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Two-particle, pair-number correlation distributions on two-dimensional transverse momentum (pt1, pt2)
constructed from the particle production in relativistic heavy-ion collisions allow access to dynamical processes
in these systems beyond what can be studied with angular correlations alone. Only a few measurements of this
type have been reported in the literature, and phenomenological models, which facilitate physical interpretation
of the correlation structures, are nonexistent. Ongoing efforts at the Relativistic Heavy-Ion Collider (RHIC) will
provide a significant volume of these correlation measurements in the future. In anticipation of these new data,
two phenomenological models are developed which describe two-dimensional (2D) correlation distributions on
transverse momentum. One model is based on a collision event-by-event fluctuating blast wave. The other is
based on event-by-event fluctuations in fragmenting color-flux tubes and in jets. Both models are shown to
be capable of accurately describing the measured single-particle pt distributions for minimum-bias Au+Au
collisions at

√
sNN = 200 GeV. Both models are then applied to preliminary, charged-particle correlation

measurements on 2D transverse momentum. The capabilities of the two models for describing the overall
structure of these correlations, the stability of the fitting results with respect to collision centrality, and the
resulting trends of the dynamical fluctuations are evaluated. In general, both phenomenological models are
capable of qualitatively describing the major correlation structures on transverse momentum and can be used
to establish the required magnitudes and centrality trends of the fluctuations. Both models will be useful for
interpreting the forthcoming correlation data from the RHIC.

DOI: 10.1103/PhysRevC.99.024911

I. INTRODUCTION

Two-particle correlations constructed from the particles
produced in high-energy, heavy-ion collisions are affected by
partonic and hadronic dynamics throughout the spatiotem-
poral evolution of the hot, dense collision system. These
dynamics include soft and hard interactions as predicted by
quantum chromodynamics (QCD), fragmentation and
hadronization [1–3], partonic and hadronic collective flow
[4], plus others [5,6]. For symmetric, unpolarized collision
systems (e.g., p + p, Au+Au, Pb+Pb) near midrapidity,
two-particle correlations can be completely described using
the four kinematic and angular variables pt1, pt2 (transverse
momentum), η1-η2 (relative pseudorapidity1), and φ1-φ2

(relative azimuthal angle) [7–9]. Correlation measurements
on two-dimensional (2D) (η1-η2, φ1-φ2) angular space within
2D bins on transverse momentum space (pt1, pt2) [10]
should, in principle, represent all the statistically accessible
information. Unfortunately, the absolute normalization of
2D angular correlations is poorly determined due to the
arbitrary multiplicity fluctuations arising from finite-width
multiplicity bins [11,12].2 Measurements to date of

1Pseudorapidity is defined as η = − ln[tan(θ/2)], where θ is the
polar scattering angle relative to the beam direction.

2A derivation of normalized 2D angular correlations of binned total
pt , using an angular scale-dependent mean-pt fluctuation method, is

four-dimensional (4D), two-particle correlations [13–16]
are therefore incomplete.

In Ref. [17], it was shown that two-particle, pair-number
correlation distributions on (pt1, pt2) can be derived from
measures of nonstatistical mean-pt fluctuations and that these
correlations determine the average value (normalization) of
the 2D angular correlations in each (pt1, pt2) bin, thus al-
lowing the experimental determination of the 4D correla-
tions to be completed. However, experimental and theoretical
efforts in correlation studies have mainly involved angular
correlations, while measurements and analysis of pair-number
correlations on (pt1, pt2) have received much less attention.
A few such measurements have been reported by the NA49
Collaboration [18,19], the CERES Collaboration [20], and
the STAR Collaboration [7,21,22]. A much larger volume of
preliminary (pt1, pt2) correlation measurements by the STAR
Collaboration exists [13,14].

In addition to controlling the normalization of angular
correlations, the measurement and analysis of (pt1, pt2) cor-
relations allow access to independent dynamical information
beyond what can be gleaned from angular correlations alone.

given in Refs. [11,12]. Application of this method to normalize the
pair-number angular correlations is problematic because the finite
multiplicity bin-width contributes directly to eventwise multiplicity
fluctuations in the angular bins.
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For example, in the hydrodynamic picture, eventwise fluctua-
tions in global temperature would not be manifest in angular
correlations, but would produce a distinctive “saddle-shape”
correlation on (pt1, pt2) [19,22]. In fragmentation-based mod-
els with jets, e.g., HIJING [23], where eventwise fluctuations
occur in the angular positions and energies of the jets, analysis
of angular correlations can determine the average number of
jet-related pairs of particles per event. Analysis of (pt1, pt2)
correlations can determine the variance of the fluctuating
number of jet-related pairs, an independent quantity. Pair-
number correlations on (pt1, pt2) in jet production models
are sensitive to eventwise dynamical fluctuations in both the
number and energy of the jets, thus providing access to
additional dynamical information beyond that which can be
studied with angular correlations.

Of equal importance is the close connection between num-
ber correlations on (pt1, pt2) and model-dependent interpre-
tation of single-particle pt spectrum data. In conventional
hydrodynamic or blast-wave models [24], pt spectrum data
are analyzed with the intent of determining physical properties
of the heavy-ion collision produced medium, or quark-gluon
plasma (QGP). These properties include temperature, chem-
ical potentials, and radial flow. Often, such models do not
include eventwise fluctuations. They cannot produce correla-
tions on (pt1, pt2) and are therefore unphysical. The absence
of fluctuations affects the shape of the pt spectrum and
therefore the fits to the data, resulting in inaccurate measures
of medium properties.

In high-energy minimum-bias p + p collisions, a straight-
forward correspondence exists between angular and (pt1, pt2)
correlation structures for unidentified charged particles as
shown in Ref. [25]. Two correlation peaks appear on (pt1, pt2)
at lower and higher pt . Selecting pairs in the lower pt peak
results in angular correlations consistent with longitudinal
fragmentation and charge ordering [26] as described by the
LUND color-flux tube or color-string model [1]. Selecting the
higher pt pairs results in jet- and dijet-like angular correlations
which are well described by PYTHIA [2].

For more complex nucleus + nucleus collision systems, in-
terpreting the correlation structures on transverse momentum
coordinates is less clear, as is understanding the correspon-
dences between correlation structures in the two, respective
subspaces. For example, in 2D angular correlations [27,28],
an azimuthal quadrupole is readily apparent, which is inter-
preted as pressure-driven elliptic flow in the hydrodynamic
picture. Peaked correlations at relatively small opening angles
are usually interpreted as jets. Back-to-back correlations in
relative azimuth are interpreted as dijets or other momentum-
conserving processes. On the other hand, the correlation
structures which have been observed so far on (pt1, pt2), a
saddle shape [22] plus broad peak from about 1 to 2 GeV/c
[13,14], are not so readily interpreted. Different dynamical
mechanisms, for example, fluctuating jets and fragmentation
versus fluctuating temperatures and radial flow, produce simi-
lar structures, as will be shown in this paper.

The purpose of the present work is to develop and test
two phenomenological models of relativistic heavy-ion col-
lisions, based on distinctly different dynamical frameworks,
which can be used to interpret the correlation structures and

provide an efficient means for determining the nature and
strength of the fluctuations, within each framework, which
are required to describe the data. The required magnitudes
and centrality trends of the various fluctuations within each
model can be compared to that allowed by the corresponding
theories, thereby testing the applicability of each theoretical
framework. The phenomenologies presented here may help
tease apart the underlying dynamical mechanisms and help
guide theoretical developments.

The first model is based on a fluctuating blast wave
(BW) [29,30]. The second is based on fluctuating, two-
component fragmentation (TCF) motivated by the success
of the Kharzeev and Nardi (KN) [31] “soft plus hard” two-
component interaction model. The general efficacy and stabil-
ity of the models are tested by fitting mathematical represen-
tations of preliminary correlation data for Au+Au collisions
at

√
sNN = 200 GeV from the STAR Collaboration [13,14].

Trends in the centrality dependences of the several fluctuating
quantities in the models are presented and discussed.

This paper is organized as follows. The general method
for introducing dynamical fluctuations into the single- and
two-particle momentum distributions is presented in Sec. II.
Applications of this method for the BW and TCF models are
derived in Secs. III and IV, respectively, where they are tested
with respect to charged-particle pt spectra data for Au+Au
collisions at

√
sNN = 200 GeV. In Sec. V, both models are

further tested by fitting (pt1, pt2) correlation pseudodata. The
efficacy of each model, as well as the stability and central-
ity trends of the fluctuating quantities are also discussed in
Sec. V. A summary and conclusions are given in Sec. VI.

II. GENERAL FLUCTUATION MODEL

Single-particle distributions on binned coordinates are con-
structed by counting all particles within a given acceptance
in all collision events within a centrality class. Two-particle
distributions are similarly constructed using all pairs of par-
ticles within the acceptance. If all particles in all events are
emitted from equilibrated sources having the same uniform
temperature T , using the simplest hydrodynamic picture for il-
lustration, then the eventwise single-particle and two-particle
distributions are simply the statistical samples of the same
underlying parent distribution. In this case, there are no corre-
lations. To generate correlations, the parent distributions must
vary from event to event and/or within the source distribution
of each event. An arbitrary ith particle is assumed to be
emitted from a region of the source having a local temperature
Ti. If the corresponding temperatures for an arbitrary pair of
particles in an event, e.g., Ti and Tj , fluctuate independently
such that the average pairwise fluctuations about the mean
temperature T̄ vanish, where 〈(Ti − T̄ )(Tj − T̄ )〉i �= j = 0, then
the correlations will again vanish. Mean temperature T̄ is
the average emitting temperature for all particles in the event
sample. Within this model, nonvanishing correlations can only
occur when 〈(Ti − T̄ )(Tj − T̄ )〉i �= j �= 0.

For the present application, each phenomenological model
includes two independent sources of fluctuations in the parent
distributions, either (1) temperature and transverse flow veloc-
ity or (2) longitudinal color-flux tube energy, and jet number
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and energy. In this section, parameters P and Q are used to
represent these two parameter values.

We start with a binned, single-particle density distribu-
tion on transverse momentum corresponding to an arbitrary
collision event j, given by ρ j,pt ≡ n j,pt /δpt , where n j,pt is
the number of particles from the jth event in the transverse
momentum bin at pt (subscript pt is the bin index) and δpt is
the width of the bin. We then construct the event average for
the total number of events ε in a centrality class, given by

ρ̄pt = 1

ε

ε∑
j=1

ρ j,pt = 1

ε

ε∑
j=1

n j∑
i=1

κi:pt /δpt , (1)

where n j is the number of particles in event j and κi:pt =1 if the
ith particle is emitted into the bin at pt , and is zero otherwise.
Throughout this paper, overlines denote event averages or
other mean values.

For the phenomenological models considered here, we
assume that the production mechanisms are characterized by
quantities P, Q, etc., whose values may vary within each event
and from one event to the next as explained above. Each
particle (i) in an event ( j) is assumed to be produced from
a region of the source characterized by discrete variables
Pi j, Qi j . The density distribution for event j generated by
particles produced with discrete, source variables P′ and Q′
is given by

ρ jP′Q′,pt = 1

δpt

n j∑
i=1

[κi:pt ]Pi j=P′,Qi j=Q′ , (2)

where κi:pt = 1 if the source quantities for the ith particle
equal P′ and Q′ and the particle is emitted into the bin at pt ;
otherwise it is zero. The jth event distribution is therefore

ρ j,pt =
∑
P′,Q′

ρ jP′Q′,pt (3)

and the event-averaged, binned distribution is given by

ρ̄pt = 1

ε

ε∑
j=1

∑
P′,Q′

ρ jP′Q′,pt =
∑
P′,Q′

1

ε

ε∑
j=1

ρ jP′Q′,pt . (4)

The present implementation of the phenomenological
models is in terms of the probability distributions for particle
emission from source regions having arbitrary values P′ and
Q′. These distributions are introduced in Eq. (4) using a series
of particle sums given by (dropping the primes)

NPQ ≡
∑

pt

ε∑
j=1

ρ jPQ,pt δpt , (5)

NP ≡
∑

Q

NPQ, (6)

N ≡
∑

P

NP, (7)

from which Eq. (4) becomes

ρ̄pt =
∑
P,Q

N

ε

NP

N

NPQ

NP

1

NPQ

ε∑
j=1

ρ jPQ,pt . (8)

In Eq. (7), N is the total number of accepted particles pro-
duced in all collisions in the centrality class and N/ε ≡ N̄ is
the mean multiplicity per event. Ratio NP/N is the fraction of
all particles emitted from sources with fluctuating parameter
value P. Ratio NPQ/NP is the fraction of all particles emitted
from source regions with parameter value P in which the other
fluctuating emission quantity has value Q. For the models con-
sidered here, we assume that the source emission parameters P
and Q fluctuate independently of each other, which allows the
simplifying approximation NPQ/NP ≈ NQ/N . The last ratio in
Eq. (8) defines a unit-normal, binned distribution where

ρ̂PQ,pt ≡ 1

NPQ

ε∑
j=1

ρ jPQ,pt (9)

and
∑

pt
δpt ρ̂PQ,pt = 1. Throughout this paper, the “hat” sym-

bol denotes a unit-normalized distribution.
In the BW and TCF models, the source emission param-

eters and the outgoing particle momentum are represented
with continuous variables. The continuum limits of the above
binned quantities are given by the following:

ρ̄pt → ρ̄(pt ), NP/N → dP f (P),

NQ/N → dQg(Q), ρ̂PQ,pt → ρ̂(P, Q, pt ),

where
∫

d pt ρ̂(P, Q, pt ) = 1. The single-particle density is
given by

ρ̄(pt ) = N̄
∫∫

dPdQ f (P)g(Q)ρ̂(P, Q, pt ). (10)

Similarly, the two-particle binned distribution3 for particles
labeled 1 and 2 is given by

ρ̄pt1,pt2 = 1

ε

ε∑
j=1

N̄

n j

n j − 1

n j

∑
P1,Q1

∑
P2,Q2

ρ jP1Q1,pt1ρ jP2Q2,pt2

= N̄ − 1

N̄

∑
P1,Q1

∑
P2,Q2

1

ε

ε∑
j=1

ρ jP1Q1,pt1ρ jP2Q2,pt2 , (11)

where factor (n j − 1)/n j normalizes each event to the correct
number of pairs of particles, counting both permutations,
factor N̄/n j eliminates statistical bias caused by multiplicity
variations within the centrality bin using the 	σ 2

pt :n mean-pt

fluctuation quantity derived in Ref. [17], and in the second line
the ensemble of events is restricted to have fixed multiplicity
N̄ . In Eq. (11), particle 1 is assumed to be emitted from a
region of the source where the production quantities have the
values P1 and Q1, and similarly for particle 2. Introducing pair
ratios, analogous to those in Eqs. (5)–(7), gives

NP1Q1P2Q2 ≡
∑

pt1,pt2

ε∑
j=1

ρ jP1Q1,pt1ρ jP2Q2,pt2

× δpt1δpt2 , (12)

3Throughout this paper, symbol ρ represents both single- and two-
particle distributions. The number of particle labels distinguishes the
usage.
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NP1P2 ≡
∑

Q1,Q2

NP1Q1P2Q2 , (13)

N(2) ≡
∑
P1,P2

NP1P2 , (14)

where Eq. (11) becomes

ρ̄pt1,pt2 = N̄ − 1

N̄

∑
P1,P2

∑
Q1,Q2

N(2)

ε

NP1P2

N(2)

NP1Q1P2Q2

NP1P2

× 1

NP1Q1P2Q2

ε∑
j=1

ρ jP1Q1,pt1ρ jP2Q2,pt2 . (15)

In Eq. (14), N(2) = εN̄2 is the total number of pairs in
the event ensemble, including self-pairs, when all events
have fixed multiplicity. Assuming that fluctuation parame-
ters P and Q are independent results in NP1Q1P2Q2/NP1P2 ≈
NQ1Q2/N(2). The last ratio in Eq. (15) factors into the
product of unit-normalized single-particle density distribu-
tions ρ̂P1Q1,pt1 ρ̂P2Q2,pt2 . Clearly, if NP1P2 = NP1 NP2 and NQ1Q2 =
NQ1 NQ2 , then the two-particle density in Eq. (15) factors
into a product of single-particle densities, resulting in no
correlations.

In the continuum limit, ρ̄pt1,pt2→ρ̄(pt1, pt2), NP1P2/N(2)→
dP1dP2 f (P1, P2), NQ1Q2/N(2)→dQ1dQ2g(Q1, Q2), ρ̂P1Q1,pt1→
ρ̂(P1, Q1, pt1), and similarly for particle 2. The two-particle
density in the continuum limit is therefore

ρ̄(pt1, pt2) = N̄ (N̄ − 1)
∫∫∫∫

dP1dP2dQ1dQ2 f (P1, P2)

×g(Q1, Q2)ρ̂(P1, Q1, pt1)ρ̂(P2, Q2, pt2). (16)

In the following sections, explicit functional models are pre-
sented for the single-particle distributions and the emitting
source parameter distributions.

III. BLAST-WAVE MODEL WITH FLUCTUATIONS

A. Single-particle distribution

The fluctuating blast-wave model is based on the invariant
phase-space source emission distribution of Schnedermann,
Sollfrank, and Heinz (SSH) [29] and as further developed by
Tomášik et al. [30]. In this model, the invariant momentum
distribution is calculated by integrating over the space-time
coordinates of the source function S(x, p), given by

E
d3N

d p3
= d2N

2πmt dmt dy
=

∫
dx4S(x, p)

=
∫

τdτ

∫
dηs

∫
rdr

∫
dϕS(x, p), (17)

where x, p are four-vectors, E is the total energy of the
particle, mt =

√
p2

t + m2
0 is the transverse mass, and m0 is

assumed to be the pion rest mass. Space-time coordinates
τ , ηs, r, and ϕ are the proper time, source rapidity defined
by (1/2) ln [(t + z)/(t − z)], transverse radius, and azimuthal
angle, respectively. From Ref. [30], Eq. (17) can be expressed

at midrapidity (y = 0) as

E
d3N

d p3
= τ0mt

4π2h̄3

∫ ∞

0
rdrG(r)eβμ0 I0[βpt sinh ηt (r)]

×
∫ ∞

−∞
dηs cosh ηsH (ηs)

× exp[−βmt cosh ηt (r) cosh ηs], (18)

where τ0 is the mean emission proper time, β = 1/T is the
inverse temperature, μ0 is the chemical potential, I0 is a
modified Bessel function, G(r) and H (ηs) are the transverse
and longitudinal-rapidity source distributions, and ηt (r) is the
transverse flow rapidity. The latter is defined in terms of the
transverse flow velocity vt (r), where

ηt (r) = 1

2
ln

(
1 + vt (r)

1 − vt (r)

)
, (19)

vt (r) = tanh ηt (r), and the flow velocity profile is assumed to
follow a power-law distribution given by [32]

vt (r) = a0�
nflow , � ≡ r/R0, (20)

where R0 is the transverse radius parameter of the source.
In deriving Eq. (18), Bjorken boost-invariant expansion

[30,33] was assumed, which is conventional in BW models,
where longitudinal flow rapidity equals ηs. The source dis-
tribution was assumed to be uniform on azimuth, e.g., no
cos(2φ) dependence, because the final-state particle-pair yield
in the present application is integrated over relative azimuth
intervals of either π or 2π where such correlations average
to zero. We also assumed the following in order to simplify
the model, to focus on the dominant sources of fluctuations in
the pt distribution, and to simplify the numerical integrations:
(1) the Maxwell-Boltzmann limit for the emission function,
(2) a constant chemical potential μ(r) ≈ μ0, (3) a constant
source distribution G(r) from r = 0 to maximum radius R0,
and (4) the shape of source distribution H (ηs) is taken from
measured dNch/dη distributions. For the latter, H (ηs) is taken
to be symmetric about ηs = 0 for symmetric collision systems
and is represented by a modified Woods-Saxon distribution
given by

H (ηs) = H (|ηs|) = Ns
1 + w|ηs|2

1 + exp[(|ηs| − ηsr )/ηst ]
, (21)

where Ns is a normalization constant and parameters w, ηsr

(source range), and ηst (source end-point thickness) were
fitted to the dNch/dη distributions for minimum-bias Au+Au
collisions at

√
sNN = 200 GeV reported by the PHOBOS Col-

laboration [34]. Parameter values w = 0.02, ηsr = 3.45, and
ηst = 0.73 approximately describe the shapes of these data at
each measured centrality.

For applications to correlations on transverse momentum,
it is beneficial to display results on transverse rapidity, given
by yt = ln[(pt + mt )/m0] at midlongitudinal rapidity, where
pt = m0 sinh(yt ). Plotting the correlations on transverse ra-
pidity, rather than pt , enhances the visual access to corre-
lation structures at both lower and higher pt . In addition,
transverse rapidity is an additively boost-invariant coordinate
which facilitates studies of transverse fragmentation, i.e., jets.
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The single-particle distribution on yt at y = 0 (longitudinal
midrapidity) is given by

d2N

dyt dη
= 2π pt

d pt

dyt

dy

dη

(
d2N

2πmt dmt dy

)

= 2π p2
t

(
d2N

2πmt dmt dy

)
, (22)

where mt dmt = pt d pt and η = limm0→0 y is pseudorapidity.
Jacobians d pt/dyt and dy/dη equal mt and pt/mt , respec-
tively, at midrapidity. The quantity in parentheses in Eq. (22)
is either taken from experiment or calculated in the blast-wave
model.

A collection of collision events within a centrality bin
can be expected to have fluctuating properties due to fluctu-
ating initial conditions [35,36] and the stochastic nature of
the system evolution from the initial impact to final kinetic
decoupling. Within the context of the BW model, we would
therefore expect the source geometry, freeze-out temperature,
and transverse flow to fluctuate from event to event. Further-
more, due to nonuniform initial conditions, the temperature
and flow fields within each collision environment might also
vary relative to the smooth, analytic distribution assumed in
Eq. (18). Fluctuations in τ0, G, H , μ0, β, and ηt are therefore
possible.

To account for these fluctuations, we calculate the en-
semble average of eventwise fluctuating BW distributions for
unidentified, charged particles within midrapidity acceptance
	η (e.g., 	η = 2 for the STAR Time Projection Chamber
(TPC) tracking detector [37]). The measured and BW model
charged-particle density distributions are related as follows,

ρ̄ch(yt ) = 	η
d2Nch,exp

dyt dη

= 	η
1

ε

ε∑
j=1

d2NBW, j

dyt dη
+ δρ̄(yt )

≡ 1

ε

ε∑
j=1

ρBW, j (yt ) + δρ̄(yt )

≡ ρ̄BW(yt ) + δρ̄(yt ), (23)

where the measured charged-particle distribution is intro-
duced in the first line. In Eq. (23), the summation includes
ε collision events within a centrality event class and δρ̄(yt ) is
the residual between the BW model and the spectrum data.
Quantities ρ̄ch(yt ) and ρ̄BW(yt ) give the event-average number
of charged-particles per yt bin and are normalized to the
measured number of charged particles produced within the
acceptance, yt ∈ [ytmin , ytmax ], 	η, and 2π in azimuth.

Event averaging over τ0 and μ0 do not affect the shape of
the distribution ρ̄BW(yt ), and calculations show that fluctua-
tions in G(r), or in radius R0, and in H (ηs) produce minor
effects relative to those generated by fluctuations in β and
ηt (r). We therefore fix τ0, μ0, G(r), and H (ηs) and only allow
β and ηt (r) to fluctuate from event to event as well as within
the source distribution of each collision. Flow fluctuations
are introduced by allowing the transverse flow rapidity to
fluctuate about its nominal value where in the following

calculations ηt (r) in Eq. (19) is replaced with ηt0ηt (r), where
ηt0 is a random variable sampled from a peaked distribution
whose variance is an adjustable parameter.

The BW distribution in Eq. (23), with fluctuating tempera-
ture and transverse flow, is given by

ρ̄BW(yt ) = N̄
∫

dβ f (β, β̄, qβ )

×
∫

dηt0g(ηt0, η̄t0, σηt )ρ̂(β, ηt0, yt ) (24)

using the steps in Sec. II, where fluctuations in inverse tem-
perature and transverse flow rapidity sample the probability
densities f (β, β̄, qβ ) and g(ηt0, η̄t0, σηt ), respectively. Both
are assumed to be peaked distributions whose mean and
variances are determined by parameters β̄, qβ, η̄t0, and σηt .

In applying the blast-wave model with fluctuating β and
ηt0, it was assumed that the regions of the source where β

and ηt0 are greater than or smaller than the respective means
are uniformly and randomly distributed. With this assumption,
the summations in Eq. (8), for arbitrary values of β and
ηt0, uniformly sample the entire source volume such that
the resulting invariant momentum distribution is given by
Eq. (18) when calculated with those specific β and ηt0 values.
Calculations of the emitted particle pt spectrum from sources
with either correlated β and ηt0 fluctuations or with position
correlated β, ηt0 fluctuations require microscopic models or
Monte Carlo simulations, e.g., EPOS [35] and NEXSPHERIO

[38], both of which are well beyond the scope and intent of
the present phenomenological study.

In Ref. [22], it was shown that the transverse momen-
tum spectrum data from relativistic heavy-ion collisions can
be accurately described for pt < 5 GeV/c when the inverse
temperature β of a Maxwell-Boltzmann (MB) distribution,
exp[−β(mt − m0)], is convoluted with a γ distribution. The
unit-normal γ distribution is given by

fγ (β, β̄, qβ ) = qβ

β̄�(qβ )

(
βqβ

β̄

)qβ−1

e−βqβ/β̄ , (25)

where β̄ is the mean and 1/qβ is the relative variance σ 2
β /β̄2.

The above convolution integral gives [22]∫ ∞

0
dβ fγ (β, β̄, qβ )e−β(mt −m0 )

= [1 + β̄(mt − m0)/qβ]−qβ , (26)

a Levy distribution [39].
The transverse flow rapidity scale parameter was assumed

to follow a similar peaked distribution except with a sup-
pressed long-range tail which helps the numerical integra-
tions converge. The distribution was chosen to be a modified
Gaussian given by

g(ηt0, η̄t0, σηt ) = Ngηt0 exp

[
−1

2

(
ηt0 − η̄t0

σηt

)2
]
, (27)

where η̄t0 = 1 (fixed) and Ng normalizes the distribution to
unity over the domain ηt0 ∈ [0,∞].
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FIG. 1. Fluctuating blast-wave model fits to the 200 GeV Au+Au minimum-bias pt spectrum data from STAR [40] showing only the
60–80%, 20–30%, and 0–5% centrality results. Yields are shown as quantity dNch/dyt versus transverse rapidity yt as defined in the text,
assuming pseudorapidity acceptance 	η = 2. Linear (upper row) and semilog (lower row) plots are shown for the same data and curves to
allow visual access to both lower and higher yt fit results. Fit results assuming the full, nonflowing, and nonfluctuating BW models are shown
by the solid, dashed, and dotted curves, respectively, as explained in the text.

The final form of the fluctuating blast-wave single-particle
distribution is given by

ρ̄BW(yt ) = N̄
∫ ∞

0
dβ fγ (β, β̄, qβ )

×
∫ ∞

0
dηt0g

(
ηt0, η̄t0, σηt

)
ρ̂BW(β, ηt0, yt ),

(28)

where

ρ̂BW(β, ηt0, yt ) = Nmt p2
t

τ0R2
0G0	η

2π h̄3

×
∫ 1

0
�d�eβμ0 I0[βpt sinh ηt (�)]

×
∫ ∞

−∞
dηs cosh ηsH (ηs)e−βmt cosh ηt (�) cosh ηs .

(29)

Constant N ensures that ρ̂BW(β, ηt0, yt ) is normalized to unity
in the domain yt ∈ [ytmin , ytmax ]. To compare with experiment,
Eq. (29) was calculated at the yt bin centers. In Eq. (29),
the ηs integration was done numerically for discrete values
of βmt cosh ηt (�) and saved for later interpolation during the
three-dimensional (3D) numerical integration over variables
β, ηt0, and �. Integration limits and step sizes were studied
to ensure sufficiently accurate convergence in the calculated
yt spectrum relative to the statistical errors in the data. The fit
parameters in the single-particle BW model are β̄ and qβ in
Eq. (25), a0 and nflow in Eq. (20), and σηt in Eq. (27), where
N̄ is taken from data. These fit parameters control the mean
temperature and transverse flow profile plus the temperature
and flow fluctuations.

The blast-wave model was applied to the charged parti-
cle pt spectra data for Au+Au minimum-bias collisions at√

sNN = 200 GeV measured by the STAR Collaboration [40]
for collision centralities 0–5%, 5–10%, 10–20%, 20–30%,
30–40%, 40–60%, and 60–80%. These data were fitted within
the yt range from 1.34 to 4.36, corresponding to pt from 0.25
to 5.5 GeV/c. Three sets of fits were done in which (1) the full
BW model was used where the five parameters above were
freely varied, (2) a nonflowing (a0 = 0), thermal fluctuation
model was used, and (3) a nonfluctuating, pure BW model was
used where qβ = σηt = 0 while β̄, a0, and nflow were freely
varied. Best fits were based on minimum χ2.

Quantitative descriptions of the data were obtained for all
centralities using the full blast wave. Examples are shown
in Fig. 1 for the 60–80%, 20–30%, and 0–5% centralities
where fits produced by the full BW, the nonflowing thermal
fluctuation BW, and the nonfluctuating BW are shown by the
solid, dashed, and dotted curves, respectively. The BW model
fit parameter values for all centralities and for each of the three
model scenarios are listed in Table I. The residuals, δρ̄(yt ) in
Eq. (23), for the full BW model fits are of order 5% or less
throughout the yt and centrality ranges studied here.

The full BW model accurately describes the data over the
entire yt range considered in this analysis. The nonflowing,
thermal fluctuation BW model overestimates the mode (peak
position) but accurately describes the data at larger yt . The
nonfluctuating BW model overestimates the peak position by
an even larger amount and underestimates the data at low yt

less than 1.5 and at the largest yt bin considered here.
Typical, nonfluctuating blast-wave model fits to pt spec-

trum data produce results where the temperature decreases
and the average flow velocity increases with centrality [24].
In the present BW model application, the average flow ve-
locity increases slightly with centrality, but the fitted temper-
ature also increases. It should be noted that in the present
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TABLE I. Blast-wave fit model parameters for the 200-GeV Au+Au minimum-bias pt spectrum data from STAR [40] for the full BW
model, the nonflowing BW, and the nonfluctuating BW as explained in the text. Data were fitted in the yt range from 1.34 to 4.36 using 30 data
points at each centrality. Temperature (T in GeV) equals 1/β. Average transverse flow velocity v̄t equals 2a0/(nflow + 2) in units where c = 1.

Centrality Full BW No flow BW No fluct. BW

(%) T (GeV) qβ a0 nflow σηt v̄t
χ2

DoF T (GeV) qβ
χ2

DoF T (GeV) a0 nflow v̄t
χ2

DoF

0–5 0.110 20.2 0.68 0.49 0.051 0.55 2.10 0.172 16.1 2.38 0.184 0.76 5.8 0.20 6.54
5–10 0.112 19.8 0.66 0.47 0.065 0.53 1.92 0.169 15.6 2.23 0.180 0.76 5.0 0.22 5.45
10–20 0.110 18.7 0.68 0.57 0.033 0.53 1.34 0.166 14.8 2.04 0.180 0.77 5.2 0.21 4.00
20–30 0.105 17.5 0.70 0.60 0.018 0.54 1.01 0.162 14.1 1.66 0.186 0.78 7.0 0.17 4.12
30–40 0.103 16.7 0.70 0.64 0.043 0.53 1.26 0.157 13.5 1.85 0.172 0.80 5.5 0.21 4.72
40–60 0.100 15.3 0.47 0.04 0.38 0.46 0.64 0.144 12.2 1.15 0.172 0.82 7.5 0.17 3.00
60–80 0.082 12.9 0.75 0.89 0.02 0.52 0.56 0.129 11.1 1.08 0.162 0.84 8.2 0.16 3.13

application the fitting is performed over a larger pt range
than is usually addressed with blast-wave models [24] and the
additional effects of fluctuations are included.

The results in Table I illustrate the risk associated with
relying on nonfluctuating models to infer physical properties
of the medium. The temperatures and transverse flow ve-
locities inferred with the nonfluctuating BW model fits are
approximately twice and one-half, respectively, the values
inferred with the full, fluctuating BW model. At a minimum,
eventwise fluctuating BW models, or event-by-event hydrody-
namic models, e.g., EPOS [35] and NEXSPHERIO [38], should
be used in such analyses. Ideally, both the spectrum and
correlation data should be fit simultaneously.

B. Two-particle distribution

Two-particle distributions were calculated by summing
over all pairs of particles from the same collision (same-event
pairs denoted “se”) for all events within a given centrality
range. In the BW model, arbitrary pairs are emitted from two
arbitrary regions of the source which are characterized by
inverse temperature and transverse flow rapidity parameters
(β1, ηt01 ) and (β2, ηt02 ), respectively. Correlations arise when
the distributions of (β1, ηt01 ) versus (β2, ηt02 ) are correlated
[22] (see Sec. II). Correlated fluctuations between β and
ηt0 are not considered here; only (β1, β2) and (ηt01 , ηt02 )
correlated fluctuations are included in the present model, both
for computational simplicity and in lieu of credible models of
4D (β1, ηt01 , β2, ηt02 ) correlated fluctuations.

The two-particle, same-event BW density distribution,
using Eqs. (11) and (23), is given by

ρ̄BW,se(yt1, yt2) = N̄ − 1

N̄

1

ε

ε∑
j=1

[ρBW, j (yt1) + δρ̄(yt1)]

× [ρBW, j (yt2) + δρ̄(yt2)]

= N̄ − 1

N̄

1

ε

ε∑
j=1

[ρBW, j (yt1)ρBW, j (yt2)

+ ρBW, j (yt1)δρ̄(yt2)

+ ρBW, j (yt2)δρ̄(yt1) + δρ̄(yt1)δρ̄(yt2)].

(30)

The event averages in the second and third terms are calcu-
lated as in the preceding subsection. The last term is simply
[(N̄ − 1)/N̄]δρ̄(yt1)δρ̄(yt2). The first term can be expanded as
in Sec. II and is given by

ρ̄ ′
BW,se(yt1, yt2)

≡ N̄ (N̄ − 1)
∫ ∫

dβ1dβ2 f (β1, β2)

×
∫ ∫

dηt01 dηt02 g(ηt01 , ηt02 )

× ρ̂BW(β1, ηt01 , yt1)ρ̂BW(β2, ηt02 , yt2). (31)

In the absence of temperature correlations, f (β1, β2) is
simply a product of γ distributions for particles 1 and 2. This
uncorrelated product of γ distributions can be expressed in
terms of the sum and difference variables [22] β� = β1 + β2

and β	 = β1 − β2, and is given by

fγ (β1, β̄, qβ ) fγ (β2, β̄, qβ ) = fγ (β�, 2β̄, 2qβ ) f̃ (β�, β	, qβ ),

(32)

where

f̃ (β�, β	, qβ ) = �(2qβ )

�(qβ )2

1

22(qβ−1)

1

β�

(
1 − β2

	

β2
�

)qβ−1

(33)

and � is the � function. Parameters β̄ and relative variance
σ 2

β /β̄2 = 1/qβ were determined by fitting the single-particle
distributions (Table I).

When the source temperatures at arbitrary emission sites
are correlated, the 2D distribution of β1 and β2 values for all
particle pairs in the event collection has positive covariance
as shown in the diagram in Fig. 2. Correlated temperature
emission can be introduced in Eq. (33) by allowing the relative
variances along the β� and β	 directions to independently
vary. We therefore define

f (β1, β2) ≡ fγ
(
β�, 2β̄, 2qβ�

)
f̃ (β�, β	, qβ	

). (34)

The correlation data will be fitted by adjusting the relative
variances along the β� and β	 directions, σ 2

β�,	
/β̄2, as shown

in Fig. 2. The shifts in the relative variances are defined by
parameters 	(1/q)� and 	(1/q)	, respectively, where

	(1/q)� = 1/qβ�
− 1/qβ,

	(1/q)	 = 1/qβ	
− 1/qβ. (35)
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FIG. 2. Diagrammatic representation of a 2D scatter plot of the
inverse temperatures (β1 and β2) for all pairs of particles (1,2) emit-
ted from all events in a typical centrality bin. The dashed circle (solid
ellipse) represents the 1-σ contour of an uncorrelated (correlated)
distribution. The mean and 1σ width of the uncorrelated distribution
are denoted by β̄ and σβ . Widths and changes in widths along the
β� and β	 directions for the correlated distribution are denoted by
σβ�

, δσ� and σβ	
, δσ	, respectively.

If 	(1/q)� > 	(1/q)	, then the β emissions are correlated
and if 	(1/q)� < 	(1/q)	, then they are anticorrelated.
Results are more conveniently reported as the combinations

	(1/q)Vol ≡ [	(1/q)� + 	(1/q)	]/2

=
(
σ 2

β�
− σ 2

β

)
2β̄2

+
(
σ 2

β	
− σ 2

β

)
2β̄2

,

	(1/q)cov ≡ [	(1/q)� − 	(1/q)	]/2

= σ 2
β�

− σ 2
β	

2β̄2
, (36)

where 	(1/q)Vol measures the overall (volume) change in
width of the 2D (β1, β2) distribution and 	(1/q)cov indicates
the covariance.

Similarly, the transverse flow rapidity scale parameter 2D
distribution can be written as a product of the single-particle
distributions g(ηt0, η̄t0, σηt ). The product can be expressed in
terms of sum and difference variables ηt0�,	

= ηt01 ± ηt02 , and
the variances along ηt0�

and ηt0	
can be varied in order to fit

the correlation data. The resulting correlated, transverse-flow
rapidity scale parameter distribution is given by

g(ηt01 , ηt02 ) ≡ g2
(
ηt01 , ηt02 , η̄t0, σηt� , σηt	

)

= Ng2ηt01ηt02 exp

⎧⎨
⎩−1

2

⎡
⎣(

ηt0�
− 2η̄t0√
2σηt�

)2

+
(

ηt0	√
2σηt	

)2
⎤
⎦
⎫⎬
⎭, (37)

where Ng2 normalizes the 2D distribution to unity, the widths
are defined as σηt� ≡ σηt + 	ηt /2 and σηt	 ≡ σηt − 	ηt /2, η̄t0

is fixed to 1, and parameter σηt was determined by fitting the
single-particle distributions (Table I).

Using Eqs. (29), (34), and (37) in Eq. (31) gives the 4D
integration result

ρ̄ ′
BW,se(yt1, yt2) = N̄ (N̄ − 1)

∫∫
dβ1dβ2 fγ

(
β�, 2β̄, 2qβ�

)
× f̃ (β�, β	, qβ	

)
∫∫

dηt01 dηt02

× g2
(
ηt01 , ηt02 , η̄t0, σηt� , σηt	

)
× ρ̂BW

(
β1, ηt01 , yt1

)
ρ̂BW

(
β2, ηt02 , yt2

)
.

(38)

The same numerical integration ranges and step sizes used for
the single-particle BW calculation were used in the numerical
integration in Eq. (38).

C. Two-particle correlation

By definition, the two-particle correlations contained in the
two-particle, BW distribution in Eq. (38) equal the difference
between it and the product of marginals, where

ρ̄BW,marg(yt1) ≡ 1

N̄ − 1

∫
dyt2ρ̄

′
BW,se(yt1, yt2) (39)

with normalization
∫

dyt1ρ̄BW,marg(yt1) = N̄ . To ensure con-
sistency with the single-particle measurements, we also re-
quire the marginal of the entire two-particle distribution in
Eq. (30) to equal the measured charge distribution ρ̄ch(yt )
in Eq. (23). However, in order to fit the correlation data,
the variances in the inverse temperature and transverse flow
rapidity, 	(1/q)Vol,cov and 	ηt , were freely varied, resulting in
marginals which may not precisely equal ρ̄BW(yt ) in Eq. (23).
This condition requires an adjusted residual δρ̄ ′(yt ) defined
by

δρ̄ ′(yt ) ≡ ρ̄ch(yt ) − ρ̄BW,marg(yt ). (40)

The adjusted residual is normalized such that
∫

dytδρ̄
′(yt ) =

0 because both ρ̄ch and ρ̄BW,marg are normalized to N̄ . Accept-
able BW correlation model fits should not only describe the
correlation data but should maintain a small residual such that
δρ̄ ′(yt ) � ρ̄ch(yt ).

The complete two-particle distribution, whose marginal
equals the measured single-particle charge distribution, must
be adjusted from the original form in Eq. (30). The adjusted
distribution is given by

ρ̄BW,se(yt1, yt2) = ρ̄ ′
BW,se(yt1, yt2) + N̄ − 1

N̄

× [ρ̄BW,marg(yt1)δρ̄ ′(yt2) + ρ̄BW,marg(yt2)

× δρ̄ ′(yt1) + δρ̄ ′(yt1)δρ̄ ′(yt2)], (41)

where the pair normalization factor (N̄ − 1)/N̄ from Eq. (30)
was applied to the last three terms. The uncorrelated reference
pair distribution is defined as the product of marginals of
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ρ̄BW,se(yt1, yt2) in Eq. (41), which is given by

ρ̄BW,ref (yt1, yt2) = N̄ − 1

N̄
[ρ̄BW,marg(yt1)ρ̄BW,marg(yt2) + ρ̄BW,marg(yt1)δρ̄ ′(yt2) + ρ̄BW,marg(yt2)δρ̄ ′(yt1) + δρ̄ ′(yt1)δρ̄ ′(yt2)]

= N̄ − 1

N̄
ρ̄ch(yt1)ρ̄ch(yt2), (42)

where the pair normalization factor (N̄ − 1)/N̄ must also be applied to the reference as shown in Ref. [17]. The per-pair
normalized correlation is finally given by

	ρ̄BW

ρ̄BW,ref
(yt1, yt2) ≡ ρ̄BW,se(yt1, yt2) − ρ̄BW,ref (yt1, yt2)

ρ̄BW,ref (yt1, yt2)
= ρ̄ ′

BW,se(yt1, yt2) − N̄−1
N̄ ρ̄BW,marg(yt1)ρ̄BW,marg(yt2)

ρ̄BW,ref (yt1, yt2)
. (43)

D. Correlation prefactor

The final BW correlation quantity to be compared with
data includes a prefactor corresponding to that applied to the
data [14]. In general, the purpose of a correlation prefactor
is to replace the pair ratio in Eq. (43), which is required in
data analysis to correct for efficiency and acceptance, with a
quantity better suited to the study of specific scaling trends,
e.g., binary scaling, per-trigger scaling, etc. A prefactor may
also be required by the specific charge-pair combinations
used, and the relative pseudorapidity and/or azimuthal angle
selections.

In the present model, the specific purposes of the cor-
relation prefactor are (1) to convert the number of corre-
lated pairs per final-state pair quantity in Eq. (43) to a
number of correlated pairs per final-state particle ratio as
in Pearson’s correlation coefficient [14,41]; (2) to scale this
“pairs per singles” ratio to account for the fact that only
one-half of the available charged-particle pairs are included
when selecting only the away-side pairs whose relative az-
imuth angle |φ1 − φ2| exceeds π/2 (away-side pairs were
selected for the analytical model fitting in Ref. [13], and
in the present analysis, in order to suppress contributions
from HBT correlations [22]); and (3) to provide an overall
normalization which facilitates tests of binary scaling in the
correlation structures. The last requirement can be achieved
by using the soft-QCD process particle yield, as estimated
in the Kharzeev-Nardi [31] two-component model. In the
KN model, soft-QCD yields are proportional to Npart, where
Npart is the number of participant nucleons in the heavy-ion
collision. If the number of correlated pairs in the numerator
is proportional to the number of binary nucleon + nucleon
(N + N) interactions, Nbin, then the resulting correlation quan-
tity will be proportional to Nbin/Npart. Ratio Nbin/Npart is
proportional to centrality measure ν ≡ Nbin/(Npart/2) [27].
Correlation structures which scale with Nbin will linearly
increase with centrality measure ν and can therefore be readily
identified.

For the present study, we use a charge-independent
(CI, all charge-pair combinations), away-side azimuth (AS,
|φ1 − φ2| > π/2), soft-process particle production prefactor,
PAS−CI

Fac,soft (yt1, yt2). The final correlation quantity is given by

	ρ̄BW√
ρ̄soft

(yt1, yt2) ≡ PAS−CI
Fac,soft (yt1, yt2)

	ρ̄BW

ρ̄BW,ref
(yt1, yt2), (44)

where the prefactor is defined and calculated in Appendix A
and the last quantity is given in Eq. (43).

IV. TWO-COMPONENT FRAGMENTATION
MODEL WITH FLUCTUATIONS

A. Single-particle distribution

The two-component fragmentation model presented here is
based on the two-component multiplicity production model of
Kharzeev and Nardi [31], discussed briefly in the preceding
section. In this model, particle production is assumed to be
dominated by two processes which scale with either Npart

or Nbin. The relevance of this model in the description of
the peaked correlation structures on (pt1, pt2) from p + p
collisions was discussed in Refs. [7,25]. In the KN model, the
particle yield N within some (η, φ) acceptance is given by

N = npp(1 − xKN)Npart/2 + nppxKNNbin, (45)

where npp = 4.95 is the charged-particle yield in
√

s =
200 GeV nonsingly diffractive, minimum-bias p + p colli-
sions at midrapidity within acceptance 	η = 2, full 2π az-
imuth, and pt > 0.15 GeV/c [42]. Parameter xKN is approx-
imately 0.1 [42] for charged-particle production in

√
sNN =

200 GeV minimum-bias Au+Au collisions within the preced-
ing acceptance.

In the present application, we assume the Npart-scaling pro-
duction derives from soft-QCD, longitudinal fragmentation of
color-flux tubes [36]. Similarly, the Nbin-scaling production
corresponds to semihard (few GeV) and hard (few tens of
GeV) QCD, transversely fragmenting partons, or jets. For
the present application, the Nbin-scaling production is dom-
inated by the lower energy, semihard part of the spectrum
[3]. Fluctuations are included in the following: (1) the pt -
distribution shape, e.g., overall slope parameter βcs, for the
charged-particle production from each longitudinally frag-
menting color string [1,36]; (2) the energy of each semihard
scattered parton and resulting jet; and (3) the relative number
of “soft” and “semihard” produced particles per event.

For a collection of collision events within a centrality bin,
the mean charged-particle yield in this model is given by

ρ̄ch(yt ) = ρ̄s(yt ) + ρ̄h(yt ) + δρ̄(yt ) (46)

for “soft,” “hard,” and residual components, respectively.
The soft-component production occurs via fragmentation of
longitudinal color strings [1], which are assumed to produce
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MB pt distributions with fluctuating slope parameter βcs. As
in the BW model, we assume the probability distribution of
parameter βcs is given by a γ distribution, such that

ρ̄s(yt ) = N̄s

∫
dβcs fγ (βcs, β̄cs, qβcs )ρ̂s(βcs, yt ) (47)

using the steps in Sec. II, where unit-normalized density
ρ̂s(βcs, yt ) ∝ exp[−βcs(mt − m0)]. The resulting Levy distri-
bution in Eq. (47) can be equated to the soft-production
particle spectrum estimated in Appendix A, given by

ρ̄s(yt ) = 	η
d2Nch,soft

dyt dη
. (48)

The mean multiplicity N̄s in Eq. (47) is determined by the
parameters in Table V in Appendix A.

The semihard component yield is produced by fragmenting
partons (jets) whose total energy fluctuates from jet to jet. The
jet energy is represented in terms of the maximum possible
transverse rapidity, ymax, of its final-state fragment particles.
The probability distribution of ymax is given by QCD power-
law distribution ĝ(ymax), defined in Ref. [3] and given below.
The fragment distribution on yt for given jet parameter ymax

is ρ̂h(ymax, yt ), which is also defined below. Using the steps
in Sec. II, the event-average semihard single-particle yield
distribution is given by

ρ̄h(yt ) = N̄h

∫ ∞

0
dymaxĝ(ymax)ρ̂h(ymax, yt )

≡ ρ̄[g](yt ), (49)

where in the last line we define the convolution integral with
symbol ρ̄[g](yt ) for later use.

Quantity ĝ(ymax) is the probability distribution for produc-
ing particles from a jet with maximum fragment rapidity ymax

in a N + N collision. In Ref. [3], this quantity is given by

a QCD power-law distribution with low momentum cutoff,
multiplied by a quadratic yield increase factor (ymax − ymin)2

where ymin is an empirical fitting parameter given in Ref. [3].
The quadratically increasing yield results from the approxi-
mate shape-invariant evolution of the distribution of jet frag-
ments observed at LEP in inclusive e+ + e− → jet(Q2) + X
production over a wide range of jet energies [3,43]. Probabil-
ity distribution ĝ(ymax) is therefore proportional to [3]

ĝ(ymax)

∝ 1

2
σdijet (nQCD − 2)

{
tanh

(
ymax − ycut

ξcut

)
+ 1

}

×e−(nQCD−2)(ymax−ycut )(ymax − ymin)2, (50)

where σdijet = 2.5 mb at
√

s = 200 GeV, and from Ref. [3]
nQCD = 7.5, ymin = 0.35, and low-momentum cutoff param-
eters are ycut = 3.75 and ξcut = 0.1.

Particle distribution ρ̂h(ymax, yt ) is proportional to the dis-
tribution deduced in Ref. [3] for e+ + e− → jet + X mul-
tiplied by a low-momentum jet-fragment suppression factor
determined by analyzing the jet fragment distributions from
p + p̄ → jet + X collisions [44]. Quantity ρ̂h(ymax, yt ) from
Ref. [3] is proportional to

ρ̂h(ymax, yt ) ∝ tanh

(
yt − y0

ξy

)
uλ−1(1 − u)ω−1

B(λ, ω)
(51)

for ymax � yt � y0, where the last factor is a normalized β

distribution with

u ≡ yt − ymin

ymax − ymin
, u ∈ [0, 1]. (52)

Quantity B(λ, ω) = �(λ)�(ω)/�(λ + ω), where � is the �

function.
Collecting terms, the above semihard process single-

particle distribution becomes

ρ̄h(yt ) = N̄hNh

∫ ∞

0
dymax

1

2
σdijet (nQCD − 2)

{
tanh

(
ymax − ycut

ξcut

)
+ 1

}

× e−(nQCD−2)(ymax−ycut )(ymax − ymin)2 tanh

(
yt − y0

ξy

)∣∣∣∣
yt�y0

uλ−1(1 − u)ω−1

B(λ, ω)

∣∣∣∣
ymin�yt�ymax

(53)

where Nh normalizes the integral of ρ̄h(yt ) over all yt bins to
N̄h. Quantities in Eq. (53) are calculated at the midpoints of
the yt bins when comparing with data.

The two-component fragmentation model was applied to
the charged-particle pt spectrum data discussed in Sec. III.
The semihard process particle production model in Eq. (53)
was fitted to the difference distribution ρ̄ch(yt ) − ρ̄s(yt ) in the
yt range from 1.34 to 4.36 as before by varying parameters
nQCD, the jet production cutoff ycut, the soft-fragment cutoff
y0 = ξy, and fragment distribution parameters λ and ω in
Eq. (51). Better fits were achieved by variation of the shape
of the fragment distribution, via parameters λ and ω, than
were obtained by varying the cutoff parameter y0. The latter
parameter was subsequently fixed to zero.

Best fits were attained via χ2 minimization. Quantita-
tive descriptions of the semihard component spectrum at
the maximum peak and in the higher momentum tails were
achieved for each centrality. Example fits to ρ̄ch(yt ) are shown
in Fig. 3 for the 60–80%, 20–30%, and 0–5% centralities.
The TCF model parameters are listed for all centralities in
Table II. Parameter nQCD increases slightly and smoothly
with centrality, increasing above the value (7.5) estimated in
Ref. [3]. Jet production cutoff parameter ycut is approximately
constant and larger than the value (3.75) in Ref. [3]. The
modifications of the fragment distribution [β distribution in
Eq. (51)] relative to the nominal shape from Ref. [3] are
also shown in the lower row of panels. The trends imply a
softening of the fragment distribution (suppression at higher
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FIG. 3. Fluctuating TCF model fits to the 200-GeV Au+Au minimum-bias pt spectrum data from STAR [40] (see text) showing only the
60–80%, 20–30%, and 0–5% centrality results. Combined soft plus semihard process yields are shown as quantity dNch/dyt versus transverse
rapidity yt , assuming pseudorapidity acceptance 	η = 2. Linear (upper row) and semilog (middle row) plots are shown for the same data and
model fits to allow visual access to the fit quality in both the lower and higher yt ranges. Modifications to the fragment distribution for each
centrality are shown in the lower row of panels where the nominal (solid lines) [3] and fitted (dashed lines) normalized β distributions are
plotted vs transverse rapidity scaling variable u in Eq. (52).

pt ) coupled with a suppression at lower momentum relative to
that observed in e+ + e− → jet + X , which was discussed in
Ref. [3] and which quickly develops with increasing collision
centrality. The residuals vary from � 2% to � 4% of the
charged-particle distribution from peripheral to most-central
collisions, respectively, for yt < 3. The residuals increase in

TABLE II. TCF model fit parameters for the 200-GeV Au+Au
minimum-bias pt spectra data from STAR [40] within 	η = 2 units
acceptance. Data were fit in the yt range from 1.34 to 4.36 using
30 data points at each centrality. Fit quality was insensitive to soft-
fragment cutoff parameter y0, which was subsequently set to zero.

Centrality(%) N̄s N̄h nQCD ycut λ ω χ 2/DoF

0–5 649.2 479.5 9.1 4.3 5.6 6.9 1.632
5–10 555.1 354.9 9.0 4.3 5.9 7.0 1.823
10–20 433.1 256.7 8.55 4.35 5.95 7.3 1.042
20–30 308.4 160.0 8.35 4.4 6.2 7.6 0.957
30–40 215.2 98.8 8.1 4.45 6.25 7.85 1.266
40–60 110.8 53.4 7.6 4.3 4.7 6.4 0.665
60–80 36.1 16.6 7.15 4.25 3.5 5.7 0.410

relative magnitude at larger yt > 3, varying from � 3% to
� 7% of the charged-particle distribution from peripheral to
most central collisions, respectively.

Conventional, theoretical applications of the TCF frame-
work include eventwise fluctuations which cause the pt spec-
tra to vary event by event, resulting in nonzero correlations
on transverse momentum. The Monte Carlo code HIJING

[23], which combines the LUND model [1] and PYTHIA

[2], includes fluctuating particle production from fragmenting
color strings and minijets. AMPT [45] incorporates eventwise
fluctuating initial conditions from HIJING and then includes
stochastic parton propagation and interactions followed by
hadronization.

B. Two-particle distribution

In the two-component fragmentation model, the two-
particle distribution is generated by emissions from multiple
color strings and from multiple jets in each heavy-ion colli-
sion. These processes are characterized by pt slope parameters
βcs1 and βcs2 and by jet parameters ymax1 and ymax2 for arbi-
trary particles 1 and 2, respectively. Correlations arise when
the event-average probability distributions on (βcs1 , βcs2 ) and
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(ymax1 , ymax2 ) are correlated. For example, a pair of particles
emitted from the same color string, or from the same jet, are
correlated in the sense that they share the same βcs or ymax,
respectively. In the present application, correlated fluctuations
between color string βcs and jet ymax are not included as these
are defined to be independent processes in this model. The
two-particle same-event pair distribution in this model is given
by

ρ̄TCF,se(yt1, yt2)

= N̄ − 1

N̄

1

ε

ε∑
j=1

[ρs, j (yt1) + ρh, j (yt1) + δρ̄(yt1)]

×[ρs, j (yt2) + ρh, j (yt2) + δρ̄(yt2)] (54)

= N̄ − 1

N̄

1

ε

ε∑
j=1

{ρs, j (yt1)ρs, j (yt2) + ρh, j (yt1)ρh, j (yt2)

+ [ρs, j (yt1)ρh, j (yt2) + ρs, j (yt2)ρh, j (yt1)]

+ δρ̄(yt1)[ρs, j (yt2) + ρh, j (yt2)]

+ δρ̄(yt2)[ρs, j (yt1) + ρh, j (yt1)] + δρ̄(yt1)δρ̄(yt2)}
≡ ρ̄ss + ρ̄hh + ρ̄sh + ρ̄hs + ρ̄δ. (55)

The color-string term, ρ̄ss, can be expanded as in Sec. II, where

ρ̄ss(yt1, yt2) ≡ N̄ − 1

N̄

N(2)s

ε

∫∫
dβcs1 dβcs2 f

(
βcs1 , βcs2

)
× ρ̂s

(
βcs1 , yt1

)
ρ̂s

(
βcs2 , yt2

)
. (56)

The average number of soft-particle pairs is

N(2)s

ε
= N̄2

s + σ 2
s , (57)

where σ 2
s is the variance of the eventwise fluctuation in the

number of particles emitted by color-string fragmentation.
Correlated distribution f (βcs1 , βcs2 ) is the same as in Eq. (34)
and ρ̂s(βcs, yt ) is the unit-normalized MB distribution intro-
duced in Eq. (47). The integral in Eq. (56) is given in Ref. [22]
in terms of single-particle MB distributions on transverse
mass mt , where single-particle distributions on kinematic
variables pt , mt , and yt are related by

d2N

dyt dη
= 2π pt

d pt

dyt

d2N

2π pt d pt dη
= 2π pt mt

d2N

2πmt dmt dη
,

(58)

where d pt/dyt → mt at midrapidity. The resulting two-
particle distribution is given by

ρ̄ss = N̄ − 1

N̄

(
N̄2

s + σ 2
s

)NssJ
(

1 + β̄csmt�

2qβcs�

)−2qβcs�

×
[

1 −
(

β̄csmt	

2qβcs	 + β̄csmt�

)2
]−qβcs	

≡ N̄ − 1

N̄

(
N̄2

s + σ 2
s

)
ρ̂2D−Levy(yt1, yt2). (59)

where Nss is a normalization factor and J =
4π2 pt1mt1 pt2mt2 is the Jacobian which transforms the

2D distribution on transverse mass to transverse rapidity. The
unit-normalized 2D Levy distribution is defined in the last
line of Eq. (59), which is calculated at the midpoints of the
yt bins when comparing to data. Also in the preceding
equation kinematic variables mt� = mt1 + mt2 − 2m0

and mt	 = mt1 − mt2 were introduced. Relative variance
difference quantities 	(1/q)cs�,	 and 	(1/q)cs,Vol,cov are
used in the fitting in analogy with similar quantities defined
in Eqs. (35) and (36).

The hard-scattering term ρ̄hh in Eq. (55) is similarly
expanded as

ρ̄hh(yt1, yt2) = N̄ − 1

N̄

N(2)h

ε

∫∫
dymax1 dymax2

× ĝ
(
ymax1 , ymax2

)
ρ̂h

(
ymax1 , yt1

)
ρ̂h

(
ymax2 , yt2

)
(60)

where the mean number of hard-scattering particle pairs
is N̄2

h + σ 2
h , where σ 2

h = σ 2
s when event multiplicities

are constrained to fixed total N̄ . The unit-normalized,
single-particle distribution ρ̂h(ymax, yt ) was defined in
Eq. (51).

For the correlated distribution ĝ(ymax1 , ymax2 ), a simplified
functional form was assumed in order to reduce computational
demands. The simplified function, ĝ2 combines an uncorre-
lated (factorized) component and a fully correlated (diagonal)
component defined by

ĝ2
(
ymax1 , ymax2

) = (1 − ζ )ĥ
(
ymax1

)
ĥ
(
ymax2

)
+ ζ b̂

(
ymax1

)
δ
(
ymax1 − ymax2

)
, (61)

where 0 � ζ � 1 is a fitting parameter, δ is the Dirac δ

function,

b̂
(
ymax1

) = lim
ymax2 →ymax1

ĝ′(ymax1

)
ĝ′(ymax2

)
, (62)

and ĝ′(ymax) has the same form as ĝ(ymax) in Eq. (50), but
can have different parameter values. In taking the limit in
the above equation, the product of the two hyperbolic tan-
gent cutoff functions in both instances of ĝ′ is approximated
by a single cutoff function with variable parameter y�

cut. In
addition, exponential argument 2(nQCD − 2)(ymax − ycut ) is
re-written as (n�

QCD − 2)(ymax − y�
cut ), where n�

QCD is freely
varied in the fitting. The correlated portion of ĝ2(ymax1 , ymax2 )
becomes

b̂
(
ymax1

)
δ
(
ymax1 − ymax2

)
= Np

1

2

{
tanh

(
ymax1 − y�

cut

ξcut

)
+ 1

}

×e−(n�
QCD−2)(ymax1 −y�

cut )
(
ymax1 − ymin

)4

×δ
(
ymax1 − ymax2

)
(63)

with normalization constant Np. Correlations are generated
in this model when 0 < ζ � 1 and may be modified by
allowing n�

QCD �= 2(nQCD − 1) and/or y�
cut �= ycut where nQCD

and ycut are determined by fitting the single-particle pt spectra
described in Sec. IV A.

024911-12



PHENOMENOLOGICAL MODELS OF TWO-PARTICLE … PHYSICAL REVIEW C 99, 024911 (2019)

It is essential that the single-particle projection (marginal)
of ρ̄hh equal the single-particle, semihard component
ρ̄h(yt ) [Eq. (49)] in order to maintain equality between
the single-particle projection of the full, two-particle
distribution in Eq. (55) and the measured charge
distribution. This can be accomplished by requiring
that ∫

dymax2 ĝ2
(
ymax1 , ymax2

) = ĝ
(
ymax1

)
, (64)

which in turn requires that function ĥ(ymax) in Eq. (61) be
determined by

ĥ(ymax) = [ĝ(ymax) − ζ b̂(ymax)]/(1 − ζ ), ζ < 1 (65)

as parameters n�
QCD and y�

cut in b̂(ymax) vary.
Substituting the above quantities into Eq. (60),

where ĝ(ymax1 , ymax2 ) −→ ĝ2(ymax1 , ymax2 ), results in the
purely hard-scattering contribution to the same-event
pair-distribution given by

ρ̄hh(yt1, yt2) = N̄ − 1

N̄

(
N̄2

h + σ 2
s

)[
(1 − ζ )

∫
dymax1 ĥ

(
ymax1

)
ρ̂h

(
ymax1 , yt1

) ∫
dymax2 ĥ

(
ymax2

)
ρ̂h

(
ymax2 , yt2

)

+ ζ

∫
dymaxb̂(ymax)ρ̂h(ymax, yt1)ρ̂h(ymax, yt2)

]

≡ N̄ − 1

N̄

(
N̄2

h + σ 2
s

)
[(1 − ζ )ρ̂[h](yt1)ρ̂[h](yt2) + ζ ρ̂2D[b](yt1, yt2)], (66)

where ρ̂[h] and ρ̂2D[b] in the last line are defined by the integrals
in the first two lines of the equation. As usual, the above
quantities are calculated at the yt bin midpoints.

The color-string, hard-scattering cross terms do not con-
tribute to the correlations when βcs and ymax fluctuations are
independent. These terms are readily given by

ρ̄sh = N̄ − 1

N̄

[
1 − σ 2

s

/
(N̄sN̄h)

]
ρ̄s(yt1)ρ̄[g](yt2) (67)

using Eqs. (47) and (49) where the event-averaged number of
“string-jet” pairs equals (N̄sN̄h − σ 2

s ) if the event multiplicity
is fixed. Cross term ρ̄hs is calculated by interchanging labels 1
and 2 in Eq. (67).

The remaining terms include products of the residual
δρ̄(yt ) with either ρ̄s, ρ̄[g], or itself, and are collected into one
term given by

ρ̄δ ≡ N̄ − 1

N̄
{δρ̄(yt1)[ρ̄s(yt2) + ρ̄[g](yt2)]

+ δρ̄(yt2)[ρ̄s(yt1) + ρ̄[g](yt1)] + δρ̄(yt1)δρ̄(yt2)}. (68)

Combining terms ρ̄ss, ρ̄hh, ρ̄sh, ρ̄hs, and ρ̄δ gives ρ̄TCF,se in
Eq. (55).

C. Two-particle correlation and prefactor

The single-particle projection (marginal) of the two-
particle distribution in Eq. (55) is given by

ρ̄TCF,marg(yt1)

= 1

N̄ − 1

∫
dyt2ρ̄TCF,se(yt1, yt2)

= N̄s

∫
dyt2ρ̂2D−Levy(yt1, yt2) + ρ̄[g](yt1) + δρ̄(yt1).

(69)

If |	(1/q)cs,Vol| � 1, then the integral of ρ̂2D−Levy over yt2

is accurately given by ρ̄s(yt1)/N̄s. The per-pair normalized
correlation quantity is given by

	ρ̄TCF

ρ̄ref
(yt1, yt2)

= ρ̄TCF,se(yt1, yt2) − N̄−1
N̄ ρ̄TCF,marg(yt1)ρ̄TCF,marg(yt2)

ρ̄ref (yt1, yt2)
,

(70)

analogous to Eq. (43) for the blast wave, where ρ̄ref is defined
as the product of marginals [see Eq. (42)]. It is given by

ρ̄ref (yt1, yt2) = N̄ − 1

N̄
ρ̄TCF,marg(yt1)ρ̄TCF,marg(yt2). (71)

Using the soft-process prefactor in Appendix A for the charge-
independent, away-side azimuth pair correlations gives the
final correlation for the two-component fragmentation model:

	ρ̄TCF√
ρ̄soft

(yt1, yt2) = PAS−CI
Fac,soft (yt1, yt2)

	ρ̄TCF

ρ̄ref
(yt1, yt2). (72)
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Finally, it is instructive to expand 	ρ̄TCF(yt1, yt2) in terms of the separate sources of correlations built into the model. Inserting
Eqs. (59) and (66)–(69) into 	ρ̄TCF in Eq. (70) gives

	ρ̄TCF(yt1, yt2) = N̄ − 1

N̄

{(
N̄2

s + σ 2
s

)[
ρ̂2D−Levy(yt1, yt2) − ρ̄s(yt1)ρ̄s(yt2)/N̄2

s

]
+ (

N̄2
h + σ 2

s

)
[(1 − ζ )ρ̂[h](yt1)ρ̂[h](yt2) + ζ ρ̂2D[b](yt1, yt2) − ρ̂[g](yt1)ρ̂[g](yt2)]

+ σ 2
s [ρ̄s(yt1)/N̄s − ρ̂[g](yt1)][ρ̄s(yt2)/N̄s − ρ̂[g](yt2)]

}
(73)

where ρ̂[g] = ρ̄[g]/N̄h. Soft string-fragmentation-induced cor-
relations are represented in the first term and are controlled
in the model via relative covariance parameter 	(1/q)cs,cov ≡
(1/2)[	(1/q)cs�−	(1/q)cs	] = (1/qβcs� −1/qβcs	 )/2, where
the correlations scale with (N̄2

s + σ 2
s ). The semihard scatter-

ing, correlated fragmentation contributions are represented
in the second term, controlled by parameter ζ ∈ [0, 1], and
modulated by the two-particle, correlated semihard scattering
probability distribution parameters y�

cut and n�
QCD in function

b̂(ymax) [see Eq. (63)]. The semihard scattering correlations
scale with (N̄2

h + σ 2
s ). The semihard scattering versus soft

string-fragmentation multiplicity fluctuation variance, σ 2
s , in-

dependently generates correlations when the soft and semi-
hard particle distribution shapes differ as given by the third
term in Eq. (73).

V. PHENOMENOLOGICAL MODEL
CORRELATION RESULTS

The BW and TCF models were fitted to analytical rep-
resentations of preliminary (yt1, yt2) charged-particle corre-
lation data from STAR [13,14] described in Appendix B.
We refer to these representations as “pseudodata.” The fitting
results are shown and discussed with respect to the efficacy
of each model and the stability and systematic centrality
dependencies of the model parameters. The centrality trends
of the BW and TCF fitting parameters and some implications
of those trends are discussed in the following subsections.

A. Blast-wave model description of correlations

The AS-CI correlation pseudodata were fitted with the
fluctuating blast-wave model in Eq. (44) using fit parameters

	(1/q)Vol and 	(1/q)cov in Eq. (36) plus the transverse flow
correlation parameter 	ηt introduced just after Eq. (37). Other
parameters of the model including β̄ = 1/T , qβ , a0, nflow, and
σηt were determined by fitting the single-particle pt spectrum
data (see Table I) and were kept fixed. Fit parameters and
statistical fitting errors are listed in Table III. Pseudodata, BW
model fits, and residuals (pseudodata − model) are shown for
three example centrality bins (60–80%, 20–30%, and 0–5%)
in Fig. 4. The results show smooth, monotonic centrality
dependence from most peripheral to most central. The general
features of the correlation structures, e.g., saddle-shape and
peak near (yt1, yt2) = (3, 3), are qualitatively reproduced by
the model; however, the (3,3) peak amplitude is underesti-
mated by about 20–30%. Residuals are somewhat smaller than
the data overall, differing mainly at lower yt and near the (3,3)
peak.

The best determined fit parameter (smallest uncertainty) is
the inverse temperature covariation 	(1/q)cov which is always
positive, corresponding to positive correlations in the temper-
ature fluctuations, and which displays a monotonic decrease
with centrality. Of the three fit parameters, 	(1/q)cov has the
smallest relative errors and displays the smoothest centrality
trend. The overall (β1, β2) distribution expansion-contraction
parameter 	(1/q)Vol tends to decrease (i.e., reduced fluc-
tuations) with more central collisions. It has larger relative
errors and greater variability than 	(1/q)cov. The transverse
flow rapidity correlation fit parameters 	ηt are non-negative,
indicating positive flow correlations, but have relatively large
uncertainties and erratic centrality dependence, meaning that
correlated transverse flow fluctuations are poorly determined
with these fits.

An essential requirement of the BW correlation model is
that the single-particle pt distribution be preserved throughout
the fitting process. In the BW model small, nonzero values

TABLE III. Blast-wave correlation model fit parameters to the 200-GeV Au+Au (yt1, yt2) AS-CI correlation pseudodata. Statistical fitting
errors are listed in parentheses. Relative expansion or contraction and relative covariations in the thermal and transverse expansion parameters
are also listed as explained in the text.

Cent. (%) 	(1/q)Vol 	(1/q)cov 	ηt
χ2

DoF
δσ�+δσ	

2β̄

δσ�−δσ	

2β̄

	ηt
2σηt

0–5 − 0.00162(38) 0.000500(4) 0.000400(135) 12.39 − 0.00364 0.00112 0.0039
5–10 − 0.00055(20) 0.000600(23) 0.0 ± 0.0009 14.46 − 0.00122 0.00133 0
10–20 − 0.00106(25) 0.000650(8) 0.00175(54) 26.64 − 0.00229 0.00141 0.0265
20–30 − 0.00160(43) 0.000850(21) 0.0 ± 0.0026 26.29 − 0.00335 0.00178 0
30–40 − 0.00100(39) 0.00110(4) 0.0 ± 0.0022 19.63 − 0.00204 0.00225 0
40–60 +0.0020(6) 0.00140(5) 0.0 ± 0.0008 18.09 +0.00391 0.00274 0
60–80 +0.0100(4) 0.00210(5) 0.0030(61) 11.19 +0.018 0.00377 0.075
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FIG. 4. Fluctuating blast-wave model fits to the 200-GeV Au+Au away-side, charge-independent two-particle correlation pseudodata
described in Appendix B for selected centralities 60–80%, 20–30%, and 0–5% in rows of panels from upper to lower, respectively. The
left-hand column shows the pseudodata, the fitted model results are shown in the middle column, and the residuals (pseudodata − model) are
presented in the right-hand column.

of 	(1/q)Vol, which are beneficial in fitting the correlations,
cause the marginal of the two-particle distribution [Eq. (39)]
to differ from the single-particle BW model fit to the pt

spectrum data. For the present fits, however, the projections
were consistent with the single-particle BW fits to within
a few percent for all centralities except the most-peripheral
60–80% for yt � 3.

It is interesting to examine the degree of correlation in
the inverse temperature and transverse flow rapidity sampled
by arbitrary pairs of particles. Ratio σ 2

β /β̄2 is the relative
variance of the inverse temperature distribution [Eq. (25)] for
the single-particle distribution in Eq. (24). Defining δσ�,	 as
the change in widths of the two-particle (β1, β2) distribution
[see Fig. 2] along the β�,	 = β1 ± β2 directions, respectively,
where δσ�,	 ≡ σβ�,	

− σβ , we estimate the average, relative
expansion or contraction of the (β1, β2) distribution as

δσ� + δσ	

2β̄
≈ (

√
qβ/2)	(1/q)Vol, (74)

assuming δσ�,	/β̄ � 1. Similarly, the average, relative co-
variation in the (β1, β2) distribution is estimated by

δσ� − δσ	

2β̄
≈ (

√
qβ/2)	(1/q)cov. (75)

The average, relative covariation in the two-particle, trans-
verse flow rapidity is equal to 	ηt /(2σηt ). These three quan-
tities are listed in Table III. The results show that, within this
fluctuating BW model and for these AS-CI pseudodata, ther-
mal fluctuation widths vary from about +2% increased overall
fluctuation relative to that for single-particle production in
peripheral collisions to about −0.4% (reduced fluctuations)
in most-central collisions. The relative covariance decreases
monotonically with centrality from about 0.4% to 0.1% from
peripheral to most-central collisions. Transverse flow covari-
ances are non-negative but display large variability with re-
spect to collision centrality, showing no clear trend in these
fitting results. These small, relative changes in widths of the
inverse temperature and flow fluctuations imply that intraevent
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β, ηt0 fluctuation magnitudes exceed the mean differences in
the interevent fluctuations as discussed in Ref. [22]. In other
words, event-to-event fluctuations in the mean temperature
and transverse flow are small relative to fluctuations within
each collision system.

The BW model fits to the pt spectrum data provide an
estimate of the variance in the distribution of inverse pt -slope
parameters, e.g., temperature in the BW approach. It is in-
formative to compare these empirical fluctuation magnitudes
to that expected for fully equilibrated (uniform temperature),
relativistic hadron-gas models at kinematic decoupling, or
“freeze-out,” when eventwise fluctuations in participant nu-
cleon number alone are included. In relativistic hadron-gas
models, the energy density ε is proportional to the freeze-out
temperature to the fourth power [46], ε ∝ T 4. In hydrody-
namic models, the total energy available for hydrodynamic
expansion among the interacting partons is proportional to the
number of participant nucleons. At midrapidity, the energy
density is therefore proportional to N1/3

part [33]. In hydrody-
namic models, the energy density at freeze-out includes both
thermal and collective modes, but it is still reasonable to
assume that T 4 ∝ N1/3

part . Eventwise fluctuations in Npart among
collisions having the same centrality, for example, as defined
by the impact parameter or multiplicity, produce temperature
fluctuations which, in turn, produce two-particle correlations
on transverse momentum.

Numerical estimates can be carried out using the BW fit
values for temperature from Table I and Npart from Table V. A
proportionality constant, α = ∂T 4/∂N1/3

part ≈ 0.000015 GeV4,
is estimated from the results if the most-peripheral bin is
excluded. The resulting relation

∂Npart

∂T
= 12T 3N2/3

part

/
α ≈ δNpart

δT
, (76)

where δNpart and δT represent eventwise fluctuations, can
be used to estimate the variance in the fluctuating global
temperature at freeze-out caused by eventwise fluctuations in
Npart. In terms of inverse temperature β = 1/T , the relative
variance of fluctuations in β for a collection of similar events
(e.g., same impact parameter) is given by

〈(δβ/β̄ )2〉 = σ 2
β

β̄2
= 1

qβ

= [
(12/α)2T 8N1/3

part

]−1
, (77)

where brackets “〈 〉” denote an average over events, β̄ =
〈β〉, and the Poisson limit, 〈(δNpart )2〉 = Npart, was assumed.

Using the BW fitted temperatures in Eq. (77) and the above
value of α, results in relative variances which are more than
three orders of magnitude smaller than 1/qβ in Table I. The
covariations in relative variance, 	(1/q)cov from the 2D BW
model fits, are two orders of magnitude larger than the above
limit in Eq. (77).

Both the β fluctuations required to describe the single-
particle pt distributions and the (β1, β2) covariances required
to describe the correlations are much larger than what can be
accounted for with statistical fluctuations in Npart. The present
results imply that much stronger, dynamical fluctuations are
required in hydrodynamic approaches and that β fluctuations
within each collision event are much larger than eventwise
fluctuations in mean β. Furthermore, the dynamical fluctua-
tion effects must persist, to some extent, until kinetic freeze-
out and cannot be completely dissipated, implying that final-
state temperatures at kinetic freeze-out cannot be uniform.
These results impose significant constraints on the initial state,
on the effective partonic interactions in transport models, and
on the parameters controlling hydrodynamic expansion.

B. Two-component fragmentation model
description of correlations

The AS-CI correlation pseudodata were fit with the TCF
model described in Sec. IV with parameters 	(1/q)cs,Vol,cov =
(1/2)[	(1/q)cs� ± 	(1/q)cs	] [see Eqs. (36) and (59)],
semihard multiplicity fluctuation variance σ 2

h = σ 2
s in

Eq. (57), semihard scattering correlation amplitude ζ in
Eq. (61), and b̂(ymax) probability distribution parameters y�

cut
and n�

QCD in Eq. (63). Other parameters of the TCF model
were determined by fitting the single, charged-particle pt

spectra data as discussed in Sec. IV, or were taken from
Ref. [3].

Ambiguities occurred in the χ2-minimization procedure
in which discrete solutions were found for the color-string
fragmentation parameter 	(1/q)cs,cov corresponding to a nor-
mal saddle-shape correlation (positive value) as in Ref. [22],
or an inverted saddle-shape (negative value). An inherent
assumption of the TCF model is that hadron fragments pro-
duced by the same color string will sample a pt distri-
bution with an overall slope (βcs) whose value randomly
fluctuates about a mean, resulting in a normal saddle-shape
correlation with 	(1/q)cs,cov > 0. Furthermore, it was found
that acceptable descriptions of the correlations required rel-
atively small absolute magnitudes for both 	(1/q)cs,Vol and

TABLE IV. Two-component fragmentation correlation model fit parameters to the 200-GeV Au+Au (yt1, yt2 ) AS-CI correlation
pseudodata. Statistical fitting errors are in parentheses.

Cent. (%) 	(1/q)cs,Vol 	(1/q)cs,cov σ 2
s ζ y�

cut n�
QCD

χ2

DoF

0–5 − 0.000285(47) 0.000415(60) 620(87) 0.042(2) 4.06(4) 11.4(1.3) 11.3
5–10 − 0.000333(62) 0.000475(72) 540(64) 0.051(3) 4.08(5) 11.8(1.8) 13.5
10–20 − 0.000382(62) 0.000535(70) 310(39) 0.061(2) 4.12(4) 11.5(1.4) 22.7
20–30 − 0.000449(115) 0.000631(68) 190(17) 0.072(3) 4.16(6) 11.6(2.2) 22.7
30–40 − 0.000635(144) 0.000876(92) 115(11) 0.102(4) 4.22(9) 11.8(3.8) 17.0
40–60 − 0.001106(492) 0.001452(110) 31(7) 0.158(6) 4.06(11) 11.6(4.8) 13.8
60–80 − 0.001964(1440) 0.002556(157) 51(9) 0.44(3) 4.18(18) 11.6(7.4) 9.4
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FIG. 5. Same as Fig. 4 except for the TCF model.

	(1/q)cs,cov, similar to, or smaller than the corresponding
2D BW parameters in Table III. To adhere to these restric-
tions on 	(1/q)cs,Vol,cov and stabilize the χ2 minimization,
we fixed the 	(1/q)cs,Vol,cov parameters to the fitted values
given in Ref. [14] (see Appendix B). With the soft-component
thus constrained, the correlation pseudodata were readily de-
scribed by varying the remaining semihard scattering param-
eters σ 2

s , ζ , y�
cut, and n�

QCD.
The model fits and residuals are compared with the corre-

lation pseudodata in Fig. 5, and the fit parameters are listed
in Table IV. Smooth, monotonic trends in the residuals and
good, overall descriptions of the pseudodata were achieved.
The fitted peak amplitudes at (yt1, yt2) ≈ (3, 3) are about 10%
below the pseudodata. Color-string fragmentation parameters
	(1/q)cs,Vol [14] are negative, indicating a slight, overall con-
traction in the widths of the distribution of pt -slope parameter
βcs. This reduction is sufficiently small such that the marginals
of the two-particle distributions remain within 1% of the
charged-particle distributions over the full yt range [1.0,4.5]
for all centralities from 0 to 80%. Parameters 	(1/q)cs,cov
from Ref. [14] monotonically decrease from peripheral to
most-central collisions, as was also found for the BW model
fits (Table III), where similar numerical values were found.

Semihard scattering parameters σ 2
s and ζ monotonically in-

crease and decrease, respectively, from peripheral to most-
central collisions, while parameters y�

cut and n�
QCD remain

approximately constant with centrality. From the definition
of the jet energy correlation function b̂(ymax) in Eq. (63),
we expect n�

QCD ≈ 2(nQCD − 1) in the weak correlation limit.
The fitted values of n�

QCD vary from about 11 to 12, which
are smaller than this estimated range that varies from 12 to
16 using the values for nQCD in Table II. This indicates that
the distributions of correlated, semihard scattering maximum
fragment rapidities, represented by distribution b̂(ymax), are
weighted toward larger ymax values (more energetic jets) than
the corresponding single-particle distribution ĝ(ymax). Or, in
other words, positively correlated jet fragment pairs are more
likely to be associated with higher energy jets, rather than
lower. Overall, these results demonstrate that the TCF model
is capable of providing qualitative descriptions of correlation
data on transverse momentum resulting in smooth, monotonic
centrality dependence in each of the fitting parameters.

In Eq. (73), contributions to the correlated pair distribution
	ρ̄TCF(yt1, yt2) were separated into color-string fragmenta-
tion, semihard parton fragmentation, and semihard multi-
plicity fraction fluctuations. Neglecting the relatively small
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centrality dependence in the shape of the single-particle
distribution ρ̂[g](yt ), the centrality dependence of the last
contribution in Eq. (73) is approximately proportional to
hard-scattering multiplicity variance σ 2

h = σ 2
s . The centrality

dependence of σ 2
s from Table IV is approximately described

by a power law where

σ 2
s ≈ 0.17N1.19

bin (78)

for the centrality range 0–60%. This distribution somewhat
exceeds binary scaling. The second contribution in Eq. (73)
can be expanded in powers of ζ , which to leading order is
given by the combination of terms

N̄ − 1

N̄

(
N̄2

h + σ 2
s

)
ζ

×{[ρ̂2D[b](yt1, yt2) − ρ̂[b](yt1)ρ̂[b](yt2)]

+ [ρ̂[g](yt1) − ρ̂[b](yt1)][ρ̂[g](yt2) − ρ̂[b](yt2)]}, (79)

where ρ̂[b] is defined in analogy to Eq. (49) and using Eq. (65)
is given by

ρ̂[b](yt ) ≡
∫ ∞

0
dymaxb̂(ymax)ρ̂h(ymax, yt )

= 1

ζ
[ρ̂[g](yt ) − (1 − ζ )ρ̂[h](yt )]. (80)

If the small centrality dependences of ρ̂[g](yt ) and ρ̂[b](yt ) are
neglected, the number of correlated pairs in this contribution
is approximately proportional to (N̄2

h + σ 2
s )ζ ≈ N̄2

h ζ . From
Table IV, we find that for the 0–40% more central collisions,
where ζ becomes smaller, the dependence of (N̄2

h + σ 2
s )ζ can

be approximated by(
N̄2

h + σ 2
s

)
ζ ≈ 0.43N1.44

bin . (81)

Thus, we find that empirical descriptions of the AS-CI corre-
lation pseudodata, in terms of the TCF model, are consistent
with a scenario in which the number of correlated particle
pairs from semihard scattering and fragmentation processes
increases smoothly with centrality and at a rate somewhat in
excess of N + N binary scaling.

The contributions of the three terms in Eq. (73) for the 60–
80%, 20–30%, and 0–5% centrality bins are shown in Fig. 6
in comparison with the correlation pseudodata. For the pure
color-string fragmentation contribution, parameters σ 2

s and ζ

were set to zero. For the pure semihard multiplicity fluctuation
result, parameters 	(1/q)cs,Vol, 	(1/q)cs,cov, and ζ were set to
zero. For the pure semihard fragmentation result, 	(1/q)cs,Vol,
	(1/q)cs,cov, and σ 2

s were set to zero. The results accurately
represent the contributions of the first two terms in Eq. (73) to
the extent that σ 2

s � N̄2
s and σ 2

s � N̄2
h , which are true at the

1% amount or better (see Tables II and IV), except for the
60–80% results. The color-string fragmentation contributes
from about 20% of the predicted correlation peak amplitude at
(yt1, yt2) ≈ (3, 3) in most-peripheral collisions to about 9% in
most-central collisions. The semihard scattering contributions
[last two terms in Eq. (73)] together account for the remaining
80% to 91% of the predicted correlation peak in 60–80%
and 0–5% centrality bins, respectively. The semihard parton

fragmentation contribution (ζ > 0) dominates the correlation
peak at (3,3) in more central collisions.

VI. SUMMARY AND CONCLUSIONS

The study of relativistic heavy-ion collisions has greatly
benefited from the plethora of two-particle correlation mea-
surements and analysis over many years [6]. The vast majority
of these correlation studies has focused on angular correla-
tions. On the other hand, complementary correlation mea-
surements on 2D transverse momentum are relatively scarce
in the literature. In our opinion, the scientific impact of the
correlations on transverse momentum which do exist has been
diminished by the lack of available theoretical predictions and
the absence of phenomenologically based interpretations.

To address this deficiency, we developed two phenomeno-
logical models based on fundamentally different frameworks
for describing the dynamical evolution of the heavy-ion col-
lision system. The first is based on hydrodynamic expansion
as parametrized in the blast-wave model in which pairwise
correlated fluctuations in the temperature and transverse flow
at kinematic freeze-out are included in order to generate two-
particle correlations in the final state. The second model is
based on soft-QCD, longitudinal color-string fragmentation
and semihard QCD, transverse scattering, and fragmentation
in which fluctuations occur in the energies of the color strings
and in the four-momentum transfer in the QCD scatterings, as
well as in the relative numbers of particles produced via soft
and semihard processes.

We demonstrated that both models are capable of quanti-
tatively describing the measured charged-particle pt spectra
produced in

√
sNN = 200 GeV Au+Au minimum-bias col-

lisions. Using analytic representations of preliminary two-
particle correlations on 2D transverse rapidity from the STAR
Collaboration [13,14], we further demonstrated that both
models are capable of qualitatively describing the correla-
tions, resulting in smooth, monotonic centrality-dependent
trends in most of the model parameters. The phenomenologi-
cal model parameters and their resulting centrality trends can
be interpreted in terms of the dynamical processes inherent in
each model.

The results of this “proof of principle” study already pro-
vide some physical insight and impose constraints on the two
dynamical frameworks considered here. In the hydrodynamic,
BW approach, we found that statistical fluctuations in the
number of participant nucleons from event to event, as the
sole source of final-state fluctuations in the pt distribution, are
much too small to account for the observed correlation struc-
tures. Much larger, dynamical fluctuations are required whose
effects must persist until kinetic freeze-out, thus restricting the
degree of dissipation in the collision medium. The BW results
also imply that the magnitudes of intraevent temperature
fluctuations far exceed the interevent fluctuations in the mean
temperature. This result may, for example, limit the allowed
spatial scale for local, thermodynamic equilibrium in such
models.

In the two-component fragmentation approach, we found
that the semihard scattering and fragmentation-induced corre-
lations required to describe the data appear to exceed binary
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FIG. 6. Separate contributions to the fluctuating TCF model fits to the 200-GeV Au+Au away-side, charge-independent two-particle
correlation pseudodata for selected centralities 60–80%, 20–30%, and 0–5% in rows of panels from upper to lower, respectively. The left-
hand column of panels shows the pseudodata. Fluctuation contributions from color strings, semihard multiplicity production, and semihard
fragmentation are shown in the second, third, and fourth columns of panels, respectively, as explained in the text.

scaling, which suggests additional, multiparton dynamics are
required in the initial state or during fragmentation within the
dense medium. We also found that in more central collisions
the peak correlation structure at (yt1, yt2) ≈ (3, 3) is domi-
nated by semihard parton fragmentation (minijets).

The connection between physical properties of the heavy-
ion collision medium, e.g., temperature and flow velocity,
inferred from analysis of single-particle pt spectrum data, and
eventwise fluctuations was emphasized. Using the BW model,
we showed that fluctuations in the temperature and transverse
flow affect the inferred, mean temperature and flow velocity
by as much as a factor of two. Physical parameters inferred
from fits to spectrum data using models without fluctuations
are questionable.

The BW and TCF phenomenological models developed
here can be used in future analyses of two-particle correlation
measurements on transverse momentum or transverse rapidity
to facilitate physical interpretation of the correlation structures
and to better constrain theoretical models. Both phenomenolo-
gies can be used to estimate the magnitude and type of fluctua-
tions required, within their respective frameworks, to describe
correlation data. The magnitudes and centrality trends of those
required fluctuations can be compared to the capabilities of
theoretical models for producing such fluctuations. In this
way, phenomenological analysis of two-particle correlations

on transverse momentum may enable more informed esti-
mates of the validity of different theoretical approaches for
understanding relativistic heavy-ion collisions.
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APPENDIX A

The soft-reference prefactor for away-side pairs and all
charged particles is given by

PAS−CI
Fac,soft ≡ 1√

2

d2Nch
dyt1dη1

d2Nch
dyt2dη2[

d2Nch,soft

dyt1dη1

d2Nch,soft

dyt2dη2

]1/2
,

(A1)

where the distributions are calculated at the midpoints of each
yt bin and factor 1/

√
2 accounts for using only away-side

pairs. In this equation, the charged particle distribution was
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TABLE V. Levy model fit parameters to the STAR Collaboration
200-GeV Au+Au minimum-bias charged-particle pt spectra data in
Ref. [40] in the range yt ∈ [1.34, 4.36]. Also listed are the number
of participant nucleons, number of binary N + N collisions, and
centrality measure ν [27]. The estimated soft-process pt spectrum
Levy model parameters in Eq. (A3) are Asoft = 5.81 (c/GeV2),
Tsoft = 0.169 GeV, and qsoft = 13.8.

Centrality ν Npart Nbin Ach Tch qch

(%) (c/GeV2) (GeV)

0–5 5.95 350.3 1042 1154.8 0.2176 17.41
5–10 5.50 299.5 824 935.8 0.2167 17.15
10–20 4.98 233.7 582 724.2 0.2129 16.00
20–30 4.34 166.4 361 503.4 0.2090 15.09
30–40 3.75 116.1 218 350.3 0.2036 14.28
40–60 2.87 59.8 85.7 205.76 0.1882 12.49
60–80 1.97 19.5 19.2 77.96 0.1695 11.06

parametrized with a Levy distribution where

d2Nch

dyt dη
= 2π pt

d pt

dyt

[
d2Nch

2π pt d pt dη

]

= 2π pt mt Ach

[1 + (mt − m0)/(Tchqch )]qch
. (A2)

Fit parameters Ach, Tch, and qch for the 200-GeV Au+Au
spectra data reported by the STAR Collaboration [40] were
determined in the yt range from 1.34 to 4.36, corresponding
to pt ∈ [0.25, 5.5] GeV/c, and are listed in Table V. The Npart

scaling, Kharzeev and Nardi soft-QCD process spectrum was
also parametrized with the Levy distribution and is given by

d2Nch,soft

dyt dη
= 2π pt mt Asoft (Npart/2)

[1 + (mt − m0)/(Tsoftqsoft )]qsoft
. (A3)

The number of participants for 200-GeV Au+Au minimum-
bias collisions was estimated in Ref. [27] and interpolated
to the present centrality bins (see Table V). A method for
estimating the Npart scaling, soft-QCD process spectrum was
presented in Ref. [42]. In the present analysis, the soft-QCD
distribution was estimated by extrapolating the STAR [40]
and PHENIX [47] Collaborations’ pt spectra data in each
pt bin to the ν → 1, N + N collision limit and fitting the
resulting distribution with the Levy model in Eq. (A3). The
resulting fits gave Asoft = 5.81 (c/GeV2), Tsoft = 0.169 GeV,
and qsoft = 13.8.

APPENDIX B

Analytic representations of preliminary charged-particle
correlations on (yt1, yt2) are described here and in
Refs. [13,14]. Preliminary, charged-particle correlations
on (yt1, yt2) in the range yt ∈ [1.0, 4.5] for minimum-bias
Au+Au collisions at

√
sNN = 200 GeV from the STAR

Collaboration were reported by Oldag [13,14]. The
same-event and mixed-event pair densities were both
normalized to the total number of pairs, as this analysis
predates the methods developed in Ref. [17]. The data were
fitted with a 2D-Levy distribution [Eq. (59)] plus a constant

offset and a 2D Gaussian. The correlations described with
this model include all away-side, charged-pair combinations.
The AS angular selection eliminates the enhanced correlation
structure along the yt1 = yt2 main-diagonal caused by
quantum correlations between identical bosons [5] as
discussed in Ref. [22]. The analytical fitting function is
given by

	ρ√
ρsoft

|AS−CI = PAS−CI
Fac,soft

(
ρ̂data

2D−Levy − ρ̂2D−mix

ρ̂2D−mix

)

+ A0 + A1e−y2
t	/2σ 2

	e−(yt�−2yt0 )2/2σ 2
� , (B1)

where the 2D-Levy distribution is the same as in Eq. (59) with
parameters β0, q� , and q	 in Ref. [14] replacing parameters
β̄cs, qβcs� , and qβcs	 in Eq. (59). The corresponding variance
difference quantities are given by 	(1/q)�,	 = 1/q�,	 −
1/qfluct. Also in Eq. (B1) we introduced sum and difference
variables yt�,	 = yt1 ± yt2. The marginal of ρ̂data

2D−Levy is given
by

ρ̂marg(yt1) =
∫

dyt2ρ̂
data
2D−Levy(yt1, yt2) (B2)

and the mixed-event reference ρ̂2D−mix(yt1, yt2) is the product
of marginals for particles 1 and 2.

The 2D-Levy distribution alone did not produce satisfac-
tory descriptions of the data and was supplemented with
a constant offset (A0) plus a 2D Gaussian. Fit parameters
	(1/q)�,	, qfluct, A0, A1, yt0, σ	, and σ� were interpo-
lated from the trends plotted in Fig. 5.14 of Ref. [14], at
the midpoints of the centrality bins studied here. The 2D
Gaussian widths along the difference direction yt	 exceeded
the corresponding widths along yt� . Physically, for the AS
correlations, this could be caused by initial-state transverse
momentum, KT , in the parton-parton collision frame which
would impart more pt to the fragments of one jet than the
other, resulting in a broadening along yt	 when averaged over
many dijets. Such additional, initial-state dynamics could be
included in both the BW and TCF models but, for simplic-
ity, was not accounted for in this initial “proof-of-principle”
model study. The width σ	 in the pseudodata was therefore
set equal to σ� .

The correlation pseudodata were assigned statistical errors
corresponding to the number of pairs per bin expected for
the 9.5 million, 200-GeV minimum-bias Au+Au collisions
in the data volume reported in Ref. [14] for the observed
charged-particle pt , η distributions in centrality bins 0–5%,
5–10%, 10–20%, 20–30%, 30–40%, 40–60%, and 60–80%
and for single-particle acceptance |η| � 1, pt � 0.15 GeV/c,
full 2π azimuth, and assuming symmetric correlations with
respect to ±|yt1 − yt2|. The latter symmetrization is valid
when particles 1 and 2 are taken from the same collection
of particles, for example, all charged particles. This step was
implemented by counting each unique particle pair in both
bins with coordinates (yt1, yt2) and (yt2, yt1). For diagonal
bins (yt , yt ), only the yt1 � yt2 half was used for calculating
the statistical errors. Typical statistical errors (for yt � 3)
in more central collisions vary from approximately 1% to
3% relative to the correlation amplitude at the peak near
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(yt1, yt2) = (3, 3). The errors increase to the range 3% to
5% in more peripheral collisions. The pseudodata were gen-
erated in each (yt1, yt2) bin by sampling a Gaussian distri-
bution whose mean equals the calculated value in Eq. (B1)
and whose width parameter (σ ) was equal to the estimated

statistical error. The correlation pseudodata were binned on
a uniform 25 × 25 2D grid for yt ∈ [1.0, 4.5] corresponding
to pt ∈ [0.16, 6.3] GeV/c. Pseudodata were generated for
(yt1, yt2) bins with yt1 � yt2, and then copied to the (yt2, yt1)
bin.
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