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Phase transitions and Bose-Einstein condensation in α-nucleon matter
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The equation of state and phase diagram of isospin-symmetric chemically equilibrated mixture of α particles
and nucleons N are studied in the mean-field approximation. The model takes into account the effects of Fermi
and Bose statistics for N and α, respectively. We use Skyrme-like parametrization of the mean-field potentials as
functions of partial densities nα and nN , which contain both attractive and repulsive terms. Parameters of these
potentials are chosen by fitting known properties of pure N and pure α matter at zero temperature. The sensitivity
of results to the choice of the αN attraction strength is investigated. The phase diagram of the α − N mixture
is studied with special attention paid to the liquid-gas phase transitions and the Bose-Einstein condensation of
α particles. We have found two first-order phase transitions, stable and metastable, which differ significantly by
the fractions of α particles. It is shown that states with α condensate are metastable.
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I. INTRODUCTION

At subsaturation densities and low temperatures, nuclear
matter has a tendency for clusterization when small and big
nucleon clusters are formed under conditions of thermal and
chemical equilibria. This state of excited nuclear matter is
realized in nuclear reactions at intermediate energies known as
multifragmentation of nuclei [1]. It is believed that clusterized
nuclear matter is also formed in outer regions of neutron stars
and in supernova explosions [2]. It may play an important role
by providing “seed” nuclei for later nucleosynthesis.

Different models have been used to describe the clusterized
nuclear matter. In particular, the statistical approach turned
out to be very successful to explain the mass and energy
distributions of fragments and hadrons produced in heavy-ion
collisions, see, e.g., Refs. [3,4]. Another powerful method is
to perform molecular-dynamical simulations in a box taking
into account effective interactions between nucleons as was
done, e.g., in Ref. [5].

To better understand properties of clusterized nuclear
matter, one should use more realistic interactions between
different clusters and take into account phenomenological
constraints. In our recent paper [6], we studied the equa-
tion of state (EoS) of an idealized system composed en-
tirely of α particles. Their interaction was described by a
Skyrme-like mean-field potential. We have found that such
a system exhibits two interesting phenomena, namely, the
Bose-Einstein condensation (BEC) and the liquid-gas phase
transition (LGPT). Earlier, the cold α matter has been consid-
ered microscopically by using phenomenological αα poten-
tials in Refs. [7–9], the lattice calculations were performed in
Ref. [10], and the relativistic mean-field (RMF) approach was

applied in Ref. [11]. Properties of cold α chains have been
discussed in Refs. [12–14].

However, by introducing such a one-component system,
one disregards a possible dissociation of α’s into lighter
clusters and nucleons. This process should be important at
nonzero temperatures and large enough baryon densities. Bi-
nary α − N matter in chemical equilibrium with respect to
reactions α ↔ 4N has been considered in Ref. [15] by using
the virial approach. One should have in mind that the results
of Ref. [15] may be justified only at small baryon densities.
The two-component van der Waals model with excluded-
volume repulsion has been developed to describe properties of
α − N mixture in Ref. [16]. Note that both these approaches
disregard possible BEC phenomena.

The EoS of matter composed of nucleons and nuclear
clusters have been considered within different approaches
including the liquid-drop model [2], several versions of the
statistical model [17–19] and the RMF models [20–22]. In
particular, in Ref. [21], the RMF calculations have been
performed with the medium-dependent binding energy of α’s.
Comparison of the excluded-volume and virial EoSs has been
made in Ref. [23]. However, all these models do not include a
possibility of BEC. This phenomenon was considered within
the quasiparticle approach of Ref. [24] but only for dilute
(nearly ideal-gas) mixtures of nucleons and nuclear clusters.

In the present paper, we consider the isospin-symmetric
α − N matter under the conditions of chemical equilibrium.
The EoS of such matter is calculated in the mean-field ap-
proach using Skyrme-like parametrizations of the mean-field
potentials. In this paper, we simultaneously take into account
the LGPT and BEC effects.
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The article is organized as follows. In Sec. II A, we for-
mulate main features of the model. The limit of ideal α − N
gas is considered in Sec. II B and Appendix A. Pure nucleon
and pure α matter with Skyrme interactions are studied in
Secs. II C and II D, respectively. The results of these sections
are used in choosing parameters of mean fields for α − N mat-
ter in Sec. III. The EoS and phase transitions of such matter
are studied numerically in Sec. IV. Finally, the conclusions
and outlook are given in Sec. V.

II. GENERAL REMARKS AND LIMITING CASES

A. Chemical equilibrium conditions

Let us consider the isosymmetric system (with equal num-
bers of protons and neutrons) composed of nucleons N and
α particles. A small difference between the proton and the
neutron masses and the Coulomb interaction effects will be
neglected. Our consideration will be restricted to small tem-
peratures T � 30 MeV. In this case, production of pions and
other mesons as well as excitation of baryonic resonances,
such as � and N∗, become negligible. Besides, the masses
mN � 938.9 MeV and mα � 3727.3 MeV are much larger
than the system temperature, thus, a nonrelativistic approxi-
mation can be used in the lowest order in T/mN .

In the grand canonical ensemble, the pressure p (T, μ) is
a function of temperature T and baryon chemical potential μ.
The latter is responsible for conservation of the baryon charge.
The chemical potentials of N and α satisfy the relations,

μN = μ, μα = 4μ, (1)

which correspond to the condition of chemical equilibrium in
the N − α mixture due to reactions α ↔ 4N . The baryonic
number density nB (T, μ) = nN + 4nα , the entropy density
s (T, μ), and the energy density ε (T, μ) can be calculated
from p (T, μ) as

nB =
(

∂ p

∂μ

)
T

, s =
(

∂ p

∂T

)
μ

, ε = T s + μnB − p, (2)

in the thermodynamic limit where the system volume goes to
infinity.

B. Ideal gas limit

Let us first consider the α − N system as a mixture of the
ideal Fermi gas of nucleons and the ideal Bose gas of α’s.
The pressure of such a system is equal to the sum of partial
pressures,

pid (T, μ) = pid
N (T, μN ) + pid

α (T, μα ). (3)

Here (h̄ = c = kB = 1),

pid
i (T, μi ) = gi

(2π )3

∫
d3k

k2

3Ei

[
exp

(
Ei − μi

T

)
± 1

]−1

(i = N, α), (4)

where Ei =
√

m2
i + k2 and gi is the spin-isospin degeneracy

factor (gα = 1, gN = 4). Upper and lower signs in Eq. (4)
correspond to i = N and i = α, respectively.

By taking derivatives with respect to μi, one gets the partial
densities,

ni =
(

∂ pid
i

∂μi

)
T

= gi

(2π )3

∫
d3k

[
exp

(
Ei − μi

T

)
± 1

]−1

(i = N, α). (5)

In the following, we will also use the canonical variables
T, ni as independent quantities. The transition from the grand
canonical variables T, μi is performed by solving the tran-
scendental equations (5) with respect to μi. Allowable states
of the chemically equilibrated α − N mixture are then found
using Eq. (1).

The chemical potential of α particles is restricted by the
relation μα � mα . At μα = mα , the Bose condensation of α’s
occurs. In this case, a nonzero density of Bose-condensed
(zero-momentum) α particles nbc should be taken into ac-
count. By taking the lowest-order approximation in T/mi (see
the Appendix) and introducing the thermal wavelength of
the ith particle λi(T ) = (2π/miT )1/2, one gets the following
relations for the total density and pressure of α’s in the region
of the BEC:

nα = n∗
α (T ) + nbc, pid

α = p∗
α (T ) (μα = mα ). (6)

Here,

n∗
α (T ) = nα (T, μα → mα − 0) � gα

λ3
α (T )

ζ (3/2),

p∗
α (T ) � gαT

λ3
α (T )

ζ (5/2), (7)

where ζ (x) = ∑∞
k=1 k−x is the Riemann ζ function [ζ (3/2) �

2.612, ζ (5/2) � 1.341].
The condition (1) leads to the relations μ ≡ μN = μα/4 �

mα/4 = mN − Bα , where Bα = mN − mα/4 � 7.1 MeV is the
binding energy per baryon of the α nucleus. At μ = mN − Bα ,
the BEC occurs in the ideal gas. Using Eq. (A1), one obtains
the nucleon density in the BEC region,

nN = n∗
N (T ) � gN

λ3
N (T )

	+
3/2

(
−Bα

T

)
, (8)

where 	+
3/2(η) is a dimensionless function defined in the

Appendix. Note that n∗
N does not depend on nbc. From Eqs. (7)

and (8), one can get the following relations for the ideal α − N
gas in the BEC domain:

nN

nα

� n∗
N

n∗
α

<
1

2ζ (3/2)
e−Bα/T . (9)

Here, we take into account that 	+
3/2(η) < eη and λα/λN �

1/2. According to (9), the fraction of unbound nucleons is
small in the whole BEC region, especially at low temperatures
(this conclusion has been earlier made in Ref. [24]). Figure 1
shows n∗

α, n∗
N as well as the baryon density of the ideal gas at

the BEC boundary as functions of T . One can see that n∗
N 	

n∗
α even at high temperatures.

At each temperature, the chemical equilibrium condition
(1) gives a line of allowable states on the (nN , nα) plane.
These lines are shown in Fig. 2. Vertical sections of the lines
correspond to the BEC states with densities nN = n∗

N (T ) and
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FIG. 1. Densities of α’s (the solid line), nucleons (the dashed
curve), and the baryon density (the dashed-dotted line) at the BEC
boundary as functions of temperature for the ideal α − N gas.

nα > n∗
α (T ). Such states lie above the BEC boundary shown

by the thin solid curve in Fig. 2.

C. Pure nucleon matter

Let us consider the limiting case of the one-component
isosymmetric nucleon matter with interaction. The EoS and
the phase diagram of a pure N matter were studied by many
authors. In particular, the mean-field approximation has been
applied in Refs. [25–27]. In such an approach, one introduces
a shift of the chemical potential μN with respect to the ideal

FIG. 2. Isotherms of the chemical equilibrium for an ideal α − N
gas. The thin solid line shows the boundary of the BEC region.

nucleon gas. We apply the equation,

μ̃N = μN − UN (nN ), (10)

where UN (nN ) is the mean-field potential of nucleons and
μ̃N = μ̃N (T, nN ) is the effective chemical potential of nucle-
ons at the density nN and temperature T . This quantity is
determined by solving Eq. (5) with i = N and μi = μ̃N . Here
and below we neglect a possible explicit dependence of the
mean-field potential on temperature. Equation (10) leads to
the expression,

�pN ≡ pN (T, μN ) − pid
N (T, μ̃N )

= nNUN (nN ) −
∫ nN

0
dn1UN (n1) (11)

for the shift of the nucleon pressure with respect to its ideal
gas value.1 One can see that �pN does not depend on T .
From Eqs. (10) and (11), one can prove the validity of the
thermodynamic consistency relation nN = (∂ pN/∂μN )T .

Further on, we use the Skyrme-like parametrization [27] of
the mean field,

UN (nN ) = −2aN nN + γ + 2

γ + 1
bN nγ+1

N , (12)

where positive constants aN , bN , and γ are adjustable param-
eters. The first and second terms, respectively, describe contri-
butions of medium-range attractive and short-range repulsive
interactions of nucleons. Substituting (12) into Eq. (11), one
obtains

�pN = −aN n2
N + bN nγ+2

N . (13)

Parameters entering Eqs. (12) and (13) are chosen to repro-
duce phenomenological properties of equilibrium isosymmet-
ric nuclear matter at T = 0. We use the values [27],

min

(
E

B

)
=−15.9 MeV, nN = n0 = 0.15 fm−3 (T =0)

(14)

for the binding energy per baryon E/B = εN/nN − mN and
the saturation density n0. Using further the thermodynamic
identities at zero temperature, pN = n2

N d (εN/nN )/dnN and
μN = (εN + pN )/nN , one finds the equations which are equiv-
alent to (14),

μN = μ0 = 923 MeV, pN = 0 (T = 0, nN = n0).

(15)

At T → 0, one can calculate the integrals in Eqs. (4) and
(5) for i = N analytically. In this limit, the Fermi distributions
inside these integrals can be replaced by unity if k < kF where
kF = (6π2nN/gN )1/3 is the Fermi momentum of nucleons.
One gets the relations,

μ̃N (T = 0, nN ) = EF (nN ) =
√

k2
F + m2

N ,

pid
N (T = 0, nN ) = gN

6π2

∫ kF

0

k4dk√
k2 + m2

N

. (16)

1This shift is often called the “excess” pressure [25,26].
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TABLE I. Characteristics of pure nucleon matter in the Skyrme mean-field model.

γ aN (GeV fm3) bN (GeV fm3+3γ ) KN (MeV) Tc (MeV) nc (fm−3) μc − mN (MeV)

1/6 1.167 1.475 198 15.3 0.048 −31.6
1 0.399 2.049 372 21.3 0.059 −42.8

From Eqs. (10), (11), (15), and (16) one obtains two equations,

UN (n0) = μ0 − EF (n0),

�pN (n0) = −pid
N (T = 0, n0) (17)

for the parameters aN , bN as functions of γ .
The results of the numerical calculation for γ = 1/6 and

γ = 1 are shown in Table I. In addition to coefficients of
the Skyrme interactions, we also present the values of the
incompressibility modulus,

KN = 9
d pN

dnN
= 9nN

d (EF + UN )

dnN
, (18)

at the saturation point nN = n0, T = 0. As noted in Ref. [28],
the Skyrme-like models with 1/6 � γ � 1/3 predict reason-
able values of the nuclear matter compressibility KN = 200 −
240 MeV.2 This agrees with our calculations. Indeed, one can
see from Table I that the “soft” Skyrme parametrization with
γ = 1/6 is preferable as compared to γ = 1.

Using Eqs. (2), (4), (5), and (10)–(13) one can calculate all
thermodynamic functions of pure nucleon matter at nonzero
temperatures. Our mean-field model predicts a first-order
LGPT at temperatures 0 � T � Tc, where Tc is the critical
temperature. Characteristics of the LGPT are found by using
Gibbs conditions of the phase equilibrium [30]. For isotherms
with T < Tc, there are two (meta)stable branches of the
chemical potential as the function of pressure. In accordance
with Gibbs rule, these branches intersect at the LGPT point.
We find the intersection points numerically by calculating
isotherms on the chemical potential-pressure plane. The po-
sition of the critical point is found by solving two equations
[30]: (∂ pN/∂nN )T = 0, (∂2 pN/∂n2

N )T = 0. The characteris-
tics of this point for the soft (γ = 1/6) and stiff (γ = 1)
repulsive interactions are given in the last three columns of
Table I.

Figures 3(a) and 3(b) show the phase diagrams of nucle-
onic matter on the (μ, T ) and (nB, T ) planes, respectively.
The LGPT line in Fig. 3(a) goes from the ground state (GS)
at T = 0, μ = μ0 to the critical point at T = Tc, μ = μc.
According to our calculations, Tc increases, but μc decreases
with γ . Figure 3(b) shows the “binodals,” i.e., the boundaries
of the liquid-gas mixed phase (MP). They intersect the density
axis at nB = nN = n0.

2See, however, Ref. [29] where higher values of KN =
250–315 MeV have been obtained from the fit of data on the giant
monopole resonance.

D. Pure α matter

In this section, we consider the idealized case of a pure α

matter. In this limit, reactions α ↔ 4N are disregarded and,
therefore, the chemical equilibrium is violated. Up to now, the
EoS of such matter has been poorly known. The variational
microscopic calculations based on phenomenological αα po-
tentials were performed a long time ago in Ref. [7]. More
recently, the EoS of pure α matter was considered within sev-
eral simplified models in Refs. [10,11]. In Ref. [6], the phase
diagram of such matter has been studied within a Skyrme
mean-field model. Below, we apply the same approach and
use characteristics of the α-matter GS obtained in Ref. [7],

Wα = − min

(
Eα

B

)
= 12 MeV,

nα = n0α = 0.036 fm−3 (T = 0). (19)

Note that the baryon density of this state 4n0α � 0.144 fm−3

is close to the saturation density of pure nucleon matter, but
the latter has stronger binding per baryon [compare Eqs. (14)
and (19)].

In the case of pure α matter, one can write the equations,
analogous to Eqs. (10)–(13),

μ̃α = 4μ − Uα (nα ), pα = pid
α (T, μ̃α ) + �pα (nα ), (20)

where μ is the baryon chemical potential and Uα and �pα

are parameterized by Eqs. (12) and (13) with the replacement
N → α. Below, we choose the same parameter γ as for nu-
cleons and find the coefficients aα and bα from the conditions
(19).

In our mean-field model, one has the following relations
for states with the BEC of α particles:

μ̃α = mα, nα � n∗
α (T ), pid

α = p∗
α (T ), (21)

where n∗
α and p∗

α are defined in Eq. (7). The boundary of the
BEC region is obtained after replacing the inequality in (21)
by the equality. The resulting equation 4μ = mα + Uα[n∗

α (T )]
gives a line on the (μ, T ) plane. For brevity, we call it the BEC
line.

At zero temperature one has n∗
α = 0 and p∗

α = 0 and the
conditions (21) hold for all states. In this case, Eqs. (20) give

4μ = mα + Uα (nα ), pα = �pα (nα ) (T = 0). (22)

Using further the relations Eα/B = εα/4nα − mN and pα =
4μnα − εα = 0 for the GS of α matter, one gets algebraic
equations for the coefficients of the Skyrme interaction [6],

Uα (n0α ) = 4(Bα − Wα ), �pα (n0α ) = 0, (23)
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FIG. 3. Phase diagrams of isosymmetric nucleon matter on (a) the (μ, T ) and (b) the (nB, T ) planes. The solid and dashed lines correspond
to the LGPT at γ = 1/6 and γ = 1, respectively. Full dots mark the positions of the critical points (CPs). The ground state is shown by the
full square.

where Bα was introduced in Sec. II B. The solutions of
Eqs. (23) can be written as

aα = bαnγ

0α = 4(γ + 1)

γ n0α

(Wα − Bα ). (24)

Numerical values of the coefficients aα and bα as well as
the compressibility Kα = 9γ aαn0α are given in Table II for the
soft and stiff Skyrme repulsions.

Using the Skyrme interaction, one can calculate the ther-
modynamical functions of pure α matter at nonzero tempera-
tures. Similar to the pure nucleon matter, the model predicts
the LGPT in a pure α system. On the (μ, T ) plane, this phase
transition occurs along a line which goes from the GS at
T = 0 to the critical point at T = Tc, μ = μc. The presence
of the BEC imposes some complications as compared to the
case of pure nucleon matter. We found that the BEC boundary
crosses the LGPT line at some “triple” point with temperature
TTP < Tc.

The resulting phase diagrams on the (μ, T ) and (nB, T )
planes are shown in Figs. 4(a) and 4(b), respectively (note
that nB = 4nα for pure α matter). The characteristics of
the CP as well as the temperature of the triple point
are given in Table II. Similar to pure nucleon matter, the value
of Tc(μc) increases (decreases) with γ , but the position of
the triple point only slightly depends on this parameter. Note
that the BEC region in Fig. 4(a) extends to the right from the
LGPT line and below the BEC line. According to Fig. 4(b),
the BEC line on the (nB, T ) plane is not sensitive to γ

outside the MP region. It is clear that inside this region the

BEC occurs only in the liquid phase, whose volume fraction
diminishes with decreasing nB. Therefore, the volume fraction
of the condensate decreases too and vanishes at the left bin-
odal boundary. The horizontal lines in Fig. 4(b) show the BEC
critical temperatures in the MP domain for two considered
values of γ .

III. SKYRME MODEL FOR α − N BINARY MIXTURE

A. Thermodynamic relations for the two-component system

Similar to one-component matter, we take into account
multiparticle interactions in the α − N mixture by introducing
a temperature-independent excess part of pressure �p,

p = pid
N (T, nN ) + pid

α (T, nα ) + �p(nN , nα ). (25)

A similar expression can be written for the free-energy density
f = ∑

i=N,α μini − p after introducing the excess term � f =
f − f id

N − f id
α . At known �p, one can calculate the mean-field

potentials Ui = μi − μ̃i as well as the excess free-energy � f .
The following relations can be obtained [31,32]:

UN (nN , nα ) =
(

∂ � f

∂nN

)
nα

,

Uα (nN , nα ) =
(

∂ � f

∂nα

)
nN

, (26)

� f (nN , nα ) =
∫ 1

0

dλ

λ2
�p(λnN , λnα ).

TABLE II. Characteristics of pure α matter in the Skyrme model.

γ aα (GeV fm3) bα (GeV fm3+3γ ) Kα (MeV) Tc (MeV) nBc (fm−3) μc − mN (MeV) TTP (MeV)

1/6 3.831 6.667 207 10.2 0.037 −16.7 3.56
1 1.094 30.39 354 13.7 0.048 −19.3 3.65
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FIG. 4. Phase diagrams of pure α matter on the (a) (μ, T ) and (b) (nB, T ) planes. The solid and dashed curves correspond to γ = 1/6
and γ = 1, respectively. The full dots mark the positions of the CPs. The GS of the α matter is shown by the full square. The dashed-dotted
lines represent the boundaries of the BEC regions. The open dots show the positions of the triple points. They practically coincide for two
considered values of γ .

In addition, one can find the entropy density s = −∂ f /∂T =∑
i sid

i and the energy density ε = f + T s = ∑
i ε

id
i + � f ,

where sid
i and εid

i are the corresponding ideal-gas quantities
for ith species (i = N, α).

The free-energy density is a genuine thermodynamic po-
tential in the canonical ensemble. Instead of partial densities
nN and nα , one can also use the variables,

nB = nN + 4nα, χ = 4nα

nB
. (27)

The quantity χ is a fraction of bound nucleons in the α − N
matter (it is approximately equal to the mass fraction of α’s).
Note that, due to the baryon number conservation B = NN +
4Nα = const, the baryon density nB is inversely proportional
to the system volume V . Using Eq. (27) and thermodynamic
identities, one can write the following relations for changes in
the free-energy per baryon in any isothermal process:

d

(
F

B

)
=d

(
f

nB

)
= p

dnB

n2
B

+
(

μα

4
− μN

)
dχ (T =const).

(28)

According to this equation, at fixed T and nB, the quantity F/B
reaches its extremum if the condition (1) is satisfied. However,
solving Eq. (1) with respect to χ does not necessarily gives
the true state of the chemical equilibrium. In particular, the
solution can be unstable (F/B = max) if the second derivative
of F/B over χ is negative.

In general, one should explicitly calculate the curvature
matrix (∂2 f /∂ni∂n j )T to study stability of the system with
respect to fluctuations of partial densities nN , nα . Only if
both eigenvalues of this matrix are non-negative, will the

corresponding state be stable.3 The necessary condition of
stability can be written as [33]

det

(
∂2 f

∂ni∂n j

)
T

= det

(
∂μi

∂n j

)
T

=
(

∂μN

∂nN

)
T

(
∂μα

∂nα

)
T

−
(

∂μN

∂nα

)2

T

� 0. (29)

B. Skyrme parametrization of interaction terms

In the present paper, we apply a generalized Skyrme-like
parametrization for the excess pressure �p,

�p(nN , nα ) = −
∑
i, j

ai jnin j +
(∑

i

Bini

)γ+2

, (30)

where ai j, Bi, and γ are positive constants and the sums
go over i, j = N, α. The first term on the right-hand side of
Eq. (30) describes attractive forces and has the same structure
as in the two-component van der Waals equation of state
[16]. The second term, responsible for repulsive interactions,
is obtained by interpolation between the limits nα = 0 and
nN = 0 considered in Secs. II C and II D. From the compar-
ison with these limiting cases, one gets the relations aii =
ai, Bγ+2

i = bi where ai and bi are the Skyrme coefficients
introduced earlier for the pure nucleon (i = N) and pure α

(i = α) matter. Using these relations, one finds

�p(nN , nα ) = −(
aN n2

N + 2aNαnN nα + aαn2
α

)
+ bN (nN + ξnα )γ+2, (31)

3Note that the appearance of negative-curvature (spinodal) parts
of the free-energy density surface can be considered as a necessary
condition for the LGPT.
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where

ξ =
(

bα

bN

)1/(γ+2)

=
{

2.006, γ = 1/6,

2.457, γ = 1.
(32)

Numerical values of ξ in Eq. (32) are obtained by substituting
the bN and bα values from Tables I and II. One can see that
there is only one unknown coefficient in the parametrization
(31), namely, the cross-term coefficient aNα which determines
the α − N attraction strength. Below, we study the sensitivity
to the choice of this parameter.

Using Eqs. (26) and (31), one gets the relations,

� f = −(
aN n2

N + 2aNαnN nα + aαn2
α

)
+ bN

γ + 1
(nN + ξnα )γ+2, (33)

μN = μ̃N − 2(aN nN + aNαnα )

+ γ + 2

γ + 1
bN (nN + ξnα )γ+1, (34)

μα = μ̃α − 2(aNαnN + aαnα )

+ γ + 2

γ + 1
bNξ (nN + ξnα )γ+1. (35)

To study the EoS of interacting α − N matter, we choose
a certain value of aNα and substitute (34) and (35) into the
condition of chemical equilibrium (1). The resulting equation
gives allowable states in the (T, nN , nα) space. Then, from
Eqs. (25), (31), and (34), we determine pressure at different
μ = μN ’s and T ’s.

Before going to numerical results we would like to note
that our approach becomes questionable at high densities of
α particles. Classical Monte Carlo calculations in the hard-
sphere approximation show [34] that the transition to a solid
phase occurs in a pure α system at nα � (0.07 − 0.1) fm−3

(in this estimate, we assume the radius of the α nucleus

rα = 1 − 1.2 fm). Therefore, our results should be considered
with caution at baryon densities nB � 0.3 − 0.4 fm−3.

IV. RESULTS FOR INTERACTING α − N MATTER

A. Zero-temperature limit

Let us consider first the ground state of the α − N matter
at zero temperature. Note that this is the state with p = 0
and minimal energy per baryon ε/nB. Using formulas of the
preceding section, one can calculate the pressure p, the baryon
chemical potential,

μ = μN = μα/4, (36)

and the energy per baryon ε/nB = μ − p/nB at T → 0 as
functions of nB for different values of the parameter aNα .

Our analysis shows that the results are qualitatively differ-
ent if this parameter is smaller or larger than some threshold
value a∗ [see below Eq. (41)]. In the region aNα < a∗ the
GS of the α − N mixture corresponds to pure nucleon matter
(nα = 0) with μ = μ0 and nN = n0. Here, μ0 and n0, respec-
tively, are the chemical potential and the saturation density
of the equilibrium nucleon matter, introduced in Sec. II C. In
the same interval of aαN , there exists another local minimum
of energy per baryon with nN = 0 which corresponds to pure
α matter. This state is metastable because it has a smaller
binding energy as compared to pure nucleon matter. These
two minima on the (nB, χ ) plane are separated by an energetic
barrier.

Our calculations show that at aNα > a∗ the α − N mixture
has only one minimum-energy state on the (nB, χ ) plane, and
this system becomes stronger bound as compared to pure
nucleon matter. In this region, the GS is characterized by a
nonzero value of nα , and the corresponding binding energy
W = mN − ε/nB = mN − μ increases with aNα .

The threshold value a∗ can be found analytically by us-
ing formulas of the preceding section. One should take into

FIG. 5. (a) Partial densities as well as baryon density of particles in the GS of cold α − N matter as functions of the cross-term coefficient
aNα . (b) Binding energy per baryon of the cold α − N mixture as the function of aNα . The dots correspond to threshold value aNα = a∗ (see the
text). All calculations correspond to γ = 1/6.
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TABLE III. Characteristics of the LGPT for α − N matter at T = 2 MeV (set B).

Binodal point C Binodal point D

μc − mN nN nα nB χ nN nα nB χ

(MeV) (fm−3) (fm−3) (fm−3) (fm−3) (fm−3) (fm−3)

PT1 −16.2 8.2 × 10−7 6.3 × 10−11 8.2 × 10−7 3.1 × 10−4 0.15 2.1 × 10−17 0.15 1.4 × 10−16

PT2 −12.1 6.4 × 10−6 2.3 × 10−7 7.3 × 10−6 0.12 7.3 × 10−4 3.5 × 10−2 0.14 1.0

account that at zero temperature all α’s are Bose condensed
(μ̃α = mα) and the ideal-gas pressure pid

α = 0. Using these
relations and formulas of Sec. III, one gets the equations,

p = pid
N + �p(nN , nα ) = 0, (37)

μN = EF (nN ) + UN (nN , nα ), (38)

μα = mα + Uα (nN , nα ), (39)

where �p, UN , and Uα are functions of nN , nα defined in
Eqs. (31), (34), and (35).

The ground-state values of μ, nB, and χ are determined
by simultaneously solving Eqs. (36)–(39). They are contin-
uous functions of aNα so that μ → μ0, nN → n0, nα → 0
at aNα → a∗. Substituting these limiting values into (36) and
(39) gives

mα + Uα (n0, 0) = 4μ0 (aNα = a∗). (40)

Solving this equation with respect to a∗ gives

a∗ = 1

2

(
mα − 4μ0

n0
+ γ + 2

γ + 1
bNξ nγ

0

)
� 2.12 GeV fm3 (γ = 1/6). (41)

In the last equality, we use numerical values of bN , ξ obtained
in Secs. II C and III B.

Figures 5(a) and 5(b) show ground-state characteristics of
cold α − N matter as functions of aNα for γ = 1/6. One can
see that at aNα > a∗ the binding energy and densities nα, nB

increase monotonically with aNα .
Below, we present the results for γ = 1/6 and choose the

parameter aNα in the interval aNα < a∗, i.e., we assume that
α’s do not appear in the GS at T → 0. Such an assumption
seems to be supported by the nuclear phenomenology. To
study the sensitivity to aNα , we compare the results for aNα =
1 (set A) and 1.9 (set B) GeV fm3.

B. Phase diagram of interacting α − N matter

In this section, we consider the EoS of chemically equi-
librated α − N mixture at nonzero temperatures. We apply
explicit relations for pressure and free energy derived in
Sec. III B. By solving Eq. (1), one can find allowable states
of matter in the (T, μ, p) or (T, nN , nα ) space. The stability of
such states is studied by calculating the sign of the determi-
nant in Eq. (29).

Figure 6 represents the isotherm T = 2 MeV on the plane
(μ, p). Lower and upper panels correspond to sets A and B,
respectively. The unstable parts of the isotherm are shown
by the dotted lines. It is interesting that only these parts
exhibit significant changes in the transition between sets A

and B. According to Gibbs rule, the intersection points of
(meta)stable branches of pressure as functions of μ corre-
spond to PTs. As one can see from Fig. 6, there are two PTs at
T = 2 MeV. Their characteristics, in particular, critical values
of the baryon chemical potential μc are given in Table III.

FIG. 6. The isotherm T = 2 MeV of α − N matter on the (μ, p)
plane for the parameter sets (a) A and (b) B. The stable, metastable,
and unstable parts of isotherm are shown by the solid, dashed, and
dotted lines, respectively. The dots PT1 and PT2 show positions of
stable and metastable LGPTs, respectively.
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FIG. 7. The isotherm T = 2 MeV on the (nN , nα ) plane for the
same parameters as in Fig. 6. The BEC region is shown by shading.
The dashed-dotted line corresponds to ideal α − N gas. Lines C1D1

and C2D2 correspond to mixed-phase states of PT1 and PT2, respec-
tively. The thin solid line represents the isotherm T = 2 MeV from
Ref. [15]. Note that the binodal point D1 in the upper panel lies below
the plotted region.

The first transition PT1 occurs at a smaller baryon chemical
potential as compared to PT2.4 As a consequence, states on the
dashed lines have lower pressure (i.e., larger thermodynamic
potential � = −pV ) as compared to states with the same μ on
the solid curve. It is well known that states with lower pressure
are thermodynamically less favorable [30,35]. This shows that
states on the dashed lines (including mixed-phase states of
PT2) are metastable. In Figs. 6–8 stable (favorable) states are

4Note that the slope of the pressure as a function of μ equals the
baryon density nB. Therefore, jumps in the pressure slopes at points
PT1 and PT2 in Fig. 6 correspond to nonzero jumps in nB.

FIG. 8. The same as Fig. 7 but for T = 8 MeV. Note that only
one (stable) LGPT exists at this temperature.

represented by the solid lines, and metastable (unfavorable)
states are indicated by the dashed lines. The unstable states
with maximum values of � are shown by the dotted lines.

Figures 7(a) and 7(b) represent the same isotherm T =
2 MeV, but on the (nN , nα ) plane. A strong sensitivity to aNα

is clearly visible in this representation. By shading, we show
the region of BEC nα > n∗

α � 0.014 fm−3 (see Sec. II B). For
both sets of parameters, we do not find any stable states
of the α − N matter with large fractions of α’s at densities
nN � 10−2 fm−3. One may say that the model imitates the
Mott effect [36], i.e., predicts a suppression of nuclear clusters
at large baryon densities. On the other hand, the model also
predicts metastable states, where α particles are more abun-
dant than nucleons (see, e.g., the upper parts of Figs. 7 and 8
where the dashed lines enter the shaded area).

Points Ci and Di in Fig. 7 and Table III are the binodal
points (i.e., the boundaries of the liquid-gas MP) for the phase
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FIG. 9. Left panels: critical lines of (a) the stable and (c) the metastable PTs of α − N matter on the (μ, T ) plane. Right panels: boundaries
of MP for (b) the stable and (d) the metastable PTs of the α − N mixture on the (nB, T ) plane. All calculations correspond to parameter set B.
The full circles in (a) and (b) show the positions of the CPs. The dashed lines in (c) and (d) represent boundaries of the BEC region. The open
square (circle) marks the end (triple) point of the metastable PT. The full squares and diamonds show the GS positions for the pure nucleon
and pure α matter, respectively.

transition PTi (i = 1, 2). Coordinates of such points on the
(nN , nα ) plane are determined from Gibbs conditions of phase
equilibrium,

p
(
T, n(C)

N , n(C)
α

) = p
(
T, n(D)

N , n(D)
α

) = pc, (42)

μN
(
T, n(C)

N , n(C)
α

) = μN
(
T, n(D)

N , n(D)
α

) = μc, (43)

where we omit indices i. Characteristics of binodal points for
the parameter set B are given in Table III.5 We have checked

5The calculation with set A gives a very small value (about
10−74 fm−3) for the α-particle density at the binodal point D1. The
latter lies far below the horizontal axis in Fig. 7(a).

that at T = 2 MeV the nucleon densities at points C1 and D1

are close to the binodal densities of pure nucleon matter (see
Sec. II C). The same conclusion is valid for the α-particle
densities at points C2 and D2: They are close to the binodal
densities obtained for pure α matter in Sec. II D. Note that for
both parameter sets point D2 lies in the BEC region.

The solid and short-dashed lines C1D1 and C2D2 in Fig. 7
correspond to the MP states for PT1 and PT2, respectively.
Coordinates of these states on the (nN , nα) plane and the
volume fraction of the liquid phase λ satisfy the relations (as
above, we omit the phase transition index),

λ = nN − n(C)
N

n(D)
N − n(C)

N

= nα − n(C)
α

n(D)
α − n(C)

α

. (44)
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TABLE IV. Characteristics of phase transitions in α − N matter for parameter sets A and B.

PT1 PT2

TCP μCP − mN nBCP χCP TK μK − mN nBK χK TTP

(MeV) (MeV) (fm−3) (MeV) (MeV) (fm−3) (MeV)

Set A 15.4 −31.7 4.8 × 10−2 2.5 × 10−4 7.6 −14.3 (1.2 − 2.6) × 10−2 0.14–1.0 3.54
Set B 14.7 −30.3 5.3 × 10−2 6.9 × 10−2 4.6 −13.2 1.3 × 10−3–10−1 0.46–0.86 3.37

One can see that the MP states lie on straight lines on the
(nN , nα) plane. However, one can hardly recognize this linear
dependence in Fig. 7 because of the double-logarithmic scale
used in this plot.

As one can see from Table III and Fig. 7, the mass fraction
of α’s χ is relatively small for the MP states of PT1, but it
is rather large for the transition PT2. As has been already
mentioned, the phase transition PT2 is, in fact, metastable.
Nevertheless, we believe that it can be observed in dynamical
processes (such as heavy-ion collisions) by selecting states
with large relative abundances of α’s. The same statement
can be made for BEC states (see the dashed lines in the
shaded regions). Indications of an enhanced production of
α’s and α-conjugate nuclei have been observed recently in
intermediate-energy nuclear collisions [37,38].

The results obtained within a virial approach [15] are
shown in Fig. 7 by thin solid lines. This approximation
can be considered as reasonable only at low densities. Note
that the quantum-statistical and phase-transition effects are
disregarded in such a model. Nevertheless, from Fig. 7 one can
conclude that calculations with set B are in better agreement
with the results of Ref. [15]. Presumably, this parameter set is
preferable as compared to set A.

Figures 8(a) and 8(b) show the isotherm T = 8 MeV on
the (nN , nα ) plane again for the parameter sets A and B. At
this temperature only one stable LGPT remains. One can see
a significant change in the shape of the isotherm as compared
to the case T = 2 MeV considered in Fig. 7.

A further increase in T leads to the disappearance of the
LGPT. This takes place at T > TCP where TCP is the temper-
ature of the CP. Similar to the pure nucleon and α matter, we
determine the characteristics of this point by simultaneously
solving the equations (∂ p/∂nB)T = 0 and (∂2 p/∂n2

B)T = 0.
Our analysis shows that the metastable transition PT2 disap-
pears “abruptly” at some temperature, TK , which is smaller
than TCP. Note that there is still a nonzero baryon density jump
at T = TK [see Fig. 9(d)].6

Table IV gives the characteristics of the critical point of
PT1 as well as those for the end point K of PT2. One can see
that the position of the critical point CP is not very sensitive to
the parameter aNα . On the other hand, characteristics of PT2

6This means that at T > TK there are no additional intersections
between the pressure branches on the (μ, p) plane except for point
PT1. We found that pressure slopes on both sides of point PT2 still
differ when T → TK . On the other hand, the density jump disappears
for transition PT1 when T → TCP.

are more strongly modified in the transition between sets A
and B.

A more detailed information is given in Figs. 9(a)–9(d),
which represent the phase diagrams of the α − N matter on
the (μ, T ) and (nB, T ) planes. Qualitatively, the critical line
of the metastable PT on the (μ, T ) plane is similar to that for
pure α matter [see Fig. 4(a)]. Note, however, that the end-point
K cannot be regarded as a critical point. The full squares and
diamonds in Fig. 9 mark, respectively, the ground states of
one-component systems composed of nucleons or α’s. These
states coincide with the boundaries of the critical lines on the
axis T = 0.
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FIG. 10. (a) Contour plot of the mass fraction of α’s in α − N
matter for parameter set B. The MP boundary is shown by the solid
line. (b) The same as in the upper panel but for ideal α − N gas. The
dashed line represents the BEC boundary.
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The contour plot of the mass fraction χ on the (nB, T )
plane is shown in Fig. 10(a) for parameter set B. In this
calculation, we take into account only stable states of the
α − N matter. One can see that the maximum values of
χ ∼ 0.1–0.2 are reached near the left boundary of the LGPT.7

At fixed temperature, χ decreases with nB in the MP region. It
is interesting that a similar nonmonotonic density behavior of
χ was also predicted in Refs. [2,16,20,21,23]. We would like
to emphasize that the model gives qualitatively different re-
sults as compared to the ideal α − N gas where the mass frac-
tion of α’s increases monotonically with nB [see Fig. 10(b)].

V. CONCLUSIONS AND OUTLOOK

In this paper, we have analyzed the EoS and phase diagram
of the chemically equilibrated α − N matter. Our approach
simultaneously takes into account the quantum-statistical ef-
fects as well as the liquid-gas phase transitions. We apply
Skyrme-like parametrizations of interaction terms as func-
tions of particle densities. The model parameters were chosen
by using the ground-state characteristics of pure nucleon and
pure α matter at zero temperature. We investigate stability
of the α − N mixture with respect to density fluctuations.
The regions of possible phase transitions have been studied
for different choices of model parameters. At low enough
temperatures, two LGPTs are found where one is stable and
the other is metastable. It is demonstrated that the phase-
transition effects are important even for dilute states of the
α − N matter. A strong suppression of α-cluster abundance is
found at high nucleon densities. On the other hand, nucleon
fractions are relatively small for metastable states with Bose-
Einstein condensation of α’s.

The results of this paper may be used for studying
nuclear-cluster production in heavy-ion reactions as well as in
astrophysics. To analyze dynamical processes in nuclear col-
lisions, it would be interesting to calculate not only isotherms,
but also trajectories of constant entropy per baryon. Then, one
can study the possibility to reach the metastable states of α

condensation in the course of isentropic expansion of excited
matter produced in a heavy-ion collision.

In the present paper, we use parametrizations of mean
fields which predict two separated minima of the energy per
baryon of cold α − N matter. These minima correspond to
the ground states of pure nucleon and pure α matter. Another
possibility where the nuclear matter has only one ground state
composed of nucleons with a small admixture of α’s will be
considered in a subsequent paper.

In the future, we are going to apply our approach for
studies of clusterized isospin-asymmetric matter as expected
in compact stars and their mergers. More realistic calculations
can be performed by taking into account the Coulomb
interactions as well as contributions of other light and
heavy clusters. The results of this paper may be useful for

7Note that much larger relative abundances of α’s and even their
BECs can be reached by selecting metastable states of the α − N
matter.

investigating not only equilibrium, but also nonequilibrium
mixtures of nucleons and nuclear clusters. We think that the
present formalism can be also used to study the properties of
binary mixtures of fermionic atoms and bosonic molecules,
such as H + H2 or D + D2.
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APPENDIX: THERMODYNAMIC FUNCTIONS
OF THE IDEAL NUCLEON AND α GAS

Let us consider the case μα < mα with the density of Bose-
condensed α’s nbc = 0. In the lowest order in T/mi (i = N, α)
one gets from Eqs. (4) and (5) the relations [39],

ni � gi

λ3
i (T )

	±
3/2

(
μi − mi

T

)
,

pid
i � giT

λ3
i (T )

	±
5/2

(
μi − mi

T

)
(T 	 mi ). (A1)

Here, upper and lower signs correspond to i = N and i = α,
respectively, λi(T ) is the thermal wavelength introduced in
Sec. II B, and

	±
β (η) ≡ 1

�(β )

∫ ∞

0

xβ−1dx

ex−η ± 1
, (A2)

where �(β ) is the γ function.8 For η � 0, one can
use the decomposition in powers of fugacity: 	±

β (η) =∑∞
k=1(∓1)(k+1)k−β exp(ηk). At η = 0, functions (A2) are ex-

pressed through the Riemann zeta function ζ (β ),

	−
β (0) = ζ (β ), 	+

β (0) = (1 − 21−β )ζ (β ). (A3)

The classical Boltzmann approximation corresponds to
the limit μi − mi → −∞. Using the approximate relation
	±

β (η) � eη at η → −∞ one gets, instead of Eq. (A1), much
simpler relations,

ni � gi

λ3
i (T )

exp

(
μi − mi

T

)
, pid

i � niT
(
niλ

3
i 	 gi

)
.

(A4)

8Note that 	±
β (η) = ∓Liβ (∓eη ) where Liβ (x) = ∑∞

k=1 xkk−β is the
polylogarithm of the β-th order.
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