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Core-excitation effects in three-body breakup reactions studied using the Faddeev formalism
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Background: Previous studies of (d, p) reactions in three-body (proton, neutron, nuclear core) systems revealed
a nontrivial effect of the core excitation: the transfer cross section cannot be factorized into the spectroscopic
factor and the single-particle cross section obtained neglecting the core excitation. This observable, up to a
kinematic factor, is the angular distribution of the core nucleus in the (p, d) reaction.

Purpose: The study of the core excitation effect for the most closely related observable in the (p, pn) three-body
breakup, i.e., the core angular distribution, is the aim in the present work.

Methods: Breakup of the one-neutron halo nucleus in the collision with the proton is described using three-
body Faddeev-type equations extended to include the excitation of the nuclear core. The integral equations for
transition operators are solved in the momentum-space partial-wave representation.

Results: Breakup of ''Be nucleus as well as of model A = 11 p-wave nuclei is studied at beam energies of 30,
60, and 200 MeV per nucleon. Angular and momentum distributions for the '°Be core in ground and excited
states is calculated. In sharp contrast to (p, d) reactions, the differential cross section in most cases factorizes
quite well into the spectroscopic factor and the single-particle cross section.

Conclusions: Due to different reaction mechanisms the core excitation effect in the breakup is very different
from transfer reactions. A commonly accepted approach to evaluate the cross section, i.e., the rescaling of single-
particle model results by the corresponding spectroscopic factor, appears to be reliable for breakup though it fails

in general for transfer reactions.

DOI: 10.1103/PhysRevC.99.024613

I. INTRODUCTION

Excitation of the core of the nucleus in few-cluster nuclear
reactions is expected to be an important dynamic ingredient.
Its effect has been studied recently in three-body breakup
reactions using the distorted-wave impulse approximation
(DWIA) [1,2] and extended continuum discretized coupled
channels (XCDCC) method [3-5], while for transfer reac-
tions (d, p) and (p, d) exact Faddeev-type equations in the
extended Hilbert space have been employed [6]. The latter
works demonstrated that, in contrast to a widely accepted as-
sumption, the core excitation (CX) effect in transfer reactions
in general cannot be simulated by the spectroscopic factor
(SF) only, i.e., by the rescaling of the cross section obtained
in the so-called single-particle (SP) model that neglects the
CX. The CX effect due to rotational or vibrational quadrupole
excitation becomes most evident at energies around 50 MeV
in the center-of-mass (c.m.) system, and depends strongly on
the angular momentum transfer ¢, suppressing the forward-
angle differential cross section for £ = 0 and enhancing for
£ = 2 [7]. Since those transfer calculations included breakup
to all orders and the breakup operator in the Faddeev formal-
ism is obtained from half-shell elastic and transfer operators,
it is interesting and important to investigate the CX effect
for (p, pn) breakup reactions. The present work focuses on
angular and momentum distributions of the core, the observ-
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ables that are experimentally measurable but are difficult to
achieve the convergence in the XCDCC approach, as found in
the previous benchmark comparison of CDCC and Faddeev
calculations [8].

Section II presents the three-body Faddeev formalism for
breakup reactions including the CX; the unit convention i =
¢ = 1 is adopted. Analysis of CX effects using several ' Be-
like model nuclei as examples is given in Sec. III. Section IV
contains summary and conclusions.

II. THEORY

I consider a three-particle system consisting of a proton
(p), neutron (n), and nuclear core (C). Odd-man-out notation
is used where the channel of a two-particle pair, the third
one being a spectator, is labeled according to the spectator
and indicated by greek subscripts. When interacting with
nucleons, the core can be excited or deexcited. Ground (g)
and excited (x) states are considered simultaneously in the
extended Hilbert space [6] whose sectors are coupled by
the interaction; the respective components of the operators
are indicated by latin superscripts. Faddeev equations [9]
for transition operators Ug, in the version proposed by Alt,
Grassberger, and Sandhas (AGS) [10] were formulated in
Ref. [6] for the Hilbert space with several sectors to enable
the inclusion of the CX, i.e.,

Ups =8pa 800Gy + Y Y 8, T GoUSS. (1)

y=p.n,C c=gx
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Here Sﬁa =1 —8gq, E is the energy in the c.m. frame, and
Gi = (E +i0 — 84 Amc — K)7! is the free resolvent that
does not couple Hilbert sectors, but besides the internal-
motion kinetic energy operator K contains also the contri-
bution of the excitation energy Amgc. For each pair « the
potential v2* leads to the respective two-particle transition
matrix

T =0l + ) W GiT )

c=g.x

to be inserted into three-particle equations (1). Elastic (¢ = )
and transfer (¢ # B = p, n, C) operators were calculated in
Refs. [6,7]. In this work I focus on the breakup whose operator
is obtained from Egs. (1) with 8 = 0, i.e.,

U =8uG + Y > TFGiUL. 3)
y=p,n,C c=g,x
Thus, formally it does not require a new solution of integral
equations but is given as a quadrature involving elastic and
transfer operators Uy .

The physical breakup amplitudes are determined by the on-
shell matrix elements of U2 taken between initial two-cluster
and final three-cluster channel states. For a proton impinging
with the relative momentum q, on a one-neutron halo nucleus
the initial state |®,(q,)) = |®5(q,)) + |®7,(q,)) has coupled
ground- and excited-state core components. In the final three-
cluster channel |<I>g(p;9, qjg)) one can separate ground (b = g)
and excited (b = x) states of the core, while the relative pair
and spectator momenta p;3 and q:g can be given in any of the
three Jacobi sets. Thus, the amplitude for the breakup of a halo
nucleus leading to its core state b is given by

TI (P dp:qp) = Y (PGP} qp)|Ups| D%(q,)).  (4)
a=g,x

Starting from the standard expression for the differential
three-cluster breakup cross section

2 /2

M /
d%s =(27T)4_1’3 E_pi_qL
dp 2up 2Mp

/ 2 / /
x [ TP, dy:qp)|” d*pyd’d) (5)
the semi-inclusive differential cross section for detecting only

the particle B is

do M o , 2
i (27r)4q—:uﬁpjs /dzpjg T (0 4 q)] " (6)

Here the magnitude of the relative pair momentum P;s is
determined by the energy conservation that is reflected by the
d function in Eq. (5) with g (Mpg) being the pair (spectator)
reduced mass. Further integration of the threefold differential
cross section (6) with respect to the magnitude or specific
Cartesian components of q}’S leads to the angular d’c / dz% =
do /d2g or momentum do / dq},, ; distributions for the particle
B in the c.m. frame.

The solution of the system of integral equations (1)
and the calculation of the quadrature (3) is performed in
the momentum-space partial-wave framework, with a subse-
quent transformation to the plane-wave representation used in

Eq. (6). Partial waves with orbital momenta L, up to 5, 5,
and 8 for the neutron-core, proton-neutron, and proton-core
pair, respectively, are included, the total angular momentum
J taking values up to 55. With these truncations the results
for semi-inclusive differential cross sections appear to be
converged within 5%, while the difference between the CX
and SP results, i.e., the CX effect, is converged even better.
Thus, the achieved convergence is fully sufficient for a reliable
study of the CX effect. Further details on the implementation
of three-body reaction calculations including the CX can be
found in Refs. [6,7].

III. RESULTS

Previous DWIA [1,2] and XCDCC [3-5] studies of
breakup of one-neutron halo nuclei found an important CX
effect for the resonant breakup when the resonance has a
significant component with excited core. The present work
focuses on the study of the global CX effect in angular and
momentum distributions in (p, pn) reactions and its compari-
son with the CX effect in (p, d) reactions [6,11]. Therefore
the example three-body system p+n + 'Be used in this
investigation is taken from the corresponding (d, p) study
[11]. For the core nucleus '°Be the ground 0% and excited
2% states are considered with the excitation energy Amc =
3.368 MeV.

The dynamics input for the scattering equations of the
previous section is determined by three pairwise multicompo-
nent potentials vg”. For the n-p subsystem there is a number
of realistic interaction models such as the charge-dependent
Bonn (CD Bonn) potential [12], which will be used also in the
present work. This is an important improvement compared to
the previous XCDCC calculation [5] of angular and energy
distributions that used simple Gaussian n-p potential; the
failure of the Gaussian potential in reproducing the breakup
results of realistic potentials was demonstrated without CX
in Ref. [13]. The neutron-core binding potentials for the

spin/parity j* = %+ state of ''Be with the neutron separation
energy S, = 0.504 MeV is taken over from Ref. [11], whereas
Watson [14] and Koning and Delaroche (KD) [15] optical
potentials are used for proton-core and neutron-core interac-
tion in remaining partial waves. The proton-core Coulomb
interaction is included as well using the method of screening
and renormalization [16]. The CX is included via the standard
rotational quadrupole deformation of the underlying poten-
tials [17,18] with the deformation parameter 8, = 0.67 and
the deformation length 6, = 1.664 fm, while the subtraction
technique [19] ensures the two-body on-shell equivalence of
the models with and without CX at the given energy. When the
reaction is initiated by the beam of E /A energy per nucleon,
the energy-dependent optical potential parameters are taken
at fixed energy values of E/A and %(E /A) for p-C and n-C
interactions, respectively. The Watson parametrization was
designed for light p-shell nuclei but is constrained by the data
up to 50 MeV. In contrast, the use of the KD parametrization
for '9Be can be criticized as it was fitted to the data for A > 24
nuclei, but it has an advantage of applicability in a broader
energy interval extending up to 200 MeV. Comparison of
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FIG. 1. Semi-inclusive differential cross sections for ''Be(p, pn)!°Be reactions at E /A = 30, 60, and 200 MeV as functions of the '°Be
core c.m. scattering angle. Predictions of models with CX, displayed by solid (dashed-dotted) curves for 0* (2*) final states of the '°Be core,
and without CX, the latter rescaled by SF(0") = 0.854 and displayed by dotted curves, are compared. In addition to the results based on the
KD optical potential, the ones based on the Watson parametrization are shown at 60 MeV as thin curves.

predictions based on Watson and KD potentials will estimate
the associated uncertainty.

Previous studies of neutron transfer reactions
[6,7,11,19,20] revealed a nontrivial CX effect in the (d, p)
differential cross section. This observable, up to kinematic
and spin factors, coincides with the angular distribution of the
core in the three-body c.m. frame in (p, d) transfer reactions.
It is therefore interesting to investigate the most closely
related observable in the (p, pn) breakup, i.e., the angular
core cross section do /d2¢ in the c.m. frame. The difference
to the (p, d) cross section is that the n-p pair is not bound
but can be in any continuum state up to the allowed energy;
an integration over those states is needed as explained in the
previous section. For brevity, the subscript denoting the core
in the following will be omitted, both for the angular do /d 2
and momentum do /dgq; distributions.

The SP and CX differential cross sections do /dS2 as
functions of the core c.m. scattering angle ®., at beam
energies of 30, 60, and 200 MeV per nucleon are compared in
Fig. 1. E/A = 60 MeV roughly corresponds to the maximal
CX effect in transfer reactions [11], while 200 MeV should
represent the region of relatively high energy with ongoing
experimental activities. For a better comparison the SP results
are renormalized by the SF(0%) = 0.854 for the 'Be(0")
component in the 11Be({r) bound state. These rescaled SP
results simulate well the 'Be(0%) angular distribution in
the model including the CX explicitly. Although the shape
of the observable changes with the energy, one can see
qualitatively the same agreement between these two types
of results in all considered cases, also when replacing the
KD optical potential by that of Watson. In fact, the forward
peak of the '°Be(0") angular distribution appears to be quite
insensitive to the choice of the optical potential, in contrast
to larger angles and the '°Be(2%) angular distribution where
the Watson parametrization leads to a larger differential cross
section compared to KD, much like for the (p, d) transfer in
Ref. [19].

Such a behavior is in sharp contrast with transfer reactions
[6,7,11,19,20] where do /d2(0") obtained including the CX
cannot be factorized into the SP differential cross section
(do /d2)sp and the associated SF. The size of this CX effect
may be characterized by the ratio

_ do /dQ(0T)
~ SF(01) - (do/dQ)sp

or its deviation from unity D = (R — 1) x 100%. In Fig. 2
the latter is compared for breakup and transfer reactions
at E/A =60 MeV, ie., in the energy region showing the
largest CX effect for transfer [11]. Despite some differences
in employed optical potentials, the CX effect in the (p, d)
reaction shown in Fig. 2 is in agreement with Ref. [11]. It
is most sizable at forward angles, where the cross section
peaks, reaching almost 50% in magnitude. On the contrary,

(N

/A

E/A = 60 MeV

20 | \ ]

Oc.m. (deg)

FIG. 2. Core excitation effect for the core angular distribution in
breakup (solid curve) and transfer (dashed-dotted curve) reactions,
resulting from the proton-''Be collision at E /A = 60 MeV.
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FIG. 3. Transverse (left) and longitudinal (right) core momentum
distributions for 'Be(p, pn)'°Be reactions at E/A = 30, 60, and
200 MeV. Curves are as in Fig. 1.

the same characteristic quantity D for the breakup stays well
below 10% in magnitude, as can be expected from Fig. 1.

The transverse and longitudinal core momentum distribu-
tions do /dg; at the same beam energies are shown in Fig. 3.
Again, SP results multiplied by the SF(0T) simulate well
0Be(0*) momentum distributions including the CX, with
small differences of about 3—4 % seen at the peaks. The optical
potential sensitivity is studied at £ /A = 60 MeV where the
Watson potential predictions are similar to those of KD for
10Be(0*) at the peaks but are higher by about 20-30% at
the shoulders and for '°Be(21) momentum distributions. The
latter is broader and much smaller in the absolute value, as
can be expected due to a small SF(21) = 0.146, an effectively
larger binding S, + Am¢ and d-wave excited core component
in 'Be.

The study of transfer reactions [19] revealed also the
dependence of the CX effect on the internal orbital momentum
of the bound state, p-wave systems exhibiting weaker CX
effect of opposite sign as compared to s-wave. For this reason
I consider two fictitious p-wave model nuclei of mass A = 11
with the core of '"Be but of spin/parity %_ with neutron
separation energies S, = 0.5 and 5.0 MeV. The first value
nearly equals the s-wave case of the above ! lBe({r) breakup
study and represents very weakly bound system, while the
latter is a more typical value for p-shell nuclei. Although

both model nuclei differ from the physical 11Be(%_) excited

. E/A=60MeV

E/A =200 MeV
100

do/dQ (mb/sr)
)

FIG. 4. Semi-inclusive differential cross sections for the breakup
of p-wave model nuclei as functions of the core c.m. scattering angle
at E /A = 60 and 200 MeV. Predictions of models with CX, displayed
by solid (dashed-dotted) curves for O* (2%) final states of the core,
are compared with rescaled results of the SP model. Thin (thick)
curves correspond to the neutron separation energy S, = 0.5 MeV
(5.0 MeV) with SF(0™) being 0.771 (0.731). KD optical potential is
used.

state with S, = 0.184 MeV, for brevity they will be referred
to as 11Be({). The parameters of the respective neutron-

core binding potentials in the %_ partial wave are taken over
from Ref. [11], except for the central Woods-Saxon strength
adjusted to the desired binding energy. Otherwise, optical
potentials as in the above study of ! 'Be(?) breakup are used.

The angular distributions of the '°Be core resulting from
the p-'"Be(4) breakup at E/A =60 and 200 MeV are
shown in Fig. 4. Again, SP predictions renormalized by the
respective SF(0") = 0.771 (0.731) for the 11Be(%_) binding
of 0.5 (5.0) MeV reproduce reasonably well the observables
including CX, except that a more sizable deviation of 20%
is observed at ©.,, = 0° for the breakup of the more tightly
bound nucleus at the lower beam energy. Such a combination
can be associated with larger rescattering contributions, that
enhance the importance of nucleon-core interactions and, as a
consequence, the CX effect.

Since transverse and longitudinal core momentum distri-
butions show very similar CX effect, I present in Fig. 5 only
the former for a more tightly bound model nucleus with S, =
5.0 MeV. At a lower beam energy E /A = 60 MeV in the peak
of the 0% core transverse momentum distribution there is a
clear difference of about 8.5% between the results including
CX and those of the SP model rescaled by SF(0™) = 0.731.
That difference is, however, reduced to 4.0% at a higher
beam energy E /A = 200 MeV where the rescattering is less
important. In the case of S, = 0.5 MeV, not shown here, the
corresponding difference at the peaks of 0™ core momentum
distributions amounts to 5.9% (3.5%) at E/A =60 MeV
(200 MeV).

Finally, Table I compares also predictions for the inte-
grated three-body breakup cross section ¢ and its components
with the core being in a given state. The CX effect for the
ground-state core cross section o (07) is characterized by the
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FIG. 5. Transverse core momentum distributions for the breakup
of p-wave model nucleus with 5.0 MeV binding energy in the
collision with proton at £ /A = 60 and 200 MeV. Curves are as in
Fig. 4.

parameter D defined as D but with the differential cross
sections in Eq. (7) replaced by the integrated ones. In all
considered cases its magnitude remains below 5%, showing
quite weak sensitivity to the beam and binding energies and
optical potential. D slightly depends on the orbital angu-
lar momentum of ''Be, being negative for the breakup of
11Be({r) but positive for "Be(; ). The CX effect on the
total cross section including all states is quantified by Dy =
(o /osp — 1) x 100% that is listed in the Table I as well. This
quantity shows more sensitivity to the optical potential, beam
energy, and !' Be bound-state properties, mainly caused by the
o (2%) contribution.

IV. DISCUSSION AND CONCLUSIONS

The three-body system of proton, neutron, and nuclear core
was treated in the extended Faddeev-type formalism allowing
the excitation of the nuclear core. Integral equations for three-
body transition operators were solved in the momentum-space
partial-wave basis.

Breakup of the one-neutron halo nucleus ''Be in the col-
lision with the proton was considered. Angular and trans-

TABLE 1. Integrated three-cluster breakup cross sections (in
millibarns) for proton-''Be collisions at given beam energies (in
MeV), calculated using various models for !!Be, characterized by the
neutron separation energy (in MeV) and spin/parity. The CX effect
for 0™ and total cross sections (in percents) is given in the two last
columns. KD optical potential was used, except for the third line
results derived from the Watson parametrization.

$a(G™) E/A o(0%) o2") o Osp D Ds

050417y 30 1140 203 1343 1382 —34 -28
0504(1") 60 671 149 820 804 —-23 20
0.504(1") (W60 725 208 933 877 —32 64
0504(1") 200 277 44 321 335 —32 —42

0.500({) 60 359 103 462 445 4.6 3.8
0.500({) 200 19.3 54 247 242 34 2.0
5.000({) 60 14.8 75 223 193 49 155
5.000(%_) 200 13.6 59 19.5 18.0 3.4 8.3

verse and longitudinal momentum distributions of the '°Be
core were calculated at beam energies of 30, 60, and
200 MeV/nucleon. For the core detected in its ground-state
07T the results appear to be quite insensitive to the choice of
the nucleon-core optical potential. The single-particle calcula-
tions that neglect the CX, renormalized by the corresponding
spectroscopic factor SF(0T) of the ''Be bound state, simulate
quite well the differential cross sections obtained including
the CX.

In order to study the dependence on the internal orbital
angular momentum of the bound state, two fictitious Be-like
p-wave nuclei with neutron separation energies of 0.5 and
5.0 MeV were considered as well. Despite different shapes
of differential cross sections, the CX effect turns out to be
quite similar, i.e., the factorization of the cross section for the
10Be(0") state into the SP cross section and the respective
SF(0™) remains quite a good approximation. Some deviations
are seen mostly at the peaks of distributions, with the most siz-
able one appearing at the lower beam energy and larger bind-
ing energy, where one may expect larger nucleon-core rescat-
tering contributions, enhancing also the importance of the CX.

Integrated three-body breakup cross sections were also
studied, leading to a similar conclusion—the CX effect for
the core ground-state cross section largely consists in the
renormalization of the SP cross section by the corresponding
SF. The CX effect on the total cross section depends more
strongly on dynamic details.

Thus, CX effects in coupled breakup and neutron transfer
reactions turn out to be very different, a probable reason being
different reaction mechanisms. Breakup, especially at higher
energies, is dominated by the neutron-proton quasifree scat-
tering (QFS) where the proton knocks out the neutron from
the initial nucleus while subsequent interactions between nu-
cleons and the remaining nuclear core are responsible for the
distortion, typically reducing the cross section. Neglecting this
distortion, i.e., in the plane-wave impulse approximation, the
differential cross section is proportional to the square of the
momentum-space bound-state wave function. A consequence
of this reaction mechanism is a substantial sensitivity to the
neutron-core bound-state wave function, surviving also after
the distortion. In fact, the differences in Figs. 1-5 between
CX(0") and rescaled SP predictions to some extent may be
caused by small differences in the shapes of the corresponding
"Be wave function components. Nevertheless, the similarity
of the nuclear wave functions leads to the observed scaling
of breakup cross sections calculated with and without the
CX. In contrast, the transfer reaction mechanism involves
high-order rescattering between all three involved particles,
smearing out the sensitivity to the details of the wave function
and enhancing the importance of nucleon-core interactions,
thereby also the dynamic CX effect.
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