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We analyze a generic model where wounded quarks are amended with strings in which both endpoint positions
fluctuate in spatial rapidity. With the assumption that the strings emit particles independently of one another
and with a uniform distribution in rapidity, we are able to analyze the model semianalytically, which allows
for its detailed understanding. Using as a constraint the one-body string emission functions obtained from the
experimental data for collisions at

√
sNN = 200 GeV, we explore the two-body correlations for various scenarios

of string fluctuations. We find that the popular measures used to quantify the longitudinal fluctuations (anm

coefficients) are limited with upper and lower bounds. These measures can be significantly larger in the model
where both endpoints are allowed to fluctuate, compared to the model with single endpoint fluctuations.
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I. INTRODUCTION

The purpose of this paper is to present a detailed semian-
alytic analysis of models of ultrarelativistic nuclear collisions
where the early production of particles occurs from strings.
The strings are associated with wounded quarks, and both
of their endpoint positions fluctuate in spatial rapidity. The
model generalizes the analysis of [1] where only one-end fluc-
tuations were considered. The main assumptions are that the
strings emit particles independently of one another and that
the production from a string is uniform between its endpoints.
We obtain the one-body string emission function from a fit to
the experimental data at

√
sNN = 200 GeV, and use it to con-

strain the freedom in the distribution of the endpoint positions.
We then explore in detail the two-body correlations in various
scenarios for the fluctuating endpoints. The derived analytic
formulas allow for a full understanding of this simple model.
In particular, we show that standard measures applied in
analyses of the longitudinal fluctuations, such as the Legendre
anm coefficients, fall between certain bounds. This explains
why a priori different models may provide quite similar
results for these measures of the longitudinal correlations. We
find that the anm coefficients can be significantly larger (by a
factor of ∼3) when one allows for two endpoints to fluctuate,
compared to the case of single endpoint fluctuations of [1].
This observation is relevant for phenomenological studies.
Since the model, despite its simplifications, is generic, sharing
features with more complicated string implementations, our
findings shed light on correlations from other string models in
application to ultrarelativistic heavy-ion collisions.

The basic phenomenon explored in this paper and illus-
trated with definite calculations can be understood in very
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simple terms. Consider a string with left and right endpoints
and an acceptance window in pseudorapidity. If the left
endpoint were always left of the acceptance window, and
the right endpoint to the right (they may fluctuate or not,
but cannot enter the window), then the string seen in the
window is always the same, hence no fluctuations occur. If,
however, an endpoint via fluctuation enters the acceptance
window, then fluctuations occur, as its observed fragment may
be shorter or longer. The fluctuation effect is larger when both
endpoints fluctuate into the acceptance window, which is the
case explored in detail below.

The concept of wounded sources formed in the initial
stages of ultrarelativistic heavy-ion collisions has proven to
be phenomenologically successful in reproducing multiplicity
distributions from soft particle production. The idea (see
[2] for a discussion of the foundations), adopts the Glauber
model [3] in its variant suitable for inelastic collisions [4].
Whereas the wounded nucleon scaling [5], when applied to
the highest BNL Relativistic Heavy-Ion Collider (RHIC) or
the CERN Large Hadron Collider (LHC) energies, requires a
sizable admixture of binary collisions [6,7], the scaling based
on wounded quarks [8–11] works remarkably well [12–28].
Another successful approach [29,30] amends the wounded
nucleons with a meson-cloud component.

For mid-rapidity production, the wounded quark scaling
takes the simple form

Nch = k(〈NA〉 + 〈NB〉), (1)

where Nch is the number of charged hadrons in a mid-rapidity
bin, and 〈Ni〉 are the average numbers of wounded quarks in
nucleus i in a considered centrality class. The proportionality
constant k should not depend on centrality or the mass num-
bers of the nuclei (i.e., on the overall number of participants),
and indeed this requirement is satisfied to expected accuracy
[22,28]. Of course, k increases with the collision energy.
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When it comes to modeling the rapidity spectra, formula
(1) is replaced with

dN

dη
= 〈NA〉 f (η) + 〈NB〉 f (−η), (2)

where f (η) is a universal (at a given collision energy) profile
for emission from a wounded quark (we adopt the convention
that nucleus A moves to the right and B to the left). For
symmetric (A = B) collisions one only gets access to the
symmetric part of f (η), as then 〈NA〉 = 〈NB〉. However, from
asymmetric collisions, such as d-Au, one can also extract the
antisymmetric component in the wounded nucleon [31] or
wounded quark model [32,33] (for A-A collisions analogous
analyses were carried out in [34–36]), with the finding that
f (η) is peaked in the forward region, thus quite naturally
emission is in the forward direction. However, f (η) is widely
spread in the whole kinematically available range. The phe-
nomenological result of the approximate triangular shape of
the emission profile was later used in modeling the initial
conditions for further evolution; see, e.g., [37–41].

Microscopically, the approximate triangular shape of the
emission function finds a natural origin in color string mod-
els, where one endpoint of the string is fixed, whereas the
location of the other endpoint fluctuates. In particular, in the
basic Brodsky-Gunion-Kuhn mechanism [42], the emission
proceeds from strings in which one endpoint is associated with
a valence parton, and the other endpoint, corresponding to wee
partons, is randomly generated along the space-time rapidity
η. When the distribution of the fluctuating endpoint is uniform
in η, and so is the string fragmentation distribution, then the
triangular shape for the emission function follows.

Various Monte Carlo codes implementing the Lund string
formation and decays (see, e.g., [43–48]) or the dual-parton-
model/Regge-exchange approach [49–51] also introduce
strings of fluctuating ends, with various specific mechanisms
and effects (baryon stopping, nuclear shadowing) additionally
incorporated. Apart from reproducing the measured one-body
spectra, achieved by appropriate tune-ups of parameters, the
incorporated initial-state correlations show up in event-by-
event fluctuations that can be accessed experimentally. Thus
the fluctuating strings are standard objects used in modeling
the early phase of high-energy reactions.

Our model joins the concept of wounded sources with
strings in the following way:

(1) Each wounded source has an associated string.
(2) The strings emit particles independently of each-other.
(3) The endpoints of a string are generated universally

(in the same manner for all wounded objects) from
appropriate distributions.

(4) The emission of particles from a string occurring
between the endpoints is homogeneous in spatial
rapidity.

In such a model, event-by-event fluctuations take the origin
from fluctuations of the number of wounded objects, as well
as from fluctuations of the positions of the endpoints [1]. The
goal of this paper is to study this generic model, with the
focus on the endpoint behavior which probes the underlying
physics. We take a general approach, with no prejudice as

to how the endpoints are fluctuating, but using the one-body
emission profiles obtained from experiment as a physical
constraint.

More complicated mechanisms associated with dense sys-
tems, such as the formation of color ropes [52,53] or nuclear
shadowing, are not incorporated in our picture. Also, we
consider one type of strings, which allows for simple analytic
derivations.

We remark that associating a string with a leading quark is
in the spirit of the Lund approach (cf. discussion of Sec. 5 in
[43]). So for simplicity we have in each event Ni “wounded
strings” associated with valence quarks in nucleus i. Other
more complicated choices (e.g, including the binary colli-
sions) are also possible here, but the advantage of our pre-
scription is that by definition it complies with the experimental
scaling of multiplicities of Eq. (1).

A specific implementation of some ideas explored in this
work, with strings that have one end fixed and the other
fluctuating, has been presented in [1].

The outline of our paper is as follows: In Sec. II we
use the rapidity spectra from d-Au and Au-Au reactions at√

sNN = 200 GeV to obtain the one-body emission profile of
the wounded quark. In Sec. III we explore our generic string
model and derive simple relations between string endpoint
distributions and n-body-emission profiles for the radiation
from individual strings. Section IV discusses how a given one-
body-emission profile can correspond to a family of different
functions for the string endpoint distributions. Two-body cor-
relations from a single string are discussed in Sec. V, whereas
in Sec. VI they are combined to form the two-body correla-
tions in nuclear collisions. Section VII presents the Legen-
dre anm coefficients of the two-particle correlations. Finally,
Sec. VIII draws the final conclusions from our work. Some
more technical developments can be found in the Appendices.

II. EMISSION PROFILES FROM WOUNDED QUARKS

We begin by obtaining from experimental data the emis-
sion profiles of Eq. (2), needed in the following sections. We
use the method of [31], which has also been applied recently
to wounded quarks in [32]. With

fs(η) = 1
2 [ f (η) + f (−η)], fa(η) = 1

2 [ f (η) − f (−η)], x

N+ = NA + NB, N− = NA − NB, (3)

one gets immediately

fs(η) = dN/dη(η) + dN/dη(−η)

〈N+〉 ,

fa(η) = dN/dη(η) − dN/dη(−η)

〈N−〉 . (4)

For asymmetric collisions both parts of the profile can be
obtained, whereas for symmetric collisions one can only get
fs(η).

If the wounded-quark scaling works, then the profiles
obtained with different centrality classes or mass numbers
of the colliding nuclei should be universal, depending only
on the collision energy. To what extent this is the case can
be assessed from Figs. 1 and 2, which show the one-particle
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FIG. 1. One-particle emission profiles obtained in the wounded
quark model via Eqs. (2)–(4) from the PHOBOS rapidity spectra for
d-Au collisions at

√
sNN = 200 GeV [54] in the indicated centrality

classes (a), together with the corresponding symmetric (b) and anti-
symmetric (c) components. The shaded bands show the experimental
uncertainties (propagated via the Gaussian method) for the 40–60%
and 60–80% centrality classes, as well as for the PHOBOS minimum
bias data [55].

emission profiles that were extracted from experimental data
on d-Au and Au-Au collisions from the PHOBOS data
[54–56] in the framework of the wounded quark model. To
this end, the symmetric (for both reactions) and antisymmetric
components (only in the case of the d-Au collisions) were
obtained from the experimental data on rapidity spectra by
means of Eq. (4), where the valence quark multiplicities
〈N±〉 were obtained from GLISSANDO [57,58], a Monte Carlo
simulator of the Glauber model.
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FIG. 2. One-particle emission profiles obtained in the wounded
quark model from the PHOBOS rapidity spectra for Au-Au collisions
at

√
sNN = 200 GeV [56] in the indicated centrality classes. The

shaded bands give the experimental uncertainties (propagated via the
Gaussian method) for the most central and the most peripheral case.

Figure 1 shows the results for the one-particle emission
profiles f dAu(η) extracted from the PHOBOS data [54,55]
for d-Au collisions, together with their symmetric and an-
tisymmetric components. In general, the curves for various
centrality classes, considering the propagated experimental
errors, can be viewed as coinciding. The apparent exception to
this behavior is seen in the symmetric part of the profile for the
peripheral centrality 60%–80%, which is significantly larger
for |η| < 3, cf. Fig. 1(b). We note that for d-Au collisions
this peripheral class corresponds to 〈N+〉 in the range from
six to eight sources, which are tiny values, where the model
admittedly does not work. It can thus confirm the findings of
[32] that the assumption of universality of the one-particle
emission profiles works reasonably well for the central to
mid-peripheral d-Au collisions, whereas it starts to differ for
more peripheral centrality classes.

Figure 2 presents our results for the one-particle emission
profiles f AuAu(η) extracted from the PHOBOS data [56] for
Au-Au collisions. As already mentioned, in this case only the
symmetric parts of the emission profiles can be obtained. It
can be seen that the results for f AuAu(η) in various centrality
classes agree remarkably well with one another. They also
approximately agree with the symmetric profiles for d-Au
collisions of Fig. 1(b).

Finally, we test if our method reproduces the PHOBOS
charged particle rapidity spectra for combined d-Au and
Au-Au collisions. To this end we take a single “universal”
f (η), consisting of an antisymmetric part extracted from the
minimum-bias d-Au spectra and a symmetric part taken as
the average of the different one-particle emission profiles
of Au-Au collisions shown in Fig. 2. The charged particle
rapidity spectra dNch/dη were calculated by means of Eq. (2)
with this universal f (η), where again the numbers 〈NA〉 and
〈NB〉 were generated with GLISSANDO. Figure 3 shows the
resulting one-particle emission spectra for d-Au and Au-Au
collisions obtained that way, together with the corresponding
experimental data from PHOBOS [54–56]: As expected from
Fig. 2, the rapidity spectra for the Au-Au collisions, which
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FIG. 3. Comparison of the wounded-quark model predictions
(lines) with the experimental rapidity spectra (points) for d-Au [54]
(a) and Au-Au [56] (b) collisions, with the experimental uncertainties
shown as shaded bands. A universal profile discussed in the text is
taken for the model calculations in all cases.

are almost symmetric, are very well reproduced by the chosen
f (η). Also the rapidity spectra for the d-Au collisions, which
largely depend on both the symmetric and antisymmetric
contribution to f (η), are qualitatively well reproduced for
|η| < 4, except for the above-discussed case of the peripheral
collisions.

Therefore, we conclude that the wounded quark model
with the universal profile function f (η) reproduces the exper-
imental rapidity spectra at

√
sNN = 200 GeV in a way satis-

factory for our exploratory study.1 In the following analysis
of the rapidity fluctuations, we use the f (η) obtained here to
constrain the string endpoint distributions.

III. GENERIC STRING MODEL

In this section we describe a model of generic production
from a single string formed in the early phase of the colli-
sion process. Suppose the string is pulled by two endpoints
placed at spatial rapidities y1 and y2, whose locations are
generated according to a probability distribution g(y1, y2)

1We note that the analogous analysis at the LHC leads to somewhat
less accurate agreement, which calls for improvement of the model.

[if the endpoints are generated in an uncorrelated manner,
then g(y1, y2) = g1(y1)g2(y2), as will be assumed shortly].
The emission of a particle with rapidity η from the string
fragmentation process is assumed to be uniformly distributed
along the string, i.e., it is equal to

s(η; y1, y2) = ω[θ (y1 < η < y2) + θ (y2 < η < y1)], (5)

where ω is a dimensionless constant determining the produc-
tion strength and θ (c) imposes the condition c. Note that we
include the cases of y2 > y1 and y1 > y2, which may seem
redundant but which is needed, for instance, when the two
endpoints correspond to different partons in a given model.

Let us introduce the shorthand notation∫
Y

dy1 dy2 g(y1, y2)X = 〈X 〉Y , (6)

with Y denoting the two-dimensional range of integration,
depending on the kinematic constraints and/or detector cov-
erage, and X meaning any expression. The single-particle
density for production from a string upon averaging over the
fluctuation of the endpoints is therefore

f (η) = 〈s(η; y1, y2)〉Y , (7)

Analogously, for the n-particle production (n � 2) from a
single string we have

fn(η1, . . . , ηn) = 〈s(η1; y1, y2) · · · s(ηn; y1, y2)〉Y , (8)

where we have assumed independent production of the n
particles.

In case the string ends are generated independently of each
other, one has

〈X 〉Y =
∫

dy1dy2 g1(y1)g2(y2)X, (9)

where the limits of integration in yi are formally from −∞ to
∞, with the support taken care of by the forms of gi(yi ). Then
we readily find that the one-body emission profile is

f (η) = ω{G1(η)[1 − G2(η)] + G2(η)[1 − G1(η)]}
= ω

{
1
2 − 2

[
G1(η) − 1

2

][
G2(η) − 1

2v
]}

, (10)

where the appropriate cumulative distribution functions
(CDFs) are defined as

Gi(y) =
∫ y

−∞
dy′gi(y

′). (11)

The profile f (η) acquires a specific value at the arguments
η1 and η2 where the CDFs reach 1

2 , i.e.,

η
(0)
1 : G1

(
η

(0)
1

) = 1
2 , η

(0)
2 : G2

(
η

(0)
2

) = 1
2 . (12)

Then from Eq. (10) we obtain

ω = 2 f
(
η

(0)
1

) = 2 f
(
η

(0)
2

)
. (13)

This equation provides a special meaning to the constant ω.
Furthermore, since 0 � G1,2(η) � 1, Eq. (10) yields the limit

0 � f (η) � ω. (14)

The above features will be explored shortly in a qualitative
discussion.
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Similarly, for the n-particle distributions with n � 2 we
have

fn(η1, . . . , ηn)

= ωn{G1(min(η1, . . . , ηn))[1 − G2(max(η1, . . . , ηn))]

+ G2(min(η1, . . . , ηn))[1 − G1(max(η1, . . . , ηn))]}.
(15)

We thus see that in the model with two endpoints fluctuat-
ing [the relevant assumptions are the uniform string fragmen-
tation (5) and the independence of the two endpoint locations]
all the information carried by the n-particle densities produced
from a single string is encoded solely in the cumulative
distributions functions G1 and G2. It is obvious, however,
that G1 and G2 cannot be separately determined from the
one-body distributions in an unambiguous manner, hence a
large degree of freedom is still left in the model after fixing the
rapidity spectra. Yet, the one body distribution provides, via
Eq. (10), an important constraint. Our method of matching G1

and G2 to the one-body function f (η) is explained in detail in
Appendix A. As we stress, there is no uniqueness in the
procedure, but there is a systematic way of approaching the
problem, allowing one to explore the range of possibilities.

We denote the position of the maximum of f (η) as ηmax.
We consider three cases:

(i) The distributions of both endpoints are equal, g1(η) =
g2(η), Eq. (A3). In this case ω = 2 f (ηmax), with
ηmax = η

(0)
1 = η

(0)
2 .

(ii) The supports of distributions g1(η) and g2(η) do not
overlap, Eq. (A4). In this case ω = f (ηmax) and η

(0)
2 <

ηmax < η
(0)
1 .

(iii) The form of g1(η) is motivated by parton distribution
functions (PDFs) of valence quarks, Eq. (B6), and
g2(η) is adjusted according to Eq. (A5).

Cases (i) and (ii) are in a sense most different, showing the
span of possibilities formally allowed, whereas case (iii) is
intermediate. For case (iii) we use the parametrization of
the valence quark PDF given by Eq. (B6) with parameters
α = −0.5 and β = 3, which are typical values at low scales.
We have found that using other reasonable parametrizations
has very small influence on our results, with case (iii) always
remaining close to case (i).

We stress that all the considered cases reproduce, by con-
struction, the one-body emission profiles f (η).

We end this section with remarks concerning the model
with one end of the string fixed and the other one fluctuating,
explored in [1]. This simplified version can be obtained as a
special limit from Eqs. (10) and (15) by choosing g1(η) =
δ(η − ymax), which is equivalent of taking, correspondingly,
G1 = 0 for η < ymax, i.e.,

f (η) = ωG2(η),

fn(η1, . . . , ηn) = ωnG2(min(η1, . . . , ηn)). (16)

We note immediately that this model cannot reproduce f (η)
for η > ηmax, as G2(η) cannot decrease. Thus the model is
limited to η � ηmax, which, however, is not a problem if we
are only interested in the mid-rapidity region.

=f( max)

=−0.5, =3
=2f( max)

one end fixed

−2 0 2 4
0.0

0.1

0.2
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G1,2( ) (b)
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0.6

0.8
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1.2

FIG. 4. Distribution functions g1 and g2 (a) and cumulative dis-
tribution functions G1 and G2 (b) of the string endpoints for the cases
of (i) ω = 2 f (ηmax), (ii) ω = f (ηmax), and (iii) α = −0.5, β = 3,
as indicated in the legend. The light dot-dashed line corresponds to
the model with one endpoint fixed and the other one fluctuating [1],
which overlaps with case (ii) for η � ηmax. The vertical line in panel
(b) indicates η = ηmax. See the text for further details.

Moreover, in this region the single-end fluctuating model
corresponds precisely to case (ii) of the two-end fluctuations.
This is obvious from the following argumentation: When the
right end of the string is fluctuating outside of the acceptance
region, it is irrelevant if it fluctuates or if it is fixed, as in
both cases we only observe the production from the part of
the string falling into the acceptance range. In that situation
(or more precisely for η � ηmax) Eqs. (10) and (15) reduce
to Eqs. (16). Hence, the single endpoint fluctuation model of
[1] corresponds to the present case (ii) at η � ηmax, and is not
applicable for η > ηmax.

IV. ENDPOINT DISTRIBUTIONS

We now come to the discussion of the endpoint distribu-
tions subjected to the requirement that the one-body emission
profiles are reproduced.

Figure 4(a) shows the distributions of the string endpoints,
g1 and g2, for the three cases, and Fig. 4(b) the corresponding
CDFs, G1 and G2. The shaded bands give an estimate of
the errors due to the experimental uncertainty � f for the
one-particle emission profile f . In the case of Fig. 4(b), the
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upper limit of the shaded bands corresponds to the values
of G1,2 that are matched to the one-body profile f + � f ,
whereas the lower limits are matched to f − � f . For these
upper and lower limits of G1,2, the derivatives in η yield the
upper and lower limits of the shaded bands for g1 and g2

depicted in Fig. 4(a). For case (iii) a shaded band is given only
for g2 (G2). This is because by construction g1 (G1) coming
from PDFs are assumed to be accurate and all uncertainty is
therefore attributed to g2 (G2).

In case (i) g1(η) = g2(η), hence the distributions are indi-
cated with a single curve (solid line) in Figs. 4(a) and 4(b). We
note that the distribution of g1(η) peaks at forward rapidity
(the Au side), as expected from the shape of the one-body
profile f (η) in Fig. 1. The CDF crosses the value 1/2 at
η

(0)
1 = η

(0)
2 = ηmax � 2.5, which coincides with the maximum

of f (η).
In case (ii) (dashed lines in Fig. 4) the supports for g1

and g2 are disjoint. In Fig. 4(a) the left part of the curve,
up to the point ηmax � 2.5 (indicated with a vertical line),
corresponds to g2, and the right part to g1. Hence, the string
endpoints always follow the ordering y1 � y2, which does not
hold in the other cases. Figure 4(b) shows the corresponding
CDFs, with G1 = 0 left from ηmax, and G2 = 1 right from
ηmax. In Appendix A we show that G1 and G2 from case (ii)
are the lower and upper limits for any CDFs in the considered
problem. Indeed, the CDFs from the other two cases fall in
between these limiting curves.

Case (iii), based on a valence quark PDF for g1, represents
an intermediate class of distributions falling between cases (i)
and (ii). The curves corresponding to the valence quark are
dotted and with no error bands. The distribution g1 (valence
quark) is peaked in the forward direction, as expected. We
note that y1 > y2 is favored, although y2 < y1 is also possible.
With the parametrization we used of the valence quark dis-
tribution, the CDFs in case (iii) are not far from case (i). We
have checked that this feature holds also for other reasonable
parametrizations of the valence quark PDF.

We underline again that all the cases of Fig. 4, which
exhibit radically different endpoint distributions, reproduce by
construction the one-body emission profile f (η).

V. CORRELATIONS FROM A SINGLE STRING

As we show in this section, the two-particle correlation is
sensitive to the particular form of the distributions and differs
between cases (i), (ii), and (iii). A convenient quantity is the
covariance of the two-particle emission from a single string,
defined as

cov(η1, η2) = f2(η1, η2) − f (η1) f (η2), (17)

where f2 is given by Eq. (15). Explicitly,

cov(η1, η2) = ω2{G1(min(η1, η2))[1 − G2(max(η1, η2))]

+ G2(min(η1, η2))[1 − G1(max(η1, η2))]

− (G1(η1)[1 − G2(η1)] + G2(η1)[1−G1(η1)])

× (G1(η2)[1−G2(η2)]+G2(η2)[1−G1(η2)])}.
(18)

A simplification occurs along the diagonal η1 = η2 = η,
where

cov(η, η) = ω2
{

1
4 − 4

[
G1(η) − 1

2

]2[
G2(η) − 1

2

]2}
= f (η)[ω − f (η)]. (19)

Also, the leading expansion at the diagonal in the antidiagonal
direction, with η1 = η + δ and η2 = η − δ, yields a very
simple formula,

cov(η+δ, η−δ)

= cov(η, η) − ω2[g1(η) + g2(η)]|δ| + O(δ2). (20)

Figure 5 shows the resulting distributions for cov(η1, η2)
for the three considered cases. One observes vivid qualitative
differences between the covariances in cases (i) and (ii); cf.
Figs. 5(a) and 5(b). Whereas in case (i) the covariance exhibits
a monotonously increasing ridge along the η1 = η2 direction,
the covariance in case (ii) shows a double peak structure, with
a zero at η = ηmax � 2.5, which corresponds to the zero of
g1 and g2 in Fig. 4(a). At this point G1(η) = 0 and G2(η) =
1, which upon substitution to Eq. (18) yields zero. Another
difference is in magnitude of the covariance, which in case (i)
is significantly larger than in case (ii).

The covariance in case (iii) is very close to case (i) [cf.
Figs. 5(a) and 5(c)]. Some small difference can be seen where
η1 is small (large), but η2 large (small), where in case (iii) the
covariance noticeably drops to negative values.

We also note that in all cases the values on the diagonal is
obeying Eq. (19). The fall-off from the diagonal in the antidi-
agonal direction is given by the second term in Eq. (20). We
note that the slope is proportional to 4 f (η(0)

1,2)[g1(η) + g2(η)],

hence two models which have similar values of η
(0)
1,2 and

close sums of the two endpoint distributions, g1(η) + g2(η),
will have similar covariances in the vicinity of the diagonal.
Both conditions are satisfied between models (i) and (iii). In
particular, we can see that the sum g1(η) + g2(η) for model
(iii) in Fig. 4(a) (dotted lines) is close to twice g1,2(η) for
model (i) (solid line).

Thus the reason for the similarity of correlations in cases (i)
and (iii) may be traced back to Eq. (20), which shows that this
is the average of g1(η) and g2(η), which controls the fall-off
of the correlation from the diagonal. These averages happen to
be very similar when we use any reasonable parametrization
of the parton distribution function giving the PDF of one
endpoint distribution, and the fluctuations the other endpoint
are adjusted to match the profile function f (η), as explained
in Sec. IV.

VI. CORRELATIONS FROM MULTIPLE STRINGS

As already discussed in the Introduction, in our approach
the strings “belong” to the valence quarks either from nucleus
A or from nucleus B. With the underlying assumptions of
independent wounded sources, the expressions for the n-body
distributions account for the combinatorics in a simple man-
ner, with the particles at rapidities ηi being products from a
string belonging to A or to B. For the one-body density in A-B

024904-6



FORWARD-BACKWARD MULTIPLICITY FLUCTUATIONS IN … PHYSICAL REVIEW C 99, 024904 (2019)

FIG. 5. Covariance for the emission from a single string for cases
(i) (a), (ii) (b), and (iii) (c).

collisions one finds

fAB(η) = 〈NA〉 fA(η) + 〈NB〉 fB(η), (21)

where 〈NA〉 and 〈NB〉 are the event-by-event average numbers
of wounded sources in nuclei A and B, respectively, and
fA,B(η) = f (±η) denote the profiles for the emission from a
single string, as given by Eq. (7), associated with sources from
nuclei A or B. We work in the nucleon-nucleon center-of-mass
(CM) frame, hence fA(η) = fB(−η).

Analogously, one can define the two-body distribu-
tion for emission from a single string in nuclei A and
B as fA,B(η1, η2) = f2(±η1,±η2), and the corresponding

covariances as covA,B(η1, η2) = cov(±η1,±η2). Then, one
readily obtains the covariance for the production in A-B
collisions (see Appendix C) in the form

covAB(η1, η2) ≡ fAB(η1, η2) − fAB(η1) fAB(η2)

= 〈NA〉covA(η1, η2) + 〈NB〉covB(η1, η2)

+ var(NA) fA(η1) fA(η2) + var(NB) fB(η1)

× fB(η2) + cov(NA, NB)[ fA(η1) fB(η2)

+ fB(η1) fA(η2)]. (22)

In the special case of symmetric collisions, Eq. (22) simplifies
into

covAB(η1, η2) = 〈NA〉covA(η1, η2) + 〈NB〉covB(η1, η2)

+ var(N+) fs(η1) fs(η2) + var(N−) fa(η1)

× fa(η2), (23)

where N− = NA − NB. The moments of NA and NB evaluated
with GLISSANDO are listed in Appendix D.

We also introduce the customary correlation C defined as

CAB(η1, η2) = 1 + covAB(η1, η2)

fAB(η1) fAB(η2)
, (24)

which is a convenient measure due to its intensive property.
For symmetric collisions Eq. (24) becomes

CAB(η1, η2) = 1 + covAB(η1, η2)

〈N+〉2 fs(η1) fs(η2)
, (25)

To separate the contribution from the string endpoint fluctua-
tions, we also define

C∗
AB(η1, η2) = 〈NA〉covA(η1, η2) + 〈NB〉covB(η1, η2)

fAB(η1) fAB(η2)
. (26)

We note that Eq. (22) or (23) contain terms with two
classes of fluctuations: those stemming from single string
endpoint fluctuations, containing covi(η1, η2), which were the
object of study in the previous section, and the remaining
terms [59] with moments of fluctuations of the numbers
of wounded quarks, NA and NB. Therefore the correlation
function C(η1, η2) contains a mixture of both effects. In
principle, one could separate these effects via the technique
of partial covariance (see, e.g., [60,61]), which effectively
imposes constraints on a multivariate sample. The details of
such an analysis, which leads to very simple and practical
expressions, were presented in [62].

In the present case, however, such an analysis is not
necessary if we have in mind the standard anm coeffi-
cients discussed in Sec. VII. As is clear from Eq. (25), the
term var(N+) fs(η1) fs(η2) in Eq. (23) brings in a constant
var(N+)/〈N+〉2 into C(η1, η2). Therefore it only changes its
baseline and does not affect the anm coefficients (for n, m �
0). As we shall shortly see, the string endpoint fluctuations
given by the term with 〈NA〉covA(η1, η2) + 〈NB〉covB(η1, η2)
are largely dominant over the Bzdak-Teaney [59] term,
var(N−) fa(η1) fa(η2), with the later entering at a level of 10–
20% in a11 (cf. Sec. VII). Hence one may simply take the view
that measuring the anm coefficients associated with C(η1, η2)
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FIG. 6. Correlations CAB(η1, η2) for the 6% most central Au-Au
collisions for model cases (i) (a) and (ii) (b), as well as C∗

AB(η1, η2)
for case (i) (c).

essentially provides information on the string endpoint fluctu-
ations, with only a small contamination by the fluctuation of
the number of sources.

Panels (a) and (b) of Fig. 6 show our results for CAB(η1, η2)
of the 6% most central Au-Au collisions at

√
sNN = 200 GeV

in cases (i) and (ii) of our model. The correlations exhibit
a ridge structure along the η1 = η2 direction, which simply
reflects the presence of the ridges in the single-string fluctua-
tions displayed in Fig. 5. The correlation in case (iii) is very
close to case (i), simply reflecting the behavior of Fig. 5, hence
we do not include it in the plot.

Panel (c) shows the correlation stemming from the fluctu-
ation of the string endpoint, C∗

AB(η1, η2) of Eq. (26). We note
that, apart for an overall shift by a constant, it is very similar

to the correlation CAB(η1, η2) of Eq. (24), which indicates an
important feature shown by our study: The shape of the cor-
relation function C(η1, η2) is largely dominated by the string
endpoint fluctuations, whereas the effects of the fluctuations
of the number of sources are small.

VII. anm COEFFICIENTS

For a given correlation function C(η1, η2), the anm coeffi-
cients are defined as [59,63,64]

anm =
∫ Y

−Y

dη1

Y

∫ Y

−Y

dη2

Y

1

NC
C(η1, η2)Tn

(
η1

Y

)
Tm

(
η2

Y

)
,

(27)

with the normalization constant

NC =
∫ Y

−Y

dη1

Y

∫ Y

−Y

dη2

Y
C(η1, η2), (28)

where [−Y,Y ] is the covered pseudorapidity range. Having
in mind the typical pseudorapidity acceptance at RHIC, we
use Y = 1. The functions Tn(x) form a set of orthonormal
polynomials. The choice used in [63–65] is

Tn(x) =
√

n + 1/2Pn(x), (29)

where Pn(x) are the Legendre polynomials.
Analogously, we define

a∗
nm =

∫ Y

−Y

dη1

Y

∫ Y

−Y

dη2

Y

1

NC
C∗(η1, η2)Tn

(
η1

Y

)
Tm

(
η2

Y

)
,

(30)

which focuses on the fluctuations of the strings [note that the
normalization constant NC is evaluated with C(η1, η2) as in
Eq. (27)] .

Figure 7 shows our results for a11 [panel (a)] and a∗
11 [panel

(b)] obtained for Au-Au collisions at
√

sNN = 200 GeV and
plotted as functions of the average number of wounded quarks
〈N+〉 in selected centrality classes. We note that the results for
model cases (i) and (iii) are essentially identical, reflecting
the feature seen already in Fig. 6. The result for case (ii) is
about a factor of 3 smaller. In this and following figures we
also indicate the results for the model with single endpoint
fluctuations, which is identical to case (ii) in the considered
acceptance region.

In view of the discussion of Sec. IV, cases (i) and (ii) in
Fig. 7 represent the upper and lower bounds for the admissible
values of the a11 coefficients. This is an important result, as
it provides the possible range for this quantity in approaches
sharing the features of our model.

In panel (c) of Fig. 7 we present the ratio a∗
11/a11,

which shows the announced dominance of the string end-
point fluctuations over the fluctuation of the numbers of
sources. In model cases (i) and (iii) the former account for
90% of the effects, whereas in case (ii) they account for
75–85%.

From Eqs. (23) and (26) it is clear that a∗
11 scales as

1/〈N+〉. For a11 there is a small departure of a relative order
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FIG. 7. a11 (a) and a∗
11 (b) for Au-Au collisions at

√
sNN =

200 GeV as a function of 〈N+〉 (the selected values for 〈N+〉 corre-
spond to the 6 centrality classes 0–6%, 6–15%, 15–25%, 25–35%,
35–45%, and 45–55%) in cases (i) with ω = 2 f (ηmax), (ii) with
ω = f (ηmax), (iii) with α = −0.5, β = 3, together with the model
of [1] with one endpoint fixed, as indicated in the legend. Panel (c)
displays the ratio a∗

11/a11. To enhance visibility, the markers for the
overlapping cases are slightly shifted to the left or right along the
abscissa.

var(N−)/〈N+〉. Numerically, for models (i) and (ii) a∗
11 ∼

0.08/〈N+〉, whereas the leading term of expansion (20) yields
a close result, a∗

11 ∼ 0.1/〈N+〉. The approximate scaling for
a11 is exhibited in Fig. 8.

A similar analysis of the a11 coefficients for the d-Au
collisions yields qualitatively similar results, shown in Fig. 9.
Here, the coefficients a∗

11 account for more than 90% of the
total, hence the dominance of string endpoint fluctuations is

=2f( max)

=−0.5, =3

=f( max)

one end fixed

0 200 400 600 800
0.00

0.02

0.04

0.06

0.08

<N+>

<N
+>

a 1
1

FIG. 8. The product of a11 and 〈N+〉, showing the scaling dis-
cussed in the text.

even more pronounced in d-Au than in Au-Au collisions. For
that reason we present only the results for a11.

In addition to a11 coefficients, one may study the higher-
order anm coefficients. We give our results for a13 and a22

from Au-Au collisions in Fig. 10. While these coefficients are
considerably suppressed as compared to a11, shown in Fig. 10,
they exhibit the same qualitative behavior. In particular, they
scale almost exactly as 1/〈N+〉.

Finally, we remark that when the model results are to
be compared to experimental values, one needs to relate
the space-time rapidity of the initial stage, ηPS = 1

2 ln[(t +
z)/(t − z)] (until now denoted as η in our considerations), to
the momentum pseudorapidity of the measured hadrons, η =
1
2 ln[(E + pz )/(E − pz )]. The experience of hydrodynamic
simulations shows a mild longitudinal push, yielding η �
1.25 ηPS . This effect leads to a quenching factor of about 1.5
to be applied to the model anm coefficients before comparing
to the data.

=2f( max)

=−0.5, =3
=f( max)

one end fixed

0 5 10 15 20

0.001

0.002

0.005

0.010

<NB>

a 1
1

FIG. 9. Same as in Fig. 7(a) but for d-Au collisions at
√

sNN =
200 GeV, plotted as a function of the average number of wounded
quarks in Au, 〈NB〉 (selected values for 〈NB〉 correspond to centrality
classes 0–20%, 20–40%, 40–60%, 60–80%).
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FIG. 10. Same as in Fig. 7(a) but for a22 (a) and −a13 (b).

VIII. CONCLUSIONS

We have analyzed a model where strings are associated
with wounded quarks and their endpoints fluctuate. We have
used the data for the pseudorapidity spectra for d-Au and Au-
Au collisions from the PHOBOS Collaboration at

√
sNN =

200 GeV to impose constraints on the one-body distributions
in the model. We have selected a RHIC energy for our study,
since the wounded quark model works very well in this case.

We first confirmed the results of [32] that a thus-extracted
one-body emission function reproduces reasonably well the
experimental rapidity spectra and therefore is universal in the
sense that it can be applied to different centrality classes and
collision systems for the considered collision energy. Then
we showed that there remains a substantial freedom in string
endpoint distributions G1,2, which gives rise to a family of
possible solutions. Specifically, we have discussed three cases
of solutions: the limiting cases (i) and (ii) and an intermediate
case (iii), inspired by the valence quark parton distribution
function. We have argued that case (ii) is equivalent to the
model with single endpoint fluctuations of [1], if the accep-
tance window at mid-rapidity is sufficiently narrow.

The analysis was carried out analytically, which has its
obvious merits. We obtained formulas for the n-body distri-
butions of the produced particles. In the study of the two-
body correlations, we have examined the effects from string
endpoint fluctuations and from the fluctuation of the number
of sources. The former largely dominate in the corresponding
Legendre coefficients anm.

We have found that the range for fluctuations is limited by
two extreme cases. The lower limit, where the domains of the
fluctuations of both ends do not overlap, coincides (for suf-
ficiently narrow acceptance windows in pseudorapidity) with
the model with single-end fluctuations considered earlier in
[1]. Allowing for both ends to fluctuate increases significantly
the fluctuations, raising the anm coefficients by a factor of ∼3.

A variant of the model where the distribution of one end of
the string follows the valence quark PDF, is very close to the
case giving maximum correlation [our case (i)]. Our results,
in particular the presented bounds, can serve as a baseline for
future data analysis of the forward-backward fluctuations in
rapidity at

√
sNN = 200 GeV.

Our simple approach, while neglecting many possible ef-
fects such as mutual influence of the strings (merging into
color ropes, nuclear shadowing), short range correlations of
various origin, or assuming strings of only one type, incor-
porates two basic and generic features: fluctuation of the
number of strings and fluctuation of the location of the string
endpoints. This makes its predictions valuable for understand-
ing the underlying mechanisms. It remains to be seen to
what extent our analytic approach can be extended to more
general models, in particular going beyond the simple Glauber
wounded picture.
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APPENDIX A: MATCHING THE CUMULATIVE
DISTRIBUTION FUNCTIONS TO ONE-BODY

EMISSION PROFILES

It is convenient to introduce the shifted CDFs

Hi(η) = Gi(η) − 1
2 , (A1)

which grow from the value −1/2 up to 1/2. Then Eq. (10) can
be rewritten as

H1(η)H2(η) = 1

4
− 1

2ω
f (η). (A2)

We shall now consider three specific cases.2 In the first
case, the maximum of f (η) is taken to be ω/2, which is the
lowest possible value [otherwise it would contradict Eq. (13)].
The position of the maximum is at η0 = η

(1)
0 = η

(2)
0 [the two

zeros of Hi(η) coincide in this case]. Then the solution takes
the form

H1(η) =
√

1

4
− 1

2ω
f (η) sgn(η − η0)s(η),

H2(η) =
√

1

4
− 1

2ω
f (η) sgn(η − η0)/s(η), (A3)

where sgn denotes the sign function, and s(η) is an arbitrary
function chosen in such a way that the required limiting and

2We assume in the derivation of the first two cases that f (η) is
unimodal, as is the case of the phenomenologically fitted profile.
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monotonicity properties of Hi(η) are preserved [one possibil-
ity, which we use, is s(η) = 1, in which case both distributions
are the same].

The second special case is when the maximum of f (η) is
ω, which is the largest possible value. Then one may choose

H1(η) = −1

2
θ (η0 − η) +

[
1

2
− 1

ω
f (η)

]
θ (η − η0),

H2(η) = −
[

1

2
− 1

ω
f (η)

]
θ (η0 − η) + 1

2
θ (η − η0). (A4)

In this case the supports of g1(η) and g2(η) are disjoint.
We can now easily verify that the formulas (A3) and (A4)

indeed satisfy Eq. (A2).
In the intermediate case, when the maximum satisfies

ω/2 < f (η) � ω, one may generically take a “favorite” form
of H1(η) and then evaluate H2(η) from Eq. (A2) as

H2(η) =
1
4 − 1

2ω
f (η)

H1(η)
. (A5)

Note that H2(η) is well behaved near η1, as in its vicinity

H1(η) = C2
1 (η − η1) + · · · ,

f (η)

ω
= 1

2
− C2

2 (η − η1)2 + · · · , (A6)

where C2
1 and C2

2 denote positive constants, hence

H2(η) = C2
2

2C2
1

(η − η1) + · · · . (A7)

One needs to check explicitly if H2(η) obtained from Eq. (A5)
is a growing function, otherwise the initial choice of H1(η) is
inconsistent.

Since − 1
2 � H1(η) � 1

2 , it follows immediately from
Eq. (A5) that

H2(η) � 1

2
− 1

ω
f (η) for η � η0,

H2(η) � −1

2
− 1

ω
f (η) for η � η0 (A8)

(and similarly for H1), hence the expressions (A4) provide up-
per and lower limits for any CDF for the considered problem.

APPENDIX B: PDF-MOTIVATED DISTRIBUTION

When the string endpoints y1,2 are associated with subnu-
cleonic constituents, such as a valence or sea quark, gluon,
or diquark, then they carry the fractions xiA or xiB of the
longitudinal momenta of the nucleons inside beams A and B,
respectively. Specifically, if the momentum of the constituent
is kiA (kiB) and the momentum of the nucleon is PA (PB), then
from standard kinematic considerations the corresponding
rapidity yiA (yiB) of the endpoint is related to xiA (xiB) with
the exact formula

xiA ≡ k+
iA

P+
A

= mTi

M
eyiA−yb,

xiB ≡ k+
iB

P+
B

= mTi

M
e−yiB−yb, (B1)

where mT i =
√

m2
i + k2

T i is the transverse mass of the con-
stituent, M is the mass of the nucleon, and yb is the rapidity
of beam A (in the assumed CM frame of the nucleon-nucleon
collision, −yb is the rapidity of beam B).

The distributions of the locations of the string endpoints
are then defined via partonic distributions pi(x) as follows:

gi(yiQ)dyiQ = pi(xiQ(yiQ))dxiQ, (B2)

with Q = A, B, or for the corresponding CDFs

Gi(yiQ) = Pi(xiQ(yiQ)). (B3)

Since xi Q ∈ [0, 1], the limits for the rapidities of the end-
points are yiA ∈ (−∞, yi↑] and yiB ∈ [−yi↑,∞), where

yi↑ = yb + ln

(
M

mTi

)
. (B4)

In the CM reference frame of the nucleon-nucleon collision,
the rapidity of the beam is

yb = ln

√
s/4 +

√
s/4 − M2

√
s/4 −

√
s/4 − M2

� ln

√
s

M
, (B5)

therefore at
√

s  M we have to a good approximation
yi ↑ � ln

√
s

mTi
.

In the example used in this paper, a simple parametrization
of the parton distribution functions (PDF) is used. Following
many phenomenological studies, we take

p(x) = Axα (1 − x)β, (B6)

with the corresponding CDF

P(x) = B(x, 1 + α, 1 + β )

B(1, 1 + α, 1 + β )
, (B7)

where B(z, a, b) denotes the incomplete Euler beta function.

APPENDIX C: 2-BODY DENSITY

When we consider the two-body density of particles pro-
duced from multiple strings formed in A-B collisions, there
are several combinatorial cases which may occur: the two
particles may originate from the same string associated with
A, from different strings associated with A, from the same
string associated with B, from different strings associated with
B, and finally one particle is emitted from a string associated
with A and the other from a string associated with B. Thus, the
two-body density averaged over events in A-B collisions takes
the form

fAB(η1, η2)

= 〈NA〉 fA(η1, η2) + 〈NA(NA − 1)〉 fA(η1) fA(η2)

+ 〈NB〉 fB(η1, η2) + 〈NB(NB − 1)〉 fB(η1) fB(η2)

+ 〈NANB〉[ fA(η1) fB(η2) + fB(η1) fA(η2)], (C1)

We define the covariances in the usual way,

covA(η1, η2) = fA(η1, η2) − fA(η1) fA(η2),

covB(η1, η2) = fB(η1, η2) − fB(η1) fB(η2). (C2)
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TABLE I. First few moments of the wounded quark numbers in
Au-Au collisions at

√
sNN = 200 GeV as obtained from GLISSANDO

simulations. The chosen centrality classes correspond to those in the
PHOBOS experiment.

Centrality (%) 〈N+〉 var(N+) var(N−)

0–6 929 4280 502
6–15 696 4649 653
15–25 484 2972 563
25–35 326 1472 399
35–45 210 811 262
45–55 126 396 144

Then

fAB(η1, η2) = 〈NA〉covA(η1, η2) + 〈
N2

A

〉
fA(η1) fA(η2)

+〈NB〉covB(η1, η2) + 〈
N2

B

〉
fB(η1) fB(η2)

+〈NANB〉[ fA(η1) fB(η2) + fB(η1) fA(η2)], (C3)

and Eq. (22) follows.

TABLE II. Same as in Table I but for d-Au collisions at
√

sNN =
200 GeV. Here NA and NB denote the number of wounded quarks in
d and Au, respectively.

Centrality (%) 〈NA〉 〈NB〉 var(NA) var(NB) cov(NA, NB )

0–20 5.9 20.6 0.1 14.8 0.1
20–40 5.3 13.1 0.8 2.8 −0.3
40–60 4.1 8.3 1.0 2.7 −0.4
60–80 2.8 4.1 0.6 1.4 0.0
80–100 1.6 1.9 0.3 0.3 −0.1

APPENDIX D: MOMENTS OF THE WOUNDED
QUARK DISTRIBUTIONS

The lowest moments of the wounded quark distributions
obtained form GLISSANDO [57,58] and used in our analysis
are collected in Tables I and II.
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[22] P. Bożek, W. Broniowski, and M. Rybczyński, Phys. Rev. C 94,
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