic
variables replacing p and the choice of boost in the spin
representation that characterize the Poincaré covariant forms
of the dynamics has disappeared in the Lorentz covariant rep-
resentations. The spins transform under a 2 j + 1 dimensional
representation of SL(2, C). This means that there are “no
forms of dynamics” in Lorentz covariant representations.

Another observation is that in the Lorentz covariant
representations the Hilbert space kernels (184) and (185)
have a mass dependence, which for free particles defines the
dynamics. In a dynamical Lorentz covariant model, the kernel
of the Hilbert space inner product carries the dynamical
content of the theory.

SL(2, C) × SL(2, C) spinors

In order to understand the role played by the spinor degrees
of freedom in Euclidean representations of relativistic quan-
tum mechanics, it is useful to define SL(2, C) × SL(2, C)
spinors.

Let Z := zμσμ denote a complex 4-vector represented as a
2 × 2 matrix. Complex Lorentz transformations are given by

Z → Z ′ = AZBt , (193)

where both A and B are ,(2, C) matrices.
In this representation complex space reflection, which

transforms (z0, z1, z2, z3) to (z0,−z1,−z2,−z3) can be ex-
pressed in matrix form as

Z → Z ′ = PZ = σ2Ztσ2. (194)

The transformation properties of Z imply the transformation
properties of Z ′ := PZ:

PZ → PZ ′ = σ2(BZt At )σ2 = (B−1)t PZA−1. (195)

This means the under space reflection the complex spinor
transformation properties are replaced by

A → (Bt )−1, B → (At )−1. (196)

This suggests defining right- and left-handed SL(2, C) ×
SL(2, C) spinors by their transformation properties

ξ a → Aabξ b, (197)

χ ȧ → Bȧḃχḃ, (198)

ξa → ((At )−1)abξb, (199)

χȧ → ((Bt )−1)ȧḃχḃ, (200)

These definitions recover the SL(2, C) transformation prop-
erties of right- and left-handed spinors when B = A∗. When
(A, B) ∈ SU(2) × SU(2), these relations define the transfor-
mation properties of right- and left-handed Euclidean spinors.

The definitions (197)–(200) are consistent with the the
upper and lower index spinors being related by εab and εab,

ξa = εabξ
b, χȧ = εȧḃχ

ḃ, (201)
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and the contraction of an upper and lower index spinor of
the same type (undotted or dotted) being invariant under
SL(2, C) × SL(2, C).

The SL(2, C) relations

D j
μα[A2]D j

αν[A1] − D j
μν[A2A1] = 0, (202)

〈 j, μ| j1, μ1, j2, μ2〉D j1
μ1ν1

[A]D j2
μ2ν2

[A]〈 j, ν| j1, ν1, j2, ν2〉
− D j

μν[A] = 0, (203)

〈 j, μ| j1, μ1, j2, μ2〉D j
μν[R]〈 j, ν| j1, ν1, j2, ν2〉

− D j1
μ1ν1

[R]D j2
μ2ν2

[R] = 0 (204)

mean that both the group representation property and addition
of “spins” extend unchanged to SL(2, C).

VI. EUCLIDEAN COVARIANT REPRESENTATIONS
OF RELATIVISTIC QUANTUM MECHANICS

In the same way that Poincaré covariant representations
were used to construct equivalent Lorentz covariant rep-
resentations of any spin, the Lorentz covariant representa-
tions can be used to construct equivalent Euclidean covariant
representations.

Euclidean formulations of relativistic quantum mechanics
are used in path-integral representations, lattice calculations,
and with Schwinger-Dyson equations.

While the transformation from a Euclidean covariant for-
malism to a Lorentz covariant formalism normally requires
an analytic continuation, a fully relativistic form of quantum
mechanics can be formulated without explicit analytic contin-
uation. It requires that the Euclidean analogs of the kernel of
the inner product satisfies a condition called reflection positiv-
ity [9,10]. For irreducible representations, this condition can
be satisfied for any spin.

The Euclidean representation of relativistic quantum me-
chanics has a Hilbert space inner product that is defined by a
kernel that is a Euclidean covariant distribution left multiplied
by a Euclidean time reflection. Both the initial and final states
have to vanish for negative Euclidean times. The requirement
that the resulting quadratic form is non-negative is called
reflection positivity.

In order to make contact with the Lorentz covariant repre-
sentations discussed above, consider vectors represented by
Euclidean covariant spinor valued functions 〈τ, x, μ|ψ〉 of
four Euclidean space-time variables with support for positive
Euclidean time. The transformation properties of the spinor
degrees of freedom will be discussed in the next section.

In the Euclidean representation of relativistic quantum
mechanics of a particle of mass m and spin j, the quantum

mechanical inner product is defined by

〈φ|ψ〉 := 1

π

∫ ∑
〈ψ | − τx, x, μ〉 eip·(x−y)

p2 + m2
D j

μν[p · σe/m]

× 〈τy, y, ν|ψ〉d4xd4yd4 p

= 1

π

∫ ∑
〈φ|τx, x, μ〉 e−ip0(τx+τy )+ip·(x−y)

[p0 − iωm(p)][p0 + iωm(p)]

× D j
μν[p · σe/m]〈τy, y, ν|ψ〉d4xd4yd4 p, (205)

where ωm(p) =
√

p2 + m2 is the energy of a particle of mass
m and momentum p, and all of the integration variables are
Euclidean. The − sign on τx in the first term represents
the Euclidean time reflection discussed above. In the second
term, the substitution τx → −τx was made. This, along with
the Euclidean time support condition of the wave functions,
ensures that τx + τy in the exponent of the second term is
positive.

To evaluate the p0 integral, the p0’s appearing in D j
μν[p ·

σe/m] can be replaced by −i ∂
∂τy

acting on the initial wave

function. The p0 integral can then be evaluated by the residue
theorem. The τy derivatives can then moved back to D j

μν[p ·
σe/m] by a finite number of integrations by parts, since it is a
polynomial in the components of p. This gives

(205) =
∫

〈φ|τx, x, μ〉e−ωm (p)τx+ip·xd4x
dp

ωm(p)

× D j
μν[pm · σ/m]e−ωm (p)τy−ip·y〈τy, y, ν|ψ〉d4y,

(206)

where pm = [ωm(p), p] and

D j
μν[(−iωm(p), p) · σe/m] = D j

μν[pm · σ/m]. (207)

The resulting kernel

dp
ωm(p)

D j
μν[pm · σ/m] (208)

is exactly the Lorentz covariant measure appearing in (180). It
follows that the Euclidean covariant distribution

1

π

D j
μν[p · σe/m]

p2 + m2
(209)

is reflection positive because Ds
μν[p · σe/m] becomes a posi-

tive definite matrix after p0 is set equal to −iωm(p).
The measure for the left-handed (space reflected) represen-

tation is obtained by replacing

σe → σ2σ
t
eσ2, (210)

which changes the sign of the space components of σeμ. In
this case,

1

π

∫
〈φ| − τx, xμ〉 eip·(x−y)

p2 + m2
D j

μν[p · σ2σ
t
eσ2/m]〈τy, y, ν|ψ〉d4xd4yd4 p

=
∫

〈φ|τx, x, μ〉e−ωm (p)τx+ip·xd4x
dp

ωm(p)
D j

μν[pm · σ2σ
∗σ2/m]e−ωm (p)τy−ip·y〈τy, y, ν|ψ〉d4y

=
∫

〈φ|τx, x, μ〉e−ωm (p)τx+ip·xd4x
dp

ωm(p)
D j

μν[Ppm · σ/m]e−ωm (p)τy−ip·y〈τy, y, ν|ψ〉d4y, (211)
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where

dp
ωm(p)

D j
μν[Ppm · σ/m], (212)

which is the Lorentz covariant kernel (181) for left-handed
spinors. The positivity of the matrix D j

μν[Ppm · σ/m] implies
that the Euclidean covariant distribution

1

π

D j
μν

[
p · σ2σ

t
eσ2/m

]
p2 + m2

= 1

π

D j
μν[Pp · σe/m]

p2 + m2
(213)

is also reflection positive. By defining

〈p, ν|χ〉 :=
∫

e−ωm (p)τy−ip·y〈τy, y, ν|ψ〉d4y, (214)

the norms can be expressed in the forms

〈ψ |ψ〉 =
∫

〈χ |p, μ〉 dp
ωm(p)

D j
μν[pm · σ/m]〈p, ν|χ〉 (215)

and

〈ψ |ψ〉 =
∫

〈χ |p, μ〉 dp
ωm(p)

D j
μν[Ppm · σ/m)]〈p, ν|χ〉,

(216)

for the right- and left-handed representations respectively.
These expressions have the same form as the Lorentz co-
variant (180) inner products with respect to the functions,
〈p, ν|χ〉, up to a multiplicative constant.

As in the Lorentz covariant case, in the Euclidean case the
Euclidean covariant kernels are different for the right- and
left-handed representations:

1

π

1

p2 + m2
D j

μν[p · σe/m], (217)

1

π

1

p2 + m2
D j

μν[p · σ2σ
t
eσ2/m]. (218)

The SU(2) × SU(2) covariance property of the kernel
(217) is

D j[A]
D j[p · σe/m]

p2 + m2
D[Bt ]

= D j[p · AσeBt/m]

p2 + m2
= D j[p · Ot (A, B)σe/m]

p2 + m2

= D j[O(A, B)p · σe/m]

p2 + m2
= D j[O(A, B)p · σe/m]

[O(A, B)p]2 + m2
. (219)

Here p2 = [O(A, B)p]2 was used. The corresponding covari-
ance property for the space reflected kernel, (218), can be
obtained by taking the transpose of (219) and left- and right-
multiplying by D j

μν[σ2] = (i)2νδμ−ν , which gives

D j[σ2Bσ2]
D j[p · σ2σ

t
eσ2/m]

p2 + m2
D[σ2Atσ2]

= D j[B∗]
D j[p · σ2σ

t
eσ2/m]

p2 + m2
D j[A†]

= D j[O(A, B)p · σ2σ
t
eσ2/m]

[O(A, B)p]2 + m2
. (220)

These results are abbreviated by

D[A]Kr (p)D[Bt ] = Kr[O(A, B)p] (221)

D[B∗]Kl (p)D[A†] = Kl [O(A, B)p], (222)

where Kr (p) and Kl (p) are the right- and left-handed reflection
positive kernels (209) and (213).

While most treatments of Euclidean formulations of rela-
tivistic quantum theories involve an analytic continuation in
time, the construction above shows how the right- and left-
handed Lorentz covariant irreducible representations (178)
and (179) are recovered in the Euclidean formulation without
any analytic continuation. This reason for this is that reflection
positivity, the spectral condition (m > 0), and the assumption
that the Euclidean kernel is a tempered distribution ensures
the existence of the analytic continuation; however, for the
purpose of formulating relativistic quantum mechanics, the
analytic continuation is not needed.

A. Relativistic invariance in the Euclidean case

Relativistic invariance in the Euclidean case is a con-
sequence of the identities relating the Euclidean covariant
inner product to the Lorentz covariant inner product and the
Poincaré covariant inner product.

The relativistic transformation properties in the Euclidean
representation can be understood from the observation that
the complex orthogonal and complex Lorentz transformations
have the same covering group, SL(2, C) × SL(2, C). This
means that the group of real Euclidean transformations can be
identified with a subgroup of the complex Lorentz group. The
real Euclidean group is a 10-parameter group. Each generator
can be thought of generating a one-parameter subgroup of
complex Poincaré transformations. This leads to a relation
between the generators of real Euclidean transformations and
real Poincaré transformations that can be realized in the
Euclidean framework.

This relationship implies that the Poincaré Lie algebra
is related to the Euclidean Lie algebra by multiplying the
generators of real Euclidean transformations involving the
Euclidean time by factors of i. The Euclidean generators
involving the Euclidean time are the generator of Euclidean
time translations and the generators of rotations in space-
Euclidean time planes. The resulting Poincaré generators for
time translation and canonical boosts are related to the gener-
ators of Euclidean time translation and rotations in Euclidean
space-time planes by

Hm = iHe and K · n̂ = −iJn̂,τ . (223)

Both Hm and K become Hermitian operators with respect to
the physical Hilbert space inner product (205) that includes
the Euclidean time reflection. On the physical Hilbert space,
real Euclidean-time translations are represented by a contrac-
tive Hermitian semigroup [18] and the real rotations in space-
Euclidean time planes are represented by local symmetric
semigroups [19–21]. The generators of these transformations
are self-adjoint and are exactly the Poincaré generators dis-
cussed above.
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The 2 × 2 matrix representation of ordinary rotations in
both the Euclidean and Lorentz case can be represented by

X → X ′ = AXBt , X → X ′
e = AXeBt , (224)

where (A, B) = (A, A∗) for A ∈ SU(2).
Euclidean rotations in space-Euclidean-time planes can be

represented by

Xe → X ′
e = AXeBt , (225)

where (A, B) = (A, At ) for A ∈ SU(2), while rotationless
Lorentz boosts can be represented by a transformation of the
same form,

X → X ′ = AXeBt , (226)

where (A, B) = (A, At ) and A = A†.
For given SU(2) × SU(2) transformations (A, B), there

are four types of Euclidean spinor wave functions that are
identified by their spinor transformation properties:

ψμ( j, p) → ψμ′( j, p) = ψν[ j, O(A, B)p]D j
νμ(A). (227)

ψμ( j, p) → ψ ′
μ( j, p) = ψν[ j, O(A, B)p]D j

νμ(A∗), (228)

ψμ̇( j, p) → ψμ̇′( j, p) = ψν̇′[ j, O(A, B)p]D j
ν̇μ̇(B), (229)

ψμ̇( j, p) → ψ ′
μ̇( j, p) = ψν̇[ j, O(A, B)p]D j

ν̇μ̇(B∗). (230)

In Eqs. (227)–(230), the bra-ket notation is not used in order
to differentiate the different types of spinor wave functions.
The first two are right-handed wave functions; the last two are
left handed.

Representations of the Lorentz generators on each of these
spinor wave functions are obtained by first constructing the
finite transformations in (227)–(230) using

[A(λ), B(λ)]r = [ei λ
2 n̂·σσσ , (ei λ

2 n̂·σσσ )∗] (231)

for rotations about the n̂ axis and

[A(λ), B(λ)]b = [ei λ
2 n̂·σσσ , (ei λ

2 n̂·σσσ )t ] (232)

for rotations in the n̂-τ plane.
Representations for the generator of ordinary rotations

about the n̂ axis are obtained by using (A, B) = [A(λ), B(λ)]r

in each of (227)–(230), differentiating with respect to λ,
setting λ to 0 and multiplying the result by −i.

Representations for the generator of rotationless boosts in
the n̂ direction are obtained by using (A, B) = [A(λ), B(λ)]b

in each of (227)–(230), differentiating each of (227)–(230)
with respect to λ, setting λ to 0 and multiplying the result
by −1.

The Hamiltonian and linear momentum operators in the
Euclidean representation are obtained by Fourier transforming
each of (227)–(230), followed by

P = −i∇∇∇, H = ∂

∂τ
. (233)

The resulting operators satisfy the Poincaré commutation
relations and are Hermitian when they are used in the inner
product (205). As in the Lorentz covariant case, the dynamics
enters through the Euclidean kernel, which has all of the
dynamics (mass dependence).

VII. LORENTZ COVARIANT FIELDS

Covariant fields are useful for treating systems of many
identical particles. In many-body quantum mechanics, fields
are associated with the occupation number representation.
They are constructed from a single-particle basis {|n〉}, and
operators a†

n that add and an that remove a particle in the
nth single-particle state. In this section, the same methods
are used to develop Lorentz covariant fields for systems of
noninteracting particles of any spin. Locality of the fields is
not assumed. Local fields will be discussed in the next section.

Field operators are defined in terms of a single-particle
basis by

�(x) :=
∑

n

〈x|n〉an, �†(x) :=
∑

n

a†
n〈n|x〉. (234)

The field is independent of the choice of single-particle basis.
In a plane-wave basis, equations (234) become

�(x) :=
∫

dp〈x|p〉a(p), �†(x) :=
∫

dpa†(p)〈p|x〉.
(235)

The time dependence is determined by solving the Heisenberg
equations of motion

d�(x, t )

dt
= i[H, �(x, t )]. (236)

If H is the free Hamiltonian, the solution of the Heisenberg
equations is

�(x, t ) :=
∫

dp〈x|p〉e−iE (p)t a(p),

(237)

�†(x, t ) :=
∫

dpa†(p)eiE (p)t 〈p|x〉,

where E (p) is the energy of a particle with momentum p.
The vector |0〉 represents the no-particle state. It is defined

by the conditions

an|0〉 = 0 ∀n, 〈0|0〉 = 1. (238)

The creation and annihilation operators satisfy the commuta-
tion (anticommutation) relations

[an, a†
m]± = δmn or [a(p), a†

m(p′)]± = δ(p − p′), (239)

depending on whether the particles are bosons or fermions.
Free Lorentz covariant fields that transform under a finite-

dimensional representation of SL(2, C) can be constructed
using the same method. In this case, the plane-wave states
〈x|p〉 are replaced by Lorentz covariant plane-wave states, and
measure is replaced by the Lorentz invariant measure.

Because the Lorentz covariant states can transform under
right- or left-handed representations of SL(2, C), the corre-
sponding covariant fields will also have a handedness.

In this section, right- and left-handed spin- j fields are con-
structed with the following Poincaré covariance properties:

U (�, a)�rμ(x)U †(�, a) = D j
μν[A−1]�rν (�x + a), (240)

U (�, a)�lμ(x)U †(�, a) = D j
μν[Ã−1]�lν (�x + a), (241)

where A and � are related by (69).
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The starting point is to define creation and annihilation operators that transform like single-particle irreducible states. These
create or destroy particles with a momentum p and a magnetic quantum number associated with the x-type of spin, as discussed
in Sec. III.

The creation operators are assumed to have the following transformation properties:

U (�, a)a†
x (p, μ)U †(�, a) = e−i�p·aa†

x (���p, ν)D j
νμ

[
B−1

x (�p/m)ABx(p/m)
]√ωm(���p)

ωm(p)

= e−i�p·aa†
x (���p, ν)D j

νμ

[
B̃−1

x (�p/m)ÃB̃x(p/m)
]√ωm(���p)

ωm(p)
. (242)

The two expressions above are identical because

B−1
x (�p/m)ABx(p/m) = Rwx(�, p/m) = (R†

wx )−1(�, p/m) = B̃−1
x (�p/m)ÃB̃x(p/m). (243)

The transformation properties of the creation operator (242) are the same as the transformation properties of a particle (41),
except the sign of the phase is reversed because the time dependence of the operator is given by the Heisenberg equations of
motion.

The corresponding transformation properties for the annihilation operators can be obtained by taking the adjoint of (242):

U (�, a)ax(p, μ)U †(�, a) = ei�p·aD j
μν[B†

x (p/m)A†B̃x(�p/m)]ax(���p, ν)

√
ωm(���p)

ωm(p)

= ei�p·aD j
μν[Bx(p/m)−1A−1Bx(�p/m)]ax(���p, ν)

√
ωm(���p)

ωm(p)
. (244)

Local fields are linear combinations of fields with creation and annihilation operators that have the same covariance properties.
The normal convention is to have the SL(2, C) representation matrices to the left of the creation and annihilation operators as in
(240) and (241).

This can be realized in (242) by using the SU(2) identity (100)

R = σ2(Rt )−1σ2 (245)

in the Wigner rotation

R := B−1
x (�p/m)ABx(p/m), (246)

which gives

D j
μν (R) = D j

μν[σ2(Rt )−1σ2] = D j
νμ[(−σ2)R−1(−σ2)] = D j

νμ(σ2R−1σ2), (247)

the corresponding property of the Wigner functions (note the reversal μ ↔ ν of the spin indices). Using this identity in (242)
gives

U (�, a)D j
μν[σ2]a†

x (p, ν)U †(�, a)

= e−i�p·aD j
μν

[
B−1

x (p/m)A−1Bx(�p/m)σ2
]
a†

x (���p, ν)

√
ωm(���p)

ωm(p)

= U (�, a)D j
μν[σ2]a†

x (p, ν)U †(�, a) = e−i�p·aD j
μν[B†

x (p/m)A†B̃x(�p/m)σ2]a†
x (���p, ν)

√
ωm(���p)

ωm(p)
. (248)

Introducing the σ2 factor gives the creation fields the same covariance properties as the annihilation fields.
These operators determine the Poincaré transformation properties of the covariant spinor fields. Different types of spinor

fields are distinguished by their covariance properties. General covariant fields of a given spin are built up out of four types
of elementary covariant fields, that are classified as right- (r) or left- (l) handed and creation (c) or annihilation (a) fields. The
subscripts rc, lc, ra, la are used to distinguish the four different types of fields:

�†
rcμ(x) :=

∫
e−ip·x

(2π )3/2

dp
ωm(p)

D j
μν[Bx(p/m)σ2]a†

x (p, ν)
√

ωm(p) =
∫

e−ip·x

(2π )3/2

dp√
ωm(p)

D j
μν[Bx(p/m)σ2]a†

x (p, ν), (249)

�raμ(x) :=
∫

eip·x

(2π )3/2

dp
ωm(p)

D j
μν[Bx(p/m)]ax(p, ν)

√
ωm(p) =

∫
eip·x

(2π )3/2

dp√
ωm(p)

D j
μν[Bx(p/m)]ax(p, ν), (250)
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�
†
lcμ(x) =

∫
e−ip·x dp

ωm(p)
D j

μν[B̃x(p/m)σ2]a†
x (p, ν)|0〉

√
ωm(p) =

∫
e−ip·x dp√

ωm(p)
D j

μν[B̃x(p/m)σ2]a†
x (p, ν)|0〉, (251)

�laμ(x) =
∫

eip·x dp
ωm(p)

D j
μν[B̃x(p/m)]ax(p, ν)|0〉

√
ωm(p) =

∫
eip·x dp√

ωm(p)
D j

μν[B̃x(p/m)]ax(p, ν)|0〉, (252)

where in all cases the 4-momenta are on shell:

p · x = −ωm(p2)x0 + p · x. (253)

Note that �†
xcμ(x) is not the adjoint of �xaμ(x). This is because of the factor σ2 that was introduced to make both fields have

the same Lorentz covariance property.
The transformation properties of (249)–(252) follow directly from the transformation properties of the creation and

annihilation operators (242) and (244):

U (�, b)�†
rcμ(x)U †(�, b) = D j

μν[(A)−1]�†
rcν (�x + b), (254)

U (�, b)�raμ(x)U †(�, b) = D j
μν[(A)−1]�raν (�x + b), (255)

U (�, b)�†
lcμ(x)U †(�, b) = D j

μν[A†]�†
lcν (�x + b), (256)

U (�, b)�laμ(x)U †(�, b) = D j
μν[A†]�laν (�x + b). (257)

These fields can be multiplied by any normalization constants.
These transformation properties can be used to construct invariant operator densities. Invariant products are constructed by

taking the product of a field of one handedness with the adjoint of a field of the opposite handedness and summing over the
spins. Lorentz invariant Hermitian operators are obtained by adding the Hermitian conjugate to each of the invariant pairs. The
following sums of products of left- and right-handed fields are Hermitian and transform like Lorentz scalars:∑

μ

[�lcμ(x)�†
rcμ(x) + �rcμ(x)�†

lcμ(x)], (258)

∑
μ

[�lcμ(x)�raμ(x) + �†
raμ(x)�†

lcμ(x)], (259)

∑
μ

[�rcμ(x)�laμ(x) + �
†
laμ

(x)�†
rcμ(x)], (260)

∑
μ

[�†
laμ

(x)�raμ(x) + �†
raμ(x)�laμ(x)]. (261)

Note that for free fields these expressions are normal ordered. It is possible to make more complicated Lorentz invariant products
of field operators using SU(2) Clebsch-Gordan coefficients and the group representation properties of the Wigner functions.

The commutators or anticommutators of the elementary fields with their true adjoints are

[�rcμ(x), �†
rcν (y)]± =

∫
dp

(2π )3ωm(p)
eip·(x−y)D j

μν[σ t · p] = 2
∫

d4 p

(2π )3
δ(p2 + m2)θ (p0)eip·(x−y)D j

μν[σ t · p], (262)

[�raμ(x), �†
raν (y)]± = 2

∫
d4 p

(2π )3
δ(p2 + m2)θ (p0)eip·(x−y)D j

μν[σ · p], (263)

[�lcμ(x), �†
lcν (y)]± = 2

∫
d4 p

(2π )3
δ(p2 + m2)θ (p0)eip·(x−y)D j

μν[σ · Pp], (264)

[�laμ(x), �†
laν

(y)]± = 2
∫

d4 p

(2π )3
δ(p2 + m2)θ (p0)eip·(x−y)D j

μν[σ t · Pp], (265)

which are the spin- j Wightman functions that define the kernels of the Lorentz covariant inner products. Note that σ · p, σ t · p,
σ · Pp, and σ t · Pp are all positive Hermitian matrices for timelike p, so these kernels are all positive distributions.

These fields are analogous to the nonrelativistic fields; they add or remove particles in the occupation number representation.
While they are not local, they are the basic building blocks of local free fields.

The creation and annihilation operators can be extracted from the right- or left-handed fields using plane-wave solutions of
the Klein-Gordan equation and spinor matrices

fm(p, x) :=
∫

1√
ωm(p)(2π )3/2

eip·x, (266)

a†
x (p, μ) = i

2
D j

μν

[
σ2B−1

x (p/m)
] ∫ (

∂ fm(p, x)

∂t
�†

rcν (x) − ∂�†
rcν (x)

∂t
fm(x)

)
dx, (267)
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ax(p, μ) = − i

2
D j

μν

[
B−1

x (p/m)
] ∫ (

∂ f ∗
m(p, x)

∂t
�raν (x) − ∂�†

raν (x)

∂t
f ∗
m(x)

)
dx, (268)

a†
x (p, μ) = i

2
D j

μν[σ2B†
x (p/m)]

∫ (
∂ fm(p, x)

∂t
�

†
lcν (x) − ∂�

†
lcν (x)

∂t
fm(x)

)
dx, (269)

ax(p, μ) = − i

2
D j

μν[B†
x (p/m)]

∫ (
∂ f ∗

m(p, x)

∂t
�laν (x) − ∂�

†
laν

(x)

∂t
f ∗
m(x)

)
dx, (270)

where the integrals are evaluated at a common time.
Fields that transform linearly under space reflection can be constructed by taking a direct sum of a right- and left-handed field

�†
cμ(x) →

∫
e−ip·x dp√

ωm(p)

(
D j

μrν[Bx(p/m)σ2]

D j
μl ν[B̃x(p/m)σ2]

)
a†

x (p, ν), (271)

where the matrix is a 2(2 j + 1) × (2 j + 1) matrix.
The Poincaré transformation properties of these fields are

U (�, b)

(
�rcμ(x)
�lcμ(x)

)
U †(�, b) =

(
D j

μrν[A−1] 0

0 D j
μl ν[A†]

)(
�rcν (�x + b)
�lcν (�x + b)

)
. (272)

Space reflection changes the sign of the space component of x and interchanges the right- and left-handed components:

P�†
cμ(x)P−1 = �†′

cμ(x) = P

(
�†

rcμ(x)

�
†
lcμ(x)

)
P =

(
�

†
lcμ(Px)

�†
rcμ(Px)

)
. (273)

The annihilation fields have the same structure:

�aμ(x) →
(

�raμ(x)
�laμ(x)

)
. (274)

The Poincaré transformation properties of the annihilation fields are

U (�, b)

(
�†

raμ(x)

�laμ(x)

)
U †(�, b) =

(
D j

μν[A−1] 0

0 D j
μν[A†]

)(
�raν (�x + b)
�laν (�x + b)

)
. (275)

Space reflection changes with sign of the space component of x and interchanges the right- and left-handed components

P�aμ(x)P−1 = � ′
aμ(x) = P

(
�raμ(x)
�laμ(x)

)
P−1 =

(
�laμ(Px)
�raμ(Px)

)
. (276)

By analogy with the Dirac equation, it is to useful to define

�0 :=
(

0 I
I 0

)
, �5 :=

(
I 0
0 −I

)
. (277)

In this notation, Eqs. (273) and (276) can be written as

P�†
cμ(x)P−1 = �0�†

cμ(Px) (278)

and

P�aμ(x)P−1 = �0�aμ(Px). (279)

In addition,

�l/r = I ± �5

2
(280)

projects on the right- or left-handed component of the field.
The matrices

D j
μν[Bx(p/m)σ2] and D j

μν[Bx(p/m)] (281)

transform Wigner rotations (finite-dimensional representa-
tions of the little group of positive-mass positive-energy rep-

resentations of the Poincaré group) into finite-dimensional
representations of the Lorentz group

D j[�]D[Bx(p/m)] = D j[Bx(�p/m)]D j[Rwx(�p/m)]

(282)

and

D j[�]D j[Bx(p/m)σ2]

= D j[Bx(�p/m)]D j
[
B−1

x (�p/m
]
D j[�]D j[Bx(p/m)σ2]

= D j[Bx(�p/m)σ2]D j[R∗
wx(�p/m)] (283)

because they transform finite-dimensional representations of
the Lorentz group into representations of a little group of the
Poincaré group.

VIII. LOCAL LORENTZ (FREE) COVARIANT FIELDS

The fields constructed in the previous section transform
covariantly, but they are not local. While they are sufficient
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for use in many-body relativistic quantum mechanics, they are
not suitable for use in local relativistic quantum field theory.
Local free fields are constructed from linear combinations of
creation and annihilation fields:

�locμ(x) = α�raμ(x) + β�†
rcμ(x), (284)

�
†
locμ(x) = α∗�†

raμ(y) + β∗�rcμ(y). (285)

Normally the linear combinations involve a particle creation
operator with an antiparticle annihilation operator.

The coefficients of the linear combinations (284) are con-
strained by locality, but these linear combinations transform
covariantly for any constants α and β.

The commutator or anticommutator of the linear combi-
nations (284) and (285) determines the constraints on the
constants α and β imposed by locality

[α�raμ(x) + β�†
rcμ(x), α∗�†

raν (y) + β∗�rcν (y)]±

= |α|2[�rcμ(x), a∗�†
rcν (y)]± + |β|2[�†

raμ(x), �raν (y)]±

=
∫

dp
ωm(p)

(|α|2eip·(x−y)D j
μα[Bx(p/m)]D j∗

να[Bx(p/m)] ± |β|2e−ip·(x−y)D j
μα[Bx(p/m)σ2]D j∗

να[Bx(p/m)σ2]
)

=
∫

dp
ωm(p)

(|α|2eip·(x−y)D j
μ,ν[σ · p] ± |β|2e−ip·(x−y)D j

μ,ν[σ · p]). (286)

For (x − y)2 > 0, the integral [22] ∫
dp

ωm(p)
e−ip·(x−y) = − 4πm√

(x − y)2
K1[m

√
(x − y)2] (287)

is an even function of x − y. It follows that for (x − y)2 > 0 this becomes[|α|2D j
μ,ν (−σ · i∂x ) ∓ |β|2D j

μ,ν (σ · i∂x )
] ∫

dp
ωm(p)

eip·(x−y) = [|α|2(−)2 j ∓ |β|2]D j
μ,ν (σ · i∂x )

∫
dp

ωm(p)
eip·(x−y). (288)

For this to vanish, |α|2 = |β|2 and (−)2 j = ±1, this means
that anticommutation relations are required for j half-integral
and commutation relations for j integer.

Similar results are obtained for left-handed spinors. The
only difference is that D j (σ · p) is replaced by D j (σ · Pp).

Thus, right- and left-handed spin j free local fields have
the form

�rlocμ(x) = Z (�raμ(x) ± �†
rcμ(x)), (289)

�llocμ(x) = Z (�laμ(x) ± �
†
lcμ(x)), (290)

where Z is a normalization constant. Locality does not fix the
± sign. Local fields where space reflection acts linearly can
be constructed from these by taking the direct sum of a right-
and left-handed local field:

�
†
locμ(x) →

(
�

†
rlocμ(x)

�
†
llocμ(x)

)
. (291)

This structure will be used to construct a spin-1/2 field
satisfying the Dirac equation. The structure of the γ matrices
follow from the SL(2, C) transformation properties of the
Pauli matrices and the 2 × 2 identity. The relevant representa-
tion of SL(2, C) for a Dirac field is the direct sum of a right-
and left-handed representation of SL(2, C):

S(A) =
(

A 0
0 Ã

)
=

(
A 0
0 (A†)−1

)
. (292)

The representation of the γ matrices follows from the trans-
formation properties of four vectors represented by 2 × 2

Hermitian matrices:

X := xμσμ, X ′ = AXA†, A ∈ SL(2, C). (293)

This can be expressed in terms of the components of x as

σμ�μ
νxν = AσνA†xν . (294)

Equating the coefficients of xν gives

AσνA† = σμ�μ
ν. (295)

Multiplying both sides of this equation by σ2 and taking
complex conjugates gives

Ãσ2σ
∗
ν σ2Ã† = σ2σ ∗μ σ2�

μ
ν. (296)

Equations (295) and (296) can be combined into a single
equation,(

A 0

0 (A†)−1

)(
0 σμ

σ2σ
∗
μσ2 0

)(
A−1 0

0 A†

)

=
(

0 σν

σ2σ
∗
ν σ2 0

)
�ν

μ, (297)

which shows that the matrices

γν :=
(

0 −σν

−σ2σ
∗
ν σ2 0

)
(298)

transform like four-vectors with respect to the similarity trans-
formation

S(A)γμS(A−1) = γν�ν
μ, (299)
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where the − sign is a convention. With this convention,

γ 0 =
(

0 σ0

σ0 0

)
, γ μ =

(
0 σ2σ

∗
μσ2

−σμ 0

)
, (300)

and

γ 5 = γ5 = iγ 0γ 1γ 2γ 3 =
(

σ0 0
0 −σ0

)
. (301)

In order to construct the Dirac field using matrix multiplica-
tion, it is useful to define the 4 × 2 matrix

ucμ :=
(

σ0

σ0

)
. (302)

The Dirac field is a linear combination of the form (289)
and (290):

�α (x) =
∫

dp√
ωm(p)

[eip·xS(Bx(p/m))cd udμax(p, μ) + e−p·xγ5S(Bx(p/m))ccucνσ2νμb†
x(p, μ)]. (303)

The γ5 commutes with S(Bx(p/m)) and anticommutes with γ μ. While it changes the sign on the lower two components, it is
consistent with the freedom to choose the sign of α and β in the locality constraints (289) and (290).

Multiplying (302) by the Dirac operator (−iγ μ ∂
∂xμ + mI ) gives(

−iγ μ ∂

∂xμ
+ mI

)
�(x) =

∫
dp√
ωm(p)

[eip·x(p · γ + m)S(Bx(p/m))uax(p) + e−p·x(−p · γ + m)γ5S(Bx(p/m))uσ2b†
x(p)]

=
∫

dp√
ωm(p)

[eip·x(p · γ + m)S(Bx(p/m))uax(p) + e−p·xγ5(p · γ + m)S(Bx(p/m))uσ2b†
x(p)]. (304)

This vanishes because

(p · γ + m)S(Bx(p/m)) = S(Bx(p/m))S−1(Bx(p/m))(p · γ + m)S(Bx(p/m)) = S(Bx(p/m))(−mγ 0 + mI ), (305)

which vanishes when applied to u or uσ2.
The quantities

uxcμ(p) := √
m(S(Bx(p/m))u)cμ, (306)

vxcμ(p) := √
m(γ5S(Bx(p/m))uσ2)cμ (307)

are Dirac spinors. Note that both the spinors and creation
and annihilation operators depend on the choice of boost,
Bx(p/m), but the field itself is independent of this choice.

IX. DYNAMICS

Dynamical relativistic models were not discussed in the
previous sections. This is in part because there are many
distinct formulations of relativistic quantum mechanics that
have been applied to model few-hadron or few-quark systems.
Some examples are Refs. [23–67]. An adequate discussion of
each one is beyond the intended scope of this work. However,
there are common features in all formulations of relativistic
quantum theory. The most important common feature is that
the dynamics is defined by an underlying unitary represen-
tation of the Poincaré group. The dynamical representation
can be decomposed into a direct integral of irreducible uni-
tary representations. The structure of the direct integral that
defines the dynamics is the common element in all equivalent
formulations of relativistic quantum dynamics. The dynamics
determines the spectrum and multiplicities of the masses and
spins that appear in the direct integral.

Another important common feature of relativistic quantum
mechanical models is the intended applications. The physics
goal of most relativistic dynamical models is to understand
the structure and dynamics of hadronic systems at distance
scales that are fractions of a Fermi. The cleanest way to study
systems at this resolution is with probes that interact weakly
with these strongly interacting systems. The basic observables

are matrix elements of covariant current operators that couple
to weak and electromagnetic fields evaluated in bound or
scattering states of hadrons. Since the probe must transfer
enough momentum to be sensitive to short-distance physics,
the initial and final hadronic states are needed in different
Lorentz frames. For an initial state in the laboratory frame,
the relevant matrix element is

z〈(m f , j f )p f , μ f , λ f |Iμ(0)|(m, j)0i, μi, λi〉z,

where

|(m f , j f )p f , μ f , λ f 〉z

= U (Bz(p), 0)(m f , j f )0 f , μ f , λ f 〉z. (308)

In this expression,

|(m, j)0i, μi, λi〉z and |(m, j)0 f , μ f , λ f 〉z (309)

are the initial and final dynamical mass and spin eigenstates
in the rest frame, Iμ(0) is a dynamical covariant current
density at x = 0, and U (Bx(p/m), 0) is a dynamical Lorentz
transformation from the rest frame of the target to the frame
of the recoiling hadronic system.

While QCD is assumed to be the theory of the strong
interaction, there are no known relativistically invariant ap-
proximations with mathematically controlled errors at the
interesting few-GeV energy scale. Relativistic quantum me-
chanical models provide a framework to identify the important
degrees of freedom and reaction mechanisms in a manner that
is consistent with the general principles of special relativity
and quantum mechanics.

Each dynamical formulation of relativistic quantum me-
chanics has its strengths and weaknesses for computing the
matrix elements (308). The relation between different for-
mulations of relativistic quantum theory that arise from the
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common underlying Poincaré symmetry may be used to take
advantage of the strengths of different equivalent formulations
of the theory. This section provides a brief summary of
the general structure of different dynamical formulations of
relativistic quantum mechanics, how they are related, and how
the dynamics enters.

In order to understand the relation between different for-
mulations of relativistic quantum mechanics, it is necessary
to understand how the direct integral of the dynamical irre-
ducible representation of the Poincaré group appears in the
different formulations of relativistic quantum mechanics. The
discussion that follows is limited to systems of N particles for
the purpose of illustration, although the similar considerations
apply to systems that do not conserve particle number. The
three different formulations of relativistic quantum theory that
were discussed are Poincaré covariant formulations, Lorentz
covariant formulations, and Euclidean covariant formulations.
These discussions were all in the context of a single particle
or an irreducible representation.

The dynamics in Poincaré covariant formulations of rela-
tivistic quantum mechanics is defined by an explicit unitary
representation of the Poincaré group on the N-body Hilbert
space [24,68,69]. The mass and spin operators for this rep-

resentation are dynamical operators that act on this Hilbert
space. The direct integral results from simultaneously diag-
onalizing both of these operators and introducing additional
invariant degeneracy operators that separate multiple copies
of irreducible representations with same mass and spin.

The dynamics in Lorentz covariant formulations of rela-
tivistic quantum mechanics is defined by an N-particle Hilbert
space with a Lorentz covariant positive kernel [28]. The need
for a dynamical kernel can be understood by observing that
time evolution cannot not be as trivial as shifting the time
argument of a covariant wave function. For free particles,
the kernel was constructed from the Poincaré covariant rep-
resentation and was given by (180) and (181). The dynamics
was given by the mass appearing in these expressions. In
quantum field theory, the covariant Hilbert space kernels are
the vacuum expectation values of products of fields. These
are the Wightman functions [8] of the field theory. The most
direct way to understand the structure of the Hilbert space ker-
nels of Lorentz covariant formulations of relativistic quantum
mechanics is to compare them to field theoretic kernels.

Vectors in quantum field theory can be constructed by
applying polynomials of smeared Heisenberg fields to the
physical vacuum

|ψ〉 :=
∫ ∑

�μN (xN ) . . . �μ1 (x1)|0〉d4x1 . . . d4xN fμ1 (x1) . . . fμN (xN ), (310)

|φ〉 =:
∫ ∑

�μN (xN ) . . . �μ1 (x1)|0〉d4x1 . . . d4xN gμ1 (x1) . . . gμN (xN ). (311)

The inner product of these vectors is an integral of the product of covariant test functions with a covariant kernel

〈φ|ψ〉 =
∫ ∑

g∗
μ1

(y1) . . . g∗
μN

(yN )d4N y〈0|�†
μN

(yN ) . . . �†
μ1

(y1)�ν1 (x1) . . . �νN (xN ) . . . |0〉d4N x fν1 (x1) . . . fνN (xN ). (312)

The test functions represent the Lorentz covariant wave functions. In this example, the Lorentz covariant kernel is the vacuum
expectation value of the product of 2N fields:

W2N (yN , μN , . . . , y1, μ1; x1, ν1, . . . , xN , νN ) = 〈0|�†
μN

(yN ) . . . �†
μ1

(y1)�ν1 (x1) . . . �νN (xN )|0〉. (313)

For fields that transform like (240) and (241), the kernel (313) satisfies the covariance condition

W2N (yN , μN , . . . , y1, μ1; x1, ν1, . . . , xN , νN )

=
∏

k

D jk
μkμ

′
k
[A−1]W2N (�yN + a, μ′

N , . . . , �y1 + a, μ′
1; �x1 + a, ν ′

1, . . . , �xN + a, ν ′
N )

∏
i

D ji
ν ′

iνi
[Ã]. (314)

This inner product is preserved for wave functions that transform like

fνi (xi ) →
∑

D ji
ν ′

iνi
[Ã] fν1 [�−1(xi − a)], (315)

g∗
νi

(yi ) →
∑

g∗
ν ′

i
[�−1(yi − a)]D ji

ν ′
iνi

[A−1]. (316)

These equations are representative; there are similar relations for fields that transform with different spinor representations of
the Lorentz group. The invariance of the inner product with respect to the Poincaré transformations means that the Poincaré
transformations in Eqs. (315) and (316) are unitary.

In this example, the dynamics is in the Heisenberg fields, which are solutions of the field equations. The direct integral of
irreducible representations enters the kernel by inserting a complete set of intermediate Poincaré covariant states between these
vectors

〈φ|ψ〉 =
∫ ∑

g∗
μ1

(y1) . . . g∗
μN

(yN )d4N y〈0|�†
μN

(yN ) . . . �†
μ1

(y1)|(m, j)p, μ, λ〉zdpdmdλ

×z 〈(m, j)p, μ, λ|�ν1 (x1) . . . �νN (xN ) . . . |0〉d4N x fν1 (x1) . . . fνN (xN ), (317)
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where z indicates the type of spin as defined in (35). In this expression, the matrix elements

〈0|�†
μN

(yN ) . . . �†
μ1

(y1)|(m, j)p, μ, λ〉z (318)

and

z〈(m, j)p, μz, λ|�ν1 (x1) . . . �νN (xN )|0〉 (319)

have mixed transformation properties. The fields transform like Lorentz covariant densities (240) and (241) while the states,
|(m, j)p, μ, λ〉z, transform like a mass-m spin- j irreducible representation of the Poincaré group (39). Following what was done
in the single-particle case (180), the Poincaré covariant intermediate states can be replaced by equivalent Lorentz covariant
intermediate states:∫ ∑

g∗
μ1

(y1) . . . g∗
μN

(yN )d4N y〈0|�†
μN

(yN ) . . . �†
μ1

(y1)|(m, j)p, μ, λ〉covδ(m2 + p2)θ (p0)D j
μν[p · σ ]d4 pdmdλ

×cov 〈(m, j)p, ν, λ|�ν1 (x1) . . . �νN (xN ) · · · |0〉d4N x fν1 (x1) . . . fνN (xN ), (320)

where right-handed representations were used in (320) for the purpose of illustration. In the dynamical case, the masses,
spins, and degeneracy quantum numbers are the masses, spins, and degeneracy quantum numbers that appear in the complete
set of intermediate states. These states may include single-particle states, bound states, or scattering states. This change of
representation results in a manifestly Lorentz covariant expression for the intermediate states in the direct integral.

Matrix elements of normalizable vectors with the irreducible dynamical eigenstates that appear in the direct integral in
Poincaré covariant formulations of relativistic quantum mechanics are identified with the field theoretic amplitudes by

〈ψ |(m, j)p, μ, λ〉z =
∫ ∑

g∗
μ1

(y1) . . . g∗
μN

(yN )d4N y〈0|�†
μN

(yN ) . . . �†
μ1

(y1)|(m, j)p, μ, λ〉z (321)

and in the (right handed) Lorentz covariant formulations by

〈ψ |(m, j)p, μ, λ〉cov =
∫ ∑

g∗
μ1

(y1) . . . g∗
μN

(yN )d4N y〈0|�†
μN

(yN ) . . . �†
μ1

(y1)|(m, j)p, μ, λ〉cov, (322)

where (321) and (322) are related by∫ ∑
g∗

μ1
(y1) . . . g∗

μN
(yN )d4N y〈0|�†

μN
(yN ) . . . �†

μ1
(y1)|(m, j)p, μ, λ〉cov

=
∫ ∑

g∗
μ1

(y1) . . . g∗
μN

(yN )d4N y〈0|�†
μN

(yN ) . . . �†
μ1

(y1)|(m, j)p, ν, λ〉zD
j
νμ[B−1

z (p/m)]
√

ωm(p). (323)

A dynamical kernel for a general Lorentz covariant formulation of relativistic N-body quantum mechanics has the same
structure as (320):

W (xN , μN , . . . x1, μ1; y1, ν1, . . . , yN , νN ) =
∑ ∫

w∗
cov(xN , μN , . . . , x1, μ1|(m, j)p, μ, λ)δ(p2 + m2)θ (p0)

× d4 pdmdλD j
μν[p · σ/m]ρ(m, λ)wcov((m, j)p, ν, λ|y1, ν1, . . . , yN , νN ). (324)

The Lorentz covariant transformation properties and interpretation of the amplitudes

wcov((m, j)p, ν, λ|y1, ν1, . . . , yN , νN ) and w∗
cov(yN , νN , . . . , y1, ν1; (m, j)p, ν, λ) (325)

are identical to the corresponding properties of the field amplitudes

〈0|�†
μN

(yN ) . . . �†
μ1

(y1)|(m, j)p, μ, λ〉cov and cov〈(m, j)p, μ, λ|�μ1 (x1) . . . �μN (xN )|0〉. (326)

The kernel (324) also can be factored into amplitudes involving Poincaré covariant states

W (xN , μN , . . . x1, μ1; y1, ν1, . . . , yN , νN )

=
∑ ∫

w∗(xN , μN , . . . , x1, μ1|(m, j)p, μ, λ)zd
3 pdmdλwz((m, j)p, ν, λ|y1, ν1 . . . yN , νN ), (327)

where the Lorentz covariant and Poincaré covariant amplitudes are related by

w∗
cov(xN , μN , . . . , x1, μ1|(m, j)p, μ, λ) =

∑
w∗

z (xN , μN , . . . , x1, μ1|(m, j)p, ν, λ)D j
νμ

[
B−1

x (p/m)
]√

ωm(p). (328)

The sum and integral over the mass, spin, and degeneracy
parameters is the direct integral that defines the dynamics. It

is still necessary to specify the kernel in order to define the
dynamics.
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The third class of formulations of relativistic quantum
mechanics are Euclidean covariant formulations. Schwinger
[70] showed that time-ordered vacuum expectation values of
products of fields satisfying the spectral condition could be
analytically continued to imaginary time. For free particles,
the relation between the Euclidean and Lorentz covariant
representations of a single particle was given by (209). For
the interacting case, the field theoretic example provides some
insight. Since the intermediate states between each pair of
fields in the Wightman functions have positive energy (after
recursively subtracting vacuum contributions), they can be
analytically continued to regions of the complex
plane where the imaginary parts of the relative times
are negative. In the field theory case, the domain of
analyticity can be extended using covariance with respect to
complex Lorentz transformations and locality [8]. Both the
time-ordered Green’s functions and the Wightman functions
can be recovered from the Euclidean Green’s functions
using different limits. Osterwalder and Schrader [9,10]
considered the inverse problem of identifying the conditions
on a collection of Euclidean covariant distributions that are
needed to define a Lorentz covariant quantum field theory or
relativistic quantum theory. Since the group of real Euclidean
transformations is a subgroup of the complex Lorentz group,
the generators of the two groups are formally related by (223)
for the generators of transformations involving the Euclidean
time. The generators of rotations and space translations are
the same in the Euclidean and Minkowski cases. However,
the generators (223) are not Hermitian on a space defined
by a Euclidean covariant kernel. Reversing the signs of the
Euclidean times in the final state makes the corresponding
Lorentz generators formally Hermitian. The Euclidean
sesquilinear form with the time reflection cannot be positive
on arbitrary functions of Euclidean variables, since functions
that are odd or even under Euclidean time reflection will lead
to norms with opposite signs. However, for suitable Euclidean
covariant distributions positivity can hold on a subspace.
For systems of particles, the relevant subspace is the space
of functions of Euclidean space time variables with positive
relative Euclidean time support.

The kernel of the physical Hilbert space scalar product
is a Euclidean covariant distribution, with Euclidean time
reflection operators on the final Euclidean times. It must be
non-negative on the space of Euclidean covariant functions
with support for positive relative times. When this is satis-
fied, the Euclidean covariant distribution is called reflection
positive. Reflection positivity is responsible for both the pos-
itivity of the physical Hilbert space norm and the spectral
condition [18].

The structure of the physical inner product in the Euclidean
framework is motivated by local field theory, where the
kernels are analytic continuations of real-time Green’s func-
tions:

〈ψ |φ〉 =
∫

g∗
μ1

(ye1). . .g∗
μN

(yeN )d4N yeE (θyeN , μN , . . .θye1, μ1;

xe1, ν1, . . . xeN , νN )d4N xe fν1 (xe1) . . . fνN (xeN ).
(329)

In this expression, θ is the Euclidean time reflection operator
and the test functions are nonzero for 0 < τx1 < τx2 . . . τxN

and 0 < τy1 < τy2 . . . τyN . The direct integral enters the
Euclidean kernel in the form

E (yeN , μN , . . . ye1, μ1; xe1, ν1, . . . xeN , νN )

=
∑∫

e∗(yeN , μN , . . . , ye1, μ1|(m, j)pe, μ, λ)

× δ
(
p2

e + m2
)
dmdλ

1

π

D j
μν[pe · σe/m]

p2
e + m2

× e
(
(m, j)pe, ν, λ|xe1, ν1 · · · xeN , νN

)
, (330)

where the individual factors e∗(yeN , μN , . . . , ye1, μ1|(m, j)pe,

μ, λ) are Euclidean covariant. The matrix elements with the
covariant states are related by

〈ψ |(m, j)pe, μ, λ〉cov

=
∑ ∫

g∗
μ1

(ye1) . . . g∗
μN

(yeN )d4N yee∗(yeN , μN , . . . , ye1,

μ1|(m, j)(−iωm(p), p, μ, λ), (331)

where the amplitude is analytic in the lower half of the p0
e

plane, provided the test functions satisfy the positive relative
Euclidean time support condition.

The resulting inner product is the physical inner product.
On this space, with the Euclidean time reflection, the 10
generators of the Euclidean group, with the modifications
(223), are formally Hermitian and satisfy the Poincaré com-
mutations relations. These generators can be exponentiated to
construct the unitary representation of the Poincaré group on
the Euclidean representation of the Hilbert space. Calculations
of inner products of physical states and matrix elements of
operators in these states can be performed by integrating
over the Euclidean variables without performing an explicit
analytic continuation.

While this general discussion explains where the direct
integral that defines the dynamics enters in each of the formu-
lations of relativistic quantum mechanics, it does not explain
how to construct dynamical models in each of the formula-
tions of relativistic quantum mechanics. Several methods for
constructing dynamical models in each of these frameworks
are discussed below.

The class of models that have the most in common with
nonrelativistic quantum models are Poincaré covariant quan-
tum models. They are defined by constructing an explicit
dynamical unitary representation of the Poincaré on the N-
particle Hilbert space. One strategy for constructing the dy-
namical unitary representation of the Poincaré group, due to
Bakamjian and Thomas [12], is to start with a system of non-
interacting relativistic particles and decompose the N-particle
states into irreducible subspaces labeled by mass and spin
using Clebsch-Gordan [69,71,72] coefficients of the Poincaré
group. Interactions that commute with the N-particle spin are
added to the free invariant mass operator. Diagonalizing this
operator in the irreducible free-particle basis gives a complete
set of states labeled by the mass and spin eigenvalues. This
is the relativistic analog of diagonalizing a nonrelativistic
center-of-mass Hamiltonian. The dynamical eigenstates are

025202-24



REPRESENTATIONS OF RELATIVISTIC PARTICLES OF … PHYSICAL REVIEW C 99, 025202 (2019)

complete and transform like irreducible representations of the
Poincaré group (39) with the particle mass replaced by the
mass eigenvalue. This defines the dynamical unitary repre-
sentation of the Poincaré group on a basis. The choice of
basis used to compute the Clebsch-Gordan coefficients has
dynamical consequences in this framework.

The advantages of the Poincaré covariant framework are
(1) bound state and scattering state solutions can be calcu-
lated using the same methods that are employed in nonrel-
ativistic few-body calculations, (2) standard high-precision
nucleon-nucleon interactions [73,74] that are fit to exper-
imental data can be [75] reinterpreted and used directly
in these calculations, and (3) reactions with particle pro-
duction can be treated. This is the most mature method
in terms of the complexity of models that have been
treated. Applications include relativistic constituent quark
models of mesons and baryons [53,56], two- and three-
nucleon bound-state calculations [23,29,55,59,62], relativis-
tic two- and three-nucleon scattering calculations [46,49,55],
and electromagnetic observables of hadrons [27,30–32,35–
37,39,42,47,48,50–52,60,65,76–78].

The fundamental challenge with Poincaré covariant mod-
els is that there are an infinite number of equivalent repre-
sentations [72,79] associated with different irreducible basis
choices, none of which can be trivially derived from QCD.
The unitary transformations that relate the different equivalent
representations generate many-body interactions and many-
body current operators in transforming from one represen-
tation to another [33]. This makes it difficult to construct
equivalent interactions in different representations or assign
any special significance to interactions in a given repre-
sentation. Cluster properties, for systems of more than two
particles, require an additional class of momentum-dependent
many-body interactions [24,43,68,69]. When the many-body
operators are not included, the equivalence of the different
forms of dynamics breaks down [51]. While two-body inter-
actions are constrained by experiment, it is more difficult to
constrain the three- and four-body interactions and the two-,
three-, and four-body exchange currents. Comparison with
experiment suggests that these operators cannot be ignored.
Another consequence of the nontrivial dynamical structure of
representations of the Poincaré group is that it is not possible
to construct Poincaré covariant one-body current operators.
This means that typical impulse approximations that are used
in hard scattering calculations cannot be formulated in a fully
Poincaré covariant manner using these models. Normally “im-
pulse approximations” in this framework are defined by using
the one-body parts of the current operator to compute a set
of preferred independent matrix elements, with the remaining
matrix elements generated by covariance and current conser-
vation. The results, while covariant, depend on the choice
of independent matrix elements. These are not true impulse
approximations because the covariance condition implicitly
generates exchange current contributions in the remaining
current matrix elements. It is no substitute for having an
explicit covariant current operator, which is needed to have
a meaningful probe of these system.

The most useful Poincaré covariant representations are the
ones discovered by Dirac [2], which are characterized by

dynamical representations of the Poincaré group that have
a six- or seven-parameter (kinematic) subgroup that is free
of interactions. These are called Dirac’s forms of dynamics.
Each form of dynamics has different advantages. In the “in-
stant form,” rotations and translations are kinematic. Some
representative calculations are [29,36,46,49,53,55,59,62]. The
difficulties are that the Lorentz boosts that are needed to
compute current matrix elements are dynamical. This means
that “impulse approximations” are frame dependent in the
sense that an impulse approximation in the Breit frame is
not an impulse approximation in the laboratory frame. In the
“point form” of the dynamics, Lorentz transformations are
kinematic, but the translations that transform the current to
x = 0 are not. The kinematic Lorentz invariance implies that
one-body operators remain one-body operators in all frames
related by Lorentz transformations. However, because trans-
lations are dynamical, the momentum transferred to a system
in an “impulse matrix element” is not the same as the momen-
tum transferred to the constituents [38]. Some representative
point-form calculations are in Refs. [37–39,42,50,60]. Front-
form or light-front dynamics has the largest (seven-parameter)
kinematic subgroup, which is the subgroup of the Poincaré
group that leaves a plane tangent to the light-cone invariant.
It has a three-parameter subgroup of boosts that are free of
interactions. The light-front spins do not Winger rotate when
transformed with this subgroup. It also has a three-parameter
subgroup of translations tangent to the light front that are free
of interactions. Finally, it has frame-independent “impulse ap-
proximations” where the momentum transferred to the target
is the same as the momentum transferred to the constituents.
The difficulty is that rotations are dynamical. Rotational co-
variance of current operators in this representation is difficult
to realize at the operator level. Representative front-form cal-
culations are in Refs. [23,27,30–32,34,37,44,47,48,51,52,80].
Equations (42) can be used to relate the dynamical mass-spin
eigenstates and wave functions in each of these forms. The ro-
tations Rxy(p/m) and Jacobians | ∂p(f,m)

∂f | in the transformations
of the eigenstates in (42) depend on the mass eigenvalues, so
they are dynamical and become nontrivial operators when the
mass is not diagonalized. For instance, Eqs. (42) could be used
to transform an instant-form calculation of a triton bound-state
wave function to a light-front representation of the same state
with a light-front spin, which is preferred in structure function
calculations. In this case, the triton mass eigenvalue appears
in the rotation and Jacobian. If this is accompanied by the
corresponding transformation of the variables of the wave
functions, the combination of these two transformations, one
dynamical and one kinematic, makes the light-front boosts
kinematic.

In Lorentz covariant formulations of relativistic quantum
mechanics, the wave functions depend on 4N space-time
variables and spins that transform under a finite-dimensional
representation of the Lorentz group. Lorentz covariant quan-
tum theories are closely related to the Klein-Gordon or Dirac
equations. Quantum field equations are the operator versions
of these equations. The difference is that the Klein-Gordon
and Dirac equations are for a single particle, while the corre-
sponding field equations are for systems of an infinite number
of degrees of freedom. The interactions in quantum field
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theory are expressed in terms of products of fields at the
same point, which are mathematically ill defined. Lorentz
covariant quantum theories, which involve a finite number of
degrees of freedom, fall between these two extremes. They
are mathematically well-defined theories of a finite number of
degrees of freedom.

A feature of Lorentz covariant quantum theories is that the
Hilbert space inner product must have a nontrivial Poincaré
covariant kernel [28] that defines the dynamics as in (180)
and (181). The covariance ensures the invariance of the
Hilbert space inner product with respect to Poincaré trans-
formations of the arguments of the covariant wave func-
tions. This defines the dynamical unitary representation of
the Poincaré group. In most applications of Lorentz covariant
quantum mechanics, the inner product exists in the back-
ground and is not explicitly utilized in calculations.

While the Dirac and Klein-Gordon equations are one-
particle equations, many-particle systems can be treated by
coupled Dirac or Klein-Gordon equations that satisfy first-
class [81] constraints. The first-class condition is an integra-
bility condition for the coupled equations. The first-class con-
dition also ensures that a covariant “quasi-Wightman kernel”
can be defined as a product of δ functions in the constraints
(the first-class condition implies that the product of these
δ functions is independent of the order of the products).
Using this kernel to calculate scalar products is equivalent to
solving the coupled Dirac or Klein-Gordon equations. For free
particles, the constraints are products of positive-energy mass-
shell constraints. This is identical to products of free-field
two-point Wightman functions. The mass shell constraints
are first class because they commute. Dynamics is introduced
by adding covariant interactions to the kinematic constraints
that preserve the first-class condition. The simplest way to
do this is to replace the constraints by an equivalent set of
constraints that are the sum of the free-particle constraints
and an independent set of the differences. Interactions that
commute with the difference constraints can be added to the
sum of the constraints. For example, for two interacting scalar
particles, a dynamical kernel is given by

W (x1, x2; y1, y2)

= 〈x1, x2|δ
(
p2

1 + m2
1 − p2

2 − m2
2

)
θ
(
p0

1

)
θ
(
p0

2

)
× δ

(
p2

1 + m2
1 + p2

2 + m2
2 + V

)|y1, y2〉, (332)

where [
p2

1 + m2
1 − p2

2 − m2
2,V

] = 0. (333)

Some applications of constraint dynamics to meson and
baryon spectra and nucleon-nucleon scattering are in
Refs. [25,26,40,45,54]. While the construction described
above can be applied to systems of any number of particles, it
does not satisfy cluster properties for systems of more than
two particles. The challenge is to add interactions to each
mass-shell constraint that preserve the first-class condition.

An alternative to constraint dynamics is to build Lorentz
covariant models by making a finite number of degree of
freedom truncations to the Heisenberg fields. The N-quantum
approximation [82] starts by representing the Heisenberg
fields as an expansion in normal products of an irreducible

set of asymptotic fields called the Haag expansion [83]. The
field equations give an infinite set of coupled equations for the
coefficients of the expansion. A consistent treatment requires
a priori knowledge of the asymptotic fields that appear in the
expansion. This is equivalent to knowing the spectral content
of the direct integral that defines the dynamics. Lorentz co-
variant models can be constructed by truncating this expan-
sion to a finite number of experimentally relevant terms. Since
the asymptotic fields and Heisenberg fields have the same
vacuum, the resulting fields can be used to calculate model
Wightman functions. Model Wightman functions constructed
by truncating the expansion will be covariant and can lead
to a limited kind of positivity that gives a Lorentz covariant
relativistic quantum theory. Because the coefficients of the
expansion are related to observables [83], observables can be
calculated directly from the coefficients of the expansion with-
out explicitly utilizing the Hilbert space inner product. The
N-quantum approximation has the computational advantage
that the variables associated with the asymptotic fields remain
on shell.

The most common Lorentz covariant models are based on
truncations of the Schwinger-Dyson equations [84–86], which
are an infinite set of coupled equations for vacuum expectation
values of time-ordered products of fields. The advantage
of this method is that matrix elements of any observable
can be calculated without directly utilizing the Hilbert space
representation [87]. To make relativistic quantum models, the
infinite set of equations must be truncated, and the input that
would have been determined by the discarded equations has to
be modeled. The Lorentz covariance is easily preserved under
truncation. The existence of an underlying Hilbert space with
positive norm and a dynamics satisfying a spectral condition
constrains the model input to the truncated system.

The model-time-ordered Green’s functions are constrained
by assuming the existence of an underlying relativistic quan-
tum theory. This assumption implies that there is a complete
set of positive mass (plus the vacuum) intermediate states
(the direct integral) between any pair of fields in the Green’s
function. Choosing time orderings that separate the desired
initial final states and inserting a complete set of Poincaré
covariant intermediate states lead to an expression with a pole
in the intermediate energy variable. The residue is − 1

2π i times
a product of amplitudes of the form

〈0|T (�μN (xN ) . . . �μ1 (x1))|(m, j)p, μ, λ〉z (334)

and

z〈(m, j)p, μ, λ|T (�μ1 (y1) . . . �μN (yN ))|0〉, (335)

where T is the time-ordering operator. When these are in-
tegrated over test functions with support for a given time
ordering, these quantities are identical to (322).

As in the N-quantum approximation, direct use of the un-
derlying Hilbert space representation can be avoided. Matrix
elements of operators are obtained by inserting the operator
in the product of fields and choosing a time ordering so the
products of fields on the left and right of the operator are
interpolating fields for chosen initial and final states [87]. The
residue of the poles that select the initial and final states is
a product of the matrix elements of the operators between
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these two states (308) with two “covariant wave functions.”
To isolate the desired matrix element, the two covariant wave
functions can be eliminated using a quadrature associated with
normalization of the fields.

The simplest Schwinger-Dyson equation is the Bethe-
Salpeter equation, which is used for both two-body bound and
scattering states [57,63,64]. The input is a pair of dynamical
time-ordered two-point functions and a connected dynamical
time-ordered four-point function. Both of these quantities are
unknown and have to be modeled by appealing to experiment
and general principles. The equations are more complicated
to solve than the corresponding Poincaré covariant equations
due to the presence of additional relative time or energy
variables. The calculation of matrix elements of operators
requires using a dynamical normalization condition. The com-
plications increase with the three-body problem, especially for
the scattering problems. One advantage that comes from the
explicit covariance is the existence of a relativistic impulse
approximation when coupling to currents. When the addi-
tional relative energy or time variable is eliminated [77], it
generates an effective exchange current. The relation between
the Lorentz covariant and Poincaré covariant representations
can be used to motivate the structure of exchange currents
[48] in Poincaré covariant quantum models that arise impulse
currents in Lorentz covariant theories.

A related class of models that are used in calculations
of strongly interacting systems are quasipotential methods.
These methods are formally equivalent to the Bethe-Salpeter
equation. They are derived by replacing the Bethe-Salpeter
equation by an equivalent pair of equations. One involves
a new kernel with a constraint that reduces the number of
integration variables. The second relates the new kernel to
the original Bethe-Salpeter kernel. When the quasipotential
kernel is calculated, the equations are equivalent to the Bethe-
Salpeter equation. However, since both kernels are modeled
in practice, it is no reason to assume the one is more fun-
damental than the other. Quasipotential methods have been
used to compute scattering, structure, and electromagnetic
observables [41,58,61,67,88].

The last class of theories are based on the Euclidean formu-
lation of relativistic quantum mechanics. Euclidean Green’s
functions are used in truncations of the Euclidean form of the
Schwinger-Dyson equations as well as in lattice truncations of
QCD. While lattice truncations are a powerful computational
tool, they break Poincaré (or Euclidean) invariance. As in
the Minkowski case, the input to the Euclidean Schwinger-
Dyson equation needs to be modeled. In the Euclidean case,
the Schwinger-Dyson equations are much simpler than the
corresponding Minkowski equations.

The challenges with the Euclidean approach arise because
physical observables involve real time. This normally requires
an analytic continuation in the time variable of a quantity that
is often calculated either numerically or statistically. In spite
of these challenges, there have been many advances using
these methods.

Applications based on the Euclidean formulation of the
Schwinger-Dyson equations have been performed for the two-
nucleon [63] and three-quark [66] systems. An observation
about the Osterwalder and Schrader reconstruction theorem is

that the physical Hilbert space and the unitary representation
of the Poincaré group can be constructed directly from the
Euclidean Green’s functions without analytic continuation.
The advantage of the Hilbert space representation are that the
input involves solutions of relatively well-behaved Euclidean
Green’s functions and there are explicit expressions for the
Hamiltonian and the other nine self-adjoint Poincaré genera-
tors on this space. Because the Hilbert space representation
is the physical representation, direct calculations of scatter-
ing observables [89–91] can be preformed without analytic
continuation. The challenges are to ensure that the kernel is
reflection positive.

To summarize, all formulations of relativistic quantum
mechanics involve a direct integral of irreducible representa-
tions. Equivalent models involve different representations of
the same direct integral. In all three formulations, the matrix
elements, 〈ψ |(m, j)p, μ, λ〉z, can be extracted, where |ψ〉 is a
normalizable vector in the Hilbert space. How the vectors |ψ〉
are represented depends on the representation of the Hilbert
space.

X. SUMMARY

Relativistically invariant treatments of quantum mechanics
are needed to understand physics on distance scales that are
small compared to the Compton wavelength of the relevant
particles. Of particular importance is the need to consistently
calculate matrix elements of hadronic currents when the initial
and final hadronic states are in different Lorentz frames. The
strength of the interaction precludes a perturbative treatment
of the hadronic structure or final-state interactions in these
matrix elements.

Relativistic invariance in quantum mechanics means that
measurements of quantum observables—probabilities, expec-
tation values, and ensemble averages—cannot be used to
distinguish inertial coordinate systems. This is equivalent
to the requirement that equivalent operators and states in
different inertial coordinate systems are related by a unitary
ray representation of the Poincaré group on the Hilbert space
of the quantum theory. Unitary representations of the Poincaré
group can always be decomposed into direct integrals of irre-
ducible representations. This step is the relativistic analog of
diagonalizing the Hamiltonian in nonrelativistic quantum the-
ory. The structure of the invariant mass-m spin- j irreducible
subspaces are fixed by group theory. Different treatments of
relativistic quantum theory use different ways of representing
these elementary building blocks of the theory. Since each
representation has is own advantages, it is useful to understand
how the different representations are related.

In this work, mass-m spin- j irreducible representations of
the Poincaré group were constructed using a basis of simul-
taneous eigenstates of independent commuting functions of
the Poincaré generators. The relevant Hilbert space was the
space of square integrable functions of the eigenvalues of
these operators. The eigenvalue spectrum of these commuting
observables is fixed by properties of the Poincaré group. The
transformation properties of the Poincaré generators led to an
explicit unitary representation of the Poincaré group on this
representation of the Hilbert space. Different choices of the
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commuting observables lead to different representations that
are related by unitary transformations.

Factoring the Wigner rotations that appear in these ir-
reducible representations into products of Lorentz SL(2, C)
transformations and using group representation properties of
SL(2, C) led to equivalent Lorentz covariant representations,
where the states transform under finite-dimensional represen-
tations of SL(2, C). In these representations, the Hilbert space
inner product has a nontrivial kernel, which was shown to be,
up to normalization, the two-point Wightman function of a
free quantum field theory.

These Lorentz covariant representations were shown to be
derivable from a representation of the Hilbert space with a
Euclidean covariant kernel and a Euclidean time reflection on
the final states. In this representation of the Hilbert space, the
inner product involves an integral over Euclidean variables; it
does not require analytic continuation.

Finally covariant fields were constructed from the Lorenz
covariant wave functions. These fields have the property that
the vacuum expectation value of products of two fields recover
the free-field Wightman functions that appear in the kernel of
the Lorentz covariant representations.

While the Lorentz covariant, Euclidean covariant, and field
representations were constructed starting with irreducible rep-
resentations of the Poincaré group, the process could easily be
reversed by factoring the Wightman functions.

These relations indicate how the many different represen-
tations that are used in applications are related. The discussion
in Secs. III–VIII was limited to one-particle or Poincaré
irreducible states. These same representations appear in dy-
namical models in the form of direct integrals of irreducible
eigenstates. A discussion of these same relations in the context
of dynamical models was given in Sec. IX.
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APPENDIX: WIGNER D FUNCTIONS

The 2 j + 1 dimensional unitary representations of SU(2)
in the basis of eigenstates of j2, jz (Wigner functions) are used
extensively in these notes. Most derivations in the literature
are for the expression in terms of Euler angles, rather than in
terms of the SU(2) matrix elements. The expression directly
in terms of SU(2) matrix elements was used to extend these to
representations of SL(2,C).

The most straightforward derivation of the formula (32) for
the Wigner D function in terms of the SU(2) matrix elements

uses Schwinger’s formulation of the angular momentum alge-
bra [92] using creation and annihilation operators.

The main elements of this formalism are pair of creation
and annihilation operators. Angular momentum state are rela-
beled with

n± := j ± m, (A1)

which are related to the standard angular momentum labels by

j := 1
2 (n+ + n−), m := 1

2 (n+ − n−), (A2)

|n+, n−〉 := | j, m〉. (A3)

The creation and annihilation operators are defined by

a†
±|n±〉 =

√
n± + 1|n± + 1〉, (A4)

a±|n±〉 = √
n±|n± − 1〉. (A5)

With these definitions,

J± = a†
±a∓, Jz = 1

2
(a†

+a+ − a†
−a−), (A6)

J = 1

2
(a†

+a†
−)σσσ

(
a+
a−

)
. (A7)

This can be used to show

eiJ·θθθ a†
±e−iJ·θθθ = (a†

+R+± + a†
−R−±), (A8)

where

R = cos

(
θ

2

)
I + iθ̂̂θ̂θ · σσσ sin

(
θ

2

)
=

(
R++ R+−
R−+ R−−

)
. (A9)

Normalized angular momentum eigenstates have the form

|n+, n−〉 = (a†
+)n+

√
n+!

(a†
−)n−

√
n−!

|0, 0〉. (A10)

Combining these results gives

D j
m′m[R] = 〈n′

+, n′
−|eiJ·θθθ |n+, n−〉 (A11)

= 1√
n′+!n′−!n+!n−!

〈0, 0|(a+)n′
+ (a−)n′

+

× (a†
+R++ + a†

−R−+)n+

× (a†
+R+− + a†

−R−−)n−|0, 0〉 (A12)

(this vanishes unless j = j′). Expanding (a†
+R++ +

a†
−R−+)n+ and (a†

+R+− + a†
−R−−)n− using the binomial series

and properties of the creation and annihilation operators gives
the result (32).
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