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We present a new framework to treat the dissipation and fluctuation dynamics associated with nucleon-nucleon
scattering in heavy-ion collisions. The two-body collision processes are effectively described in terms of the
diffusion of nucleons in viscous nuclear media, governed by a set of Langevin equations in momentum space.

The new framework combined with the usual mean-field dynamics can be used to simulate heavy-ion collisions
at intermediate energies. As a proof of principle, we simulate Au + Au reactions and obtain results consistent
with other existing codes under the same constrained conditions. We also study the formation of fragments in
Sn + Sn reactions at 50 MeV /nucleon, and results are discussed and compared to two other models commonly

employed for collisions.
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I. INTRODUCTION

In heavy-ion collisions at modest energies, two nuclei
approach and collide to form a composite nuclear system. At
very low incident energies and moderate charges, the system
tends to remain fused and de-excites by emission of a few
nucleons and light clusters. The picture gains in complexity as
the incident energy increases since more energy is available
for the system to populate a greater volume of phase space
leading up to a plethora of exit channels. In violent collisions,
the composite nuclear system formed is highly excited, and
its evolution can be envisioned to be very sensitive to the
instabilities present in the system. These instabilities may
deform the shape of the system in phase space in an exotic
manner, resulting in a breakup into multiple fragments.

The fragmentation phenomenon was experimentally ob-
served [1] as early as in the late 1970s. Since the early 1990s,
more experimental efforts have been devoted to the study of
intermediate-mass-fragment multiplicities [2].

On the other hand, while different transport models have
been successfully applied to describe many one-body observ-
ables, our understanding and treatments of the fragmentation
mechanism have yet to be reconciled. The inclusion of fluc-
tuations into transport theories is expected to be of particular
importance. It is worth noting that heavy-ion collision experi-
ments make observations and measurements over an ensemble
of nearly identically prepared colliding systems, and that ex-
perimental observables reflect the distribution of all possible
outcomes of that ensemble. Angular cross sections, for exam-
ple, are directly obtained from the angular distribution of the
deflected particles, but not from any individual, isolated event.
On the contrary, a vast number of the semiclassical transport
models are deterministic in nature. These models predict a
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single exit channel in principle. This poses little trouble when
the underlying distribution of outcomes is sharp and narrow.
Ensemble averages from transport calculations also prove to
converge very well to one-body observables with only weak
dependence on channels, such as those concerning collective
flows [3,4]. However, the configurations in multifragmenta-
tion are obviously heavily dependent on the exit channels,
and, in fact, on the intermediate channels as well. It requires
the transport models to be able to explore a wide range of
dynamical trajectories. The inclusion of fluctuations creates
branching points in the evolution of the system allowing for
jumps among different states including those susceptible to
instabilities.

In general, there are two major types of transport models
for simulating heavy-ion collisions. One type of approaches
are essentially molecular dynamics of nucleons represented
by single-particle wavepackets, augmented by a phenomeno-
logical two-body collision term of the wavepackets [5-13].
The propagation and scattering of localized wave-packets
help preserve the many-body correlations, and the stochas-
tic treatment of the two-body scattering introduces fluctua-
tions. The other type of approaches aim at directly solving
the Boltzmann-Uehling-Uhlenbeck (BUU) equation, with the
system characterized by a one-body phase space distribution
function [14-21]. Solving the BUU equation yields the de-
terministic time evolution of the one-body distribution func-
tion leading to a single exit channel. In recognition of the
importance of fluctuations, many efforts have been made to
extend the Boltzmann framework, such as the derivation of the
Boltzmann-Langevin equation by Ayik and Gregoire [22], the
stochastic mean-field (SMF) model by Colonna et al. [21], and
recently the Boltzmann-Langevin-One-Body (BLOB) dynam-
ics by Napolitani and Colonna [14]. Meanwhile, the inclusion
of few-body scatterings in the pPBUU model by Danielewicz
[23] also describes the production of light clusters with mass
A < 4.
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In the present article, we propose a simultaneous and
consistent treatment of the dissipation and fluctuation in
heavy-ion collisions, rather than a mere ad hoc inclusion of
fluctuations. We recast the effects of two-body collisions in
terms of one-body diffusion processes. This is achieved by
replacing the collision integral in the Boltzmann equation by
a set of Langevin equations, which govern the seemingly ran-
dom motion of particles in momentum space. The description
of the beyond-mean-field dynamics, i.e., the beyond-Vlasov
dynamics, is analogous to the classical Brownian motion as
we know it, and hence we are tempted to name the new
model after Brownian motion. We present the formulation of
the theory and describe at length the implementation details
in Sec. II. In Sec. III, we demonstrate the applicability and
potential of our model by simulating two different types of
heavy-ion collisions, with the latter one focusing on frag-
mentation dynamics, and we compare our results with other
transport models. In the end, a summary is given in Sec. I'V.

II. FORMULATION OF THE MODEL

In this section, we will explain the formulation of the
Brownian motion model and discuss the details of the imple-
mentation of the simulation code.

A. Boltzmann framework

In semiclassical transport theories [24], the nuclear system
is often characterized by the one-body phase space distribu-
tion function f(r, p, ¢). The time evolution of the distribution
function f is approximated with the Boltzmann equation

d
8_{ + {f’ H} = Icoll- (1)

The self-consistent Hamiltonian H encompasses all infor-
mation about the nuclear mean-field interaction as well as
Coulomb interaction, while the residual two-body interaction,
mainly nucleon-nucleon scattering, enters through the colli-
sion integral I.;. The Boltzmann equation provides us with
a simple deterministic model to study heavy-ion collisions
theoretically. Numerical simulations under the Boltzmann
framework can be carried out by means of the test-particle
method [24,25].

B. Mean-field dynamics

Neglecting the collision integral in the Boltzmann equation
(1), we recover the so-called Vlasov equation

af af | P
8t+{f’H}_ » +m Vif =VU -Vpf =0, (2)
where H = 7 + V and the mean field U = §V/§p.

The Vlasov equation retains only one-body information.
The interaction between any individual particle and the rest
of the system is approximated by a mean-field interaction.
In practical calculations, the phenomenological mean-field
interactions are usually employed

D
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TABLE 1. Parameters for the mean-field interaction.

A [MeV] B [MeV] C [MeV] D Siso [MeV]

—209.2 156.4 —6 1.35 18

where 8 = (o, — pp)/p is the isospin asymmetry and pa-
rameters A, B, C, D, and S;,,, summarized in Table I, are
fitted to reproduce nuclear matter properties at normal density
po = 0.16 fm~3: the binding energy of 16 MeV /nucleon, the
incompressibility of 240 MeV and the symmetry energy of
30.3 MeV at normal density pp [25,26]. Spin dependence
and momentum dependence is ignored for simplicity in this
parametrization.

The Coulomb potential Ucoy(pch(r)) can be determined
from the Poisson’s equation for electrostatics

1
V2Ucoul = —— pen(T). )
€0

In the current model, we consider two species of particles
only: neutrons and protons. The numerical scheme of solving
the Vlasov equation is adapted from the lattice Hamiltonian
method with test particles proposed by Lenk and Pandhari-
pande [25]. The coordinate space is discretized into a cubic
lattice with the lattice spacing / = 1 fm. Each test particle has
a triangular-shaped form factor and contributes to the nearest
eight lattice sites.

C. Dissipation and fluctuation dynamics

In heavy-ion collisions, nucleon-nucleon scattering acts
like a dissipative force, driving the system towards thermal
equilibrium. In accordance with the fluctuation-dissipation
theorem, the dissipation of the beam energy heats up the
system and is thus inevitably accompanied by thermal fluc-
tuations. The thermal fluctuations may manifest themselves
in terms of fluctuations in phase space density, which are
expected to be linked with multifragmentation observed in
intermediate-energy heavy-ion collisions. In this subsection,
we aim to develop a framework that offers a consistent and
simultaneous description of the dissipation and fluctuation
dynamics.

The collision integral tied to two-body scattering reads

do,
Lol = %/dSPb/dQ % Va[(1 = f)(A = fo)fu frr
= fafo(1 = f)(A = fi)], 5)

where the degeneracy factor is g = 4 for nucleons (when no
distinction is made between neutrons and protons; see the
discussion later), and v,, is the relative velocity between
nucleons a and b, and do/d2 the nucleon-nucleon cross
section. The indices a’ and »’ denote the final states of the
colliding pair.

As the scattering energy increases, nucleon-nucleon scat-
tering peaks more sharply forward. One can reduce the col-
lision integral I.o; (5) into a Fokker-Planck form by making
an expansion over the scattering angle 6 (see Appendix A for

024612-2



ONE-BODY LANGEVIN DYNAMICS IN HEAVY-ION ...

PHYSICAL REVIEW C 99, 024612 (2019)

more details) [27],

a 1, .. )
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7 0PLdp
where
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with qu = ps — Py and
1
F, = (n’va;,/Z)/ 62 (doap/dS2)d cos . (10)
0

The beyond-mean-field dynamics, depicted traditionally as
two-body scattering processes, is transformed, by the Fokker-
Planck Eq. (6), into diffusion processes of nucleons in the
viscous nuclear system. The vector coefficients R and l~{,
usually known as the drag coefficients, are connected to the
viscosity of the system. The tensor coefficient D is referred
to as the diffusion tensor, which describes the anisotropic
diffusion of particles.

Note that the cross section do,;,/d<2 enters the equation
through the function F,;, and hence has an effect on all
coefficients in the equation. Admittedly, only the integrated
effects of the cross section can be accounted for, so the
overall magnitudes of the coefficients do not depend sensi-
tively on the detailed angular dependence of the cross section.
The anisotropic diffusion is predominantly governed by the
anisotropy of the momentum distribution of particles in the
medium, as can be seen in the definition of the diffusion
tensor in Eq. (9). One, for sure, can carry out the expansion to
higher orders. The resulted differential equation beyond sec-
ond order, however, is not tractable with the aid of diffusion
or Langevin dynamics. Furthermore, similar expansions such
as the Kramers-Moyal expansion of the Boltzmann integral
operator in terms of differential operators beyond the second
order have known to be ill-behaved [28]. Therefore, we stick
to the second-order Fokker-Planck equation and choose to put
its validity to tests.

Consider an ensemble of systems with identical initial
conditions. In the presence of fluctuations, the evolution of the
ensemble will diverge. The Fokker-Planck equation provides
a mathematical description of the distribution and ensemble-
averaged behavior of these identically prepared systems. In-
deed, the Fokker-Planck approach has been employed to study
the motion of an ensemble of Brownian particles, classical or
quantal, in a medium at constant temperature, as the stationary
solution of the Fokker-Planck equation yields the equilibrium
distribution representing the correct statistics [29].

Inspired by the ideas of Brownian motion in a heat bath,
we intend to encapsulate the beyond-mean-field dynamics al-
together into the Brownian motion of nucleons in the typically

nonequilibrium nuclear medium, through the Fokker-Planck
Eq. (6). While the Fokker-Planck equation is deterministic,
one may simulate the different dynamical trajectories of the
system by use of the corresponding Langevin equation. The
differential form of the nonlinear Langevin equation for nu-
cleons undergoing Brownian motion reads

dp, = 3[R+ (1 — f.)R]d + 6dB,, (1)

where R and R carry the same definitions and meanings as in
Egs. (6) and (7), o is a 3 x 3 positive definite matrix such that

ij_ 1
D = 5 Xk:oikojk. (12)
B, denotes a Guassian random process with properties
(dB,) =0, (13)

(dBldB]) = dt §;;. (14)

This equation describes the momentum transfer, or the
“kick,” experienced by a nucleon due to its interaction with
the medium within a time interval At. The first term is dissi-
pative and connected to the viscosity of the nuclear medium,
while the second term is stochastic and gives rise to the
fluctuations in the dynamics. In the limit of thermodynamical
equilibrium, coefficients in the Langevin equation are related
by the equilibrium temperature, in a manner akin to the
classical Einstein relation, as is shown in Appendix B.

For the time being, we do not distinguish between nn, pp,
and np scatterings by employing a spin-isospin averaged
nucleon-nucleon cross section. We further restrict our atten-
tion to elastic scatterings by targeting collisions at energies
near or below pion production threshold. Extensions to in-
corporate elastic and inelastic collisions between different
species can be made in the future at little cost by adjusting
the degeneracy factor g and adopting the suitable differential
cross sections do,,/dS2. More care needs to be taken for the
change of species though in the case of inelastic scatterings.

The Langevin equation meets our goal of treating the
dissipation and fluctuations in the dynamics both consistently
and simultaneously. We evolve the system by application of
the Langevin equation to every nucleon in the system in
addition to the mean-field dynamics. Details of the numerical
implementations will be discussed in a subsequent subsection.

D. Initialization with the Thomas-Fermi equations

For nucleons inside a stable nucleus, two-body scatterings
are strongly suppressed by the Pauli blocking. Hence, for any
given mean-field potential, the initial configuration of nucle-
ons in phase space, ideally, should coincide with the stationary
solution to the Vlasov equation. This solution amounts to that
to the coupled Thomas-Fermi equations [25]

Flz
Un(p(r), 8(r)) + 3
m

2

h
wwmam+wm+7%%um=w,a®
mp

ki (on(r) = pn,  (15)

n

024612-3



HAO LIN AND PAWEL DANIELEWICZ

PHYSICAL REVIEW C 99, 024612 (2019)

where Ux(p, §) is the self-consistent mean-field potential as
in Eq. (3), ux is known as the chemical potential, and kp is
the Fermi momentum. The subscript X denotes the particle
species.

Owning to the surface term in the mean field, the Thomas-
Fermi equations are second-order ordinary differential equa-
tions. They are to be solved with the boundary conditions
Pnyp(r—00) =0 and (dpy/,/dr)|,=0 = 0. One may solve
them numerically by employing Ansatzes for p,,(r) and
adjusting p,,/,, iteratively [17].

In this work, we propose a different method to solve the
coupled Thomas-Fermi equations. We rewrite the equations
by multiplying both sides by density pyx,

hx (pn(r), pp(r)px (r) = px px (r) A7)

with the single-particle Hamiltonian iy = Uy + hzk% /2myx +
Ucoul 8x, - Equation (17) has the same structure as the Hartree-
Fock equation, prompting us to tackle it as an eigenvalue
problem. Using a discretized position basis, we can obtain a
matrix representation for sy and a vector representation for

PX 5
G = (rilhx|r;) = hx (osp(ri), papp(rj)),  (18)

p™ = (rilpx) = px(r7). (19)

Note that sy is not diagonal because the derivatives involved
are computed in terms of finite differences in the basis. In
Eq. (17), px plays the role of the eigenvector of iy and pyx
the eigenvalue. We use a self-consistent iterative method [30]
to find eigenvectors and eigenvalues for h, and &,. The pair
of eigenvectors {p,, p,} in the position basis corresponding
to the smallest eigenvalues, i.e., lowest chemical potentials
{ttn, 1Lp}, is chosen to generate the fields A,/,(04, pp) in the
next iteration and picked as the actual density profiles in the
end.

We demonstrate this method by computing the density
profiles for a medium-sized nucleus *Ni and a large-sized
nucleus '’ Au using the mean-field potential with a K =
240 MeV mentioned above. The computed radial density pro-
files are shown in Fig. 1. We note that density profiles with
the Thomas-Fermi approximation lacks the ripples associated
with shell effects in typical Hartree-Fock calculations. The
tails of the density profiles exhibit rapid fall-offs, which is
also typical of Thomas-Fermi calculations [30]. In practice,
the unphysical fall-off of the tails get mitigated by numerical
sampling of test particles and coarse graining, as is seen in the
initial distributions at t = 0 fm/c in Fig. 2.

E. Brownian motions of nucleon wavepackets

In this model, the beyond-mean-field residual-interactions,
between individual nucleons and the nuclear medium they
are locally immersed in, are presumed to be dissipative and
random, and governed by the proposed Langevin Eq. (11).
We refer to these momentum and energy exchanges between
particles and medium as Brownian motions. In what follows,
we will describe at length the perspective on these Brown-
ian motions and their numerical implementation. Given the
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FIG. 1. Density profiles of stable nuclei **Ni and '’ Au obtained

from solutions of the Thomas-Fermi equations.

mesoscopic nature of nuclear systems, physics and practical
details are entangled.

1. Partition of test particles into nucleon wavepackets

While ensuring a sufficiently smooth coverage of the phase
space in the simulation of mean-field dynamics, the large
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FIG. 2. Time evolution of radial density profiles for single nuclei
38Ni and '°7 Au in steps of 40 fm/c.
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quantity of test particles used, typically Ny = 10°—103 test
particles per nucleon, have adverse effects on the fluctuation
dynamics. The scatterings of test particles supposedly rep-
resenting the same nucleon are uncorrelated, which would
inevitably wash out most of the fluctuations in the dynamics.
This, to a large extent, explains why BUU-type approaches
typically have vanishingly small fluctuations compared to
QMD-type approaches, whose degrees of freedom are nu-
cleons. Different attempts have been made over the years to
restore the nucleonic degrees of freedom in two-body scatter-
ings in the BUU framework [3,14]. The main idea of them
is to agglomerate test particles adjacent in phase space into
so-called nucleon wavepackets and to move them collectively
as a whole.

We adopt a similar approach to enhance the effects of
fluctuations. In each time step, we partition the test particles
into nucleon wavepackets and execute Brownian motion with
these nucleon wavepackets as the degrees of freedom. The
prepartition is accomplished through the k-means clustering
algorithm [31] with a metric in phase space parametrized in
the following form:

(ri—r;)?*  (pi—p;)>
&2 &

7

d> =

, (20)

where subscripts i and j denote two points in phase space.
The parameters d, and d,, address the compactness in the
coordinate and the momentum spaces, respectively. We run
the k-means clustering algorithm to partition both the neutron
test particles and the proton ones separately. The algorithm
is set to terminate after several iterations, and the values
d, = 1.2 fm and d, = 130.5 MeV/c are used. It is found in
practice that the final results are not sensitive to either the
early termination of the clustering algorithm or the values of
the metric parameters.

After the prepartition, the system is divided into N neutron
subspaces and Z proton subspaces. The prepartition is simple
but somewhat arbitrary, and thus only the centroids are to be
used. We identify these centroids as the scattering centers for
the nucleons.

For each centroid (r;, p;) for which the local nucleon
density is above 0.1 fm~>, we consider a spherical region
centered at r; of radius R ~ 2 fm. This value corresponds
roughly to the sum /oyy/m + +/(r%), where the nucleon-
nucleon cross section oyy >~ 40 mb and the root-mean-
square proton charge radius +/ (rczh) 2~ 0.86 fm. R can also be
made density-dependent, with the sensible choice of R(p) =
[1.99 — 0.18p_%(,0 — po)] fm. Inside the spherical region, we
search for test particles close to the centroid (r;, p;) using the
following phase space metric:

Pi—p)

(ri—r')?
— + S 21
r Up

d* =

o

with o, = R and 6, = /i/2R. This metric emphasizes the com-
pactness in momentum space, while connected to the Heisen-
berg uncertainty principle. The Langevin Eq. (11) is originally
intended for point-like particles, and hence wavepackets well-
localized in momentum space are preferred. The Neg test
particles of the same species closest to the centroid form

the wavepacket to undergo Brownian motion. The rest of the
particles constitute the medium, with which the wavepacket
interacts.

2. Evaluations of the Langevin equation’s coefficients
on a lattice

The coefficients R, R, and D involve integrals folded
over the momentum space, which require the knowledge of
occupation at different momenta. To this end, we construct
a three-dimensional cubic lattice over the entire momentum
space inside each spherical scattering region and we evaluate
the occupation at different sites.

The lattice spacing L, needs to be chosen with care to faith-
fully reflect the actual spread and spacing of the underlying
test particles. We use the standard deviation o,” of the mo-
mentum of test particles belonging to the nucleon wavepacket
as a measure to constrain lattice spacing. We normally choose
the spacing L, = max{1.20,”, i/(2R)}, where R is the radius
of the spherical scattering region under consideration. With
such constraints, the values of the spacing L, typically fall
between 100 and 140 MeV /c, which ensures a sensible coarse
graining of the momentum space.

Occupation f(p) at each momentum lattice site is evalu-
ated in the same fashion as spatial densities are on a spatial
lattice in mean-field dynamics simulations. Test particles have
a triangular-shaped form factor, contributing to the eight near-
est lattice sites only. Integrals of R, R, and D are computed as
summations over all sites of the three-dimensional momentum
lattice.

3. Momentum transfer from the nuclear medium
to the nucleon wavepacket

With a reasonable time step size At ~ 0.25-0.5 fm/c, the
first term of the Langevin Eq. (11) can be readily calculated.
The stochastic term involves a matrix o, which needs to be
extracted as the square root of the diffusion matrix D. Note
that, by the definition in Eq. (8), D is a real symmetric
positive semi-definite matrix. It follows that D can be diag-
onalized as D = OAQT, where A is a diagonal matrix and
O an orthogonal matrix. We then represent o, cf. Eq. (Al1),
as

o =0A:0", (22)

where A2 is diagonal whose diagonal elements are the unique
square roots of the corresponding diagonal elements in A. It
can be easily verified that o constructed according to Eq. (22)
satisfies Eq. (8).

With a time step of size At, the differential notation dB;
is interpreted as a three-dimensional random vector, whose
components are independent Gaussian random numbers. The
underlying Gaussian distribution has a mean equal to zero and
a variance equal to Ar.

In summary, the momentum transfer Ap within a time step
At in a spherical scattering region is simulated as

Apy = 3[R+ (1 — f)R]A? + 0 8(0, Ab), (23)
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with g(0, At) being a random vector comprised of three
independent Gaussian random numbers sampled with mean
= 0 and variance = Ar.

4. Recoil for conservation of momentum and energy

After a nucleon wavepacket is shifted in the nuclear
medium inside a spherical scattering region, the recoil of the
nuclear medium needs to be accounted for in order to preserve
the conservation of total momentum and total energy. The
interaction between the nucleon wavepacket and the nuclear
medium is reciprocal. Indeed, by exchanging the subscripts
a and b in the Langevin Eq. (11), one obtains an expression
for how the nucleon wavepacket induces recoil of particles
in the medium. Thus, the recoil can be treated, in principle,
precisely.

On the other hand, owing to the facts that the number
of particles involved in the medium is large and that the
recoils are coupled in a nontrivial manner, we instead adopt
a collective and approximate treatment of the recoil effects:
the center of momentum of the nuclear medium is shifted to
conserve total momentum, and all particles in the medium
are scaled with respect to the new center of momentum to
conserve total energy.

Additionally, it is worth noting that the nuclear medium
almost always contains more than one nucleon. The collective
shift-and-scale adjustment, in effect, introduces many-body
correlations in the nuclear medium.

5. Pauli-blocking procedure

Within the scattering region, after the kick of the nucleon
wavepacket and the adjustment for recoil in the nuclear
medium, we compute again the occupation over the entire
lattice in momentum space. The Brownian motion is finalized
only if none of the occupation at any lattice site exceeds 1.
Otherwise, we deem the Brownian motion unphysical and
revert all changes. This Pauli blocking procedure proves to
be effective. For single ground-state nuclei, over 97% of the
attempted Brownian motions are blocked in the current model
prescription, and the stability of the nuclei are demonstrated
in Fig. 2.

Figure 2 shows the time evolution of the radial density
profiles for a single *Ni and a single '*7 Au up to 200 fm/c in
steps of 40 fm/c, simulated by the our Brownian code under
the same controlled conditions specified in Ref. [26]. Ideally,
the density distribution should remain unchanged over time
for single nuclei. In our case, the density profiles show only
small scale fluctuations over the entire course of simulation.
It indicates, in particular, that numerical solutions of the
Thomas-Fermi Eq. (15) approximate the true solutions of
the Vlasov Eq. (2) reasonably well. Further, the majority of
the spurious large momentum transfers are effectively blocked
by the Pauli-blocking procedure.

6. Summary of implementation of Brownian motions

In each time step, the occupied phase space is partitioned
into N 4 Z subspaces of roughly equal volume. Scattering re-
gions are constructed spherically around the spatial centroids
of each subspace. These regions are to be examined succes-

sively in a random order. Within each scattering region, a sep-
aration of the nucleon wavepacket from the nuclear medium
is made. The Langevin equation is evaluated on a three-
dimensional lattice in momentum space, and the resulted
momentum transfer is applied to the nucleon wavepacket. In
observance of the conservation laws, the recoil effects are
taken into account through an adjustment of the momentum
distribution of particles in the medium. A Pauli-blocking
procedure is applied in the end to preserve the Pauli exclusion
principle.

III. RESULTS

In this section, we first demonstrate the practical appli-
cability of our model to heavy-ion collisions by simulat-
ing the Au-Au collisions at both 100 MeV /nucleon and
400 MeV /nucleon at an impact parameter of b = 7 fm. We
study the nucleon rapidity distribution and the average in-
plane flow (p,/A) and compare our simulation results to
those from other transport codes in the code comparison
project of Ref. [26]. After confirming that our model can
yield reasonable results for one-body observables, we pro-
ceed to investigate its ability to describe multifragmentation
processes. To this end, we study the time evolution of the
systems: 11?Sn 4+ 2Sn and **Sn + '?*Sn at 50 MeV /nucleon
at an impact parameter b=0.5 fm. A preliminary com-
parison of results with the SMF and the antisymmetrized
molecular dynamics (AMD) models from Ref. [32] is also
made.

A. One-body observables for Au + Au system

Fluctuations associated with Brownian motions enable our
model to probe a broader range of intermediate and final
channels. It is of interest to study whether the diversity of
intermediate and final channels may affect the description
of one-body observables. Our model is applied to simulate
the Au + Au reactions at two incident energies, 100 and
400 MeV /nucleon. These specific reactions were also studied
and compared in a transport code comparison project under
controlled conditions [26]. The same impact parameter b =
7 fm as there is chosen. Identical mean-field interactions and
nucleon-nucleon cross sections as there are employed.

1. Rapidity distribution

The rapidity distribution in the final state gives a Lorentz
invariant measure of the degree of stopping of nucleons at-
tained in heavy-ion collisions [26]. The more particles pop-
ulate the midrapidity region in the center-of-mass frame, the
stronger the stopping effects are.

In Fig. 3, we display the final rapidity distributions from
our calculations accompanied by results of selected BUU and
QMD calculations from Ref. [26]. At low incident energy
100 MeV /nucleon, there is a large amount of filling of the
midrapidity region, indicating a relatively strong stopping.
While all codes except for AMD exhibit a shallow double-
humped structure, differences in details of the rapidity distri-
butions are not negligible. This is probably tied to differences
in treating Pauli principles in different codes and to delicate
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FIG. 3. Final rapidity distributions as a function of reduced
rapidity for '’ Au + ' Au at beam energies of 100 MeV /nucleon
(upper panel) and 400 MeV /nucleon (lower panel) at an impact
parameter b = 7 fm. Solid curves, dashed curves and the dashed-dot
curve correspond to the Brownian model, BUU-type models, and
QMD-type models [26], respectively.

competition of mean-field interaction and many-body correla-
tions at this incident energy [26]. At higher incident energy of
400 MeV /nucleon, fewer particles populate the midrapidity
region compared to the outer regions and the double-peaked
feature is more pronounced, due to a weaker stopping and
shrinking Fermi momentum compared to incident momentum
per nucleon. General consistency is found among most calcu-
lations, although nonrelativistic models such as the Brownian
motion model and AMD predict mildly stronger stopping.

2. Average in-plane flow {(p,[A)

Use of a finite impact parameter, b = 7 fm, in this study,
breaks the macroscopic rotational symmetry around the beam
axis in the system, and therefore anisotropy appears in the
transverse collective momentum distribution. We focus on the
average in-plane flow (p,/A), simply known as the transverse
flow, as a function of the reduced rapidity y/Ypeam in the
center-of-mass frame. When quantified, the transverse flow is
commonly described in terms of an “S-shaped” curve. The
slope at the origin, commonly known as the “slope param-
eter,” is of importance. Particles in the midrapidity region
are expected to come from the compressed region during the
collision, and thus the study of this flow parameter can shed
light on the behavior of the nuclear equation of state beyond
normal density.

In Fig. 4 we show the average in-plane flow for our
calculations together with results from selected transport
models from Ref. [26]. In all calculations, the expected S-
shaped curves are produced at both energies. The positive
slopes at the origin indicate that the effects of nucleon-
nucleon scattering dominate over those of the mean field.

40""'x""x""x""

) ]

o |— Brownian
= II-- pBUU

< = SMF

o {=—AMD

~ IQMD

FIG. 4. Final average in-plane flow as a function of reduced
rapidity for '”Au+ '"7Au collisions at beam energies of 100
MeV /nucleon (upper panel) and 400 MeV /nucleon (lower panel)
and an impact parameter b =7 fm. Solid curves, dashed curves
and the dashed-dot curve represent the Brownian model, BUU-type
models, and QMD-type models [26], respectively.

At 100 MeV /nucleon, the BUU-type models clearly produce
greater inflections than the QMD-type models. The prediction
from the Brownian motion model lies between them. At
400 MeV /nucleon, it appears that all five transport models
yield very consistent results in the midrapidity region.

The slope parameters at midrapidity can be extracted
through a linear fit in a small interval centered at the ori-
gin. The values of the slope parameters at two energies for
different transport simulations [26] are summarized in Fig. 5.
The error bars take into account the fitting uncertainties only.
On top of the simulation results, we also added shaded bands
to indicate regions in which calculations are considered to
be statistically consistent with the majority of the BUU-type
and QMD-type models. To obtain the statistically consistent
regions, we first computed the /2c-intervals centered at
the mean values for the BUU sample and the QMD sample
independently. o stands for the standard deviation of the
sample. The statistically consistent regions were taken to be
the overlap of the /2o -intervals from the two samples. If
we further assume that the BUU sample and the QMD sam-
ple follow an identical Gaussian distribution, the consistent
regions can also be interpreted as roughly 52% confidence
intervals. Note that throughout the statistical analysis, results
from the Brownian motion model were deliberately excluded
to avoid any possible bias. Nevertheless, the slope parameters
extracted from the Brownian simulations are found to be
statistically consistent with majority of the other calculations.

The reassuring consistency of results between the Brown-
ian motion model and other current transport models provides
evidence that the one-body Brownian motion picture can
successfully capture the effects of two-body scattering and
mean field in heavy-ion collisions.
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FIG. 5. Flow slope parameter for different transport models [26]
for 17 Au + 7 Au collisions at beam energies of 100 MeV /nucleon
(blue squares) and 400 MeV /nucleon (red triangles) at an impact
parameter b = 7 fm. The error bars represent the fitting uncertainties.
These become invisible when they are smaller than the symbols. The
colored bands correspond to roughly 52% confidence intervals from
the statistics of calculations from both the BUU-type and the QMD-
type models. (See text for a more detailed explanation.)

Last but not least, in analyzing results from the Brownian
motion model, we averaged the rapidity and the in-plane flow
over 32 independent events, and the averaged results exhibit
good parities as functions of the reduced rapidity. It needs
to be pointed out that the fluctuation dynamics described
by the Langevin Eq. (11) does not automatically preserve
forward-backward reflection symmetry, and that parity sym-
metry breaking or other types of symmetry breaking can be
observed in individual events. Since the “directions” of the
symmetry breakings are essentially random, symmetry can
be restored by ensemble-averaging over independent runs. In
fact, these symmetry breakings, resulted from the broadening
of dynamical trajectories, can be crucial for the formation
of fragments to be discussed in the next subsection. For in-
stance, an uneven breakup of two nuclei in symmetric central
collisions will be likely associated with an asymmetry in the
rapidity distribution.

B. Fragmentation dynamics with Sn + Sn at 50 MeV /nucleon

In this subsection, we will demonstrate how the ability
of our model to probe a plethora of intermediate and fi-
nal states is connected with the formation of intermediate
mass fragments (IMF) in central heavy-ion collisions. The
systems we study are ''>Sn + '>Sn and '**Sn 4 '**Sn at
50 MeV /nucleon at an impact parameter b = 0.5 fm. These
systems have already been studied by Colonna et al. using
both SMF and AMD [32]. We will make a preliminary com-
parison between our simulation and those in SMF and AMD.
A density-dependent and energy-dependent nucleon-nucleon
cross section is used

p/Po

_ 24
]+Elab/EOi|7 @9

onn (Elap, p) = O']f]r]?]e(Elab) eXPI:_a

with & = 0.3, po = 0.16fm ™3, Ey = 150 MeV, and a maxi-
mum cutoff at 150 mb. GI{},?,C (Eap) 1s taken as the cross section
parametrization by Li and Machleidt at zero density [33]. The
evolution of the systems is followed up to 280 fm/c after
initial contact.

Figure 6 shows the density contour plots from projecting
nucleons on the reaction plane for the !'2Sn + '2Sn system
at different stages of the reaction calculated with different
transport models. All three models give a qualitatively consis-
tent description of the compression-expansion dynamics, and
cluster structures are formed in the expansion phase. During
the approach and compression up to 40 fm/c, calculations
from the three models with fluctuations and many-body cor-
relation effects do not appear to be distinguishable from what
would be expected from conventional transport models with-
out fluctuations. The suppression in the role of fluctuations
is linked to the limited volume of phase space available for
the system to populate since it is far from thermalized in
the early stage. At 120 fm/c, we can already observe, in all
simulations, that the expanding systems turn inhomogeneous.
These inhomogeneities, which would not have existed without
fluctuations, provide seeds for fragmentation, and there are
cluster structures forming in the core. As the system continues
to expand, the lumps of matter move away from one another
and escape from the central region. For all three models, siz-
able fragments can be identified after 200 fm/c, and changes
between 200 and 240 fm/c are sporadic and moderate. As a
result, we assume that the configurations have frozen out by
240 fm/c, and we terminate the simulations at 280 fm/c.

The three models differ quite substantially in details of the
predictions for the expansion phase. In the Brownian motion
model calculations, the degree of stopping is comparatively
low and the system tends to expand more along the beam
direction. On the other hand, in AMD, the system expands
quickly with a focus around the x-direction, which indicates
a very strong stopping that is also seen in the Au-Au simu-
lations. The relatively isotropic and slow expansion in SMF
can probably be explained by the spinodal decomposition of
a nearly homogeneous source at low density [34]. We also
count the number of nucleons in the “gas” phase (p < é 00)
predicted by our model and compare the number to results of
SMF and AMD [35]. It is found that our model yields more
gas-phase nucleons than AMD, but only slightly fewer than
SME.

Regarding the fragmentation mechanism in our model,
in-medium Brownian motions introduce branching points in
the dynamical trajectories and allow for “jumps” among
a greater range of intermediate and final configurations.
These jumps, stemming from nucleon-nucleon scatterings, are
abrupt and discontinuous in time. The Langevin Eq. (11),
with its stochastic term introducing discontinuities in time,
serves the purpose. By solving the Langevin equations, we
attempt to simulate the abrupt jumps from one n-body con-
figuration to another. As the deviations from the ensemble-
averaged trajectory predicted by the Boltzmann Eq. (1) accrue
from the jumps, exotic configurations including those with
fragmentation eventually become accessible. In the quantum-
mechanical picture, configurations are represented by super-
positions of Slater determinants. While mean-field evolution

024612-8



ONE-BODY LANGEVIN DYNAMICS IN HEAVY-ION ...

PHYSICAL REVIEW C 99, 024612 (2019)

Brownian

20 -10 0 10 -20 -10 0 10 -20 -10 O 10 -20 -10 O

10 -20 -10 0 10 20

z (fm)

FIG. 6. Density contours for nucleons projected onto the reaction plane in the reaction !'>Sn + ''2Sn at 50 MeV /nucleon at an impact
parameter of b = 0.5 fm, at different times during the reaction. Results calculated with the Brownian motion model are displayed in the first
row of the panels. The bottom two rows show results from SMF and AMD calculations [32]. The densities for the projected contours start at

0.07 fm~? and consecutively increase by 0.1 fm 2.

is coherent, in principle, the residual incoherent many-body
correlations, such as two-body scattering, result in decoher-
ence and transitions between different Slater determinants.
Among the stochastic approximations of the quantum many-
body problems are the AMD model [5,36] and the stochastic
time-dependent Hartree-Fock (STDHF) theory [37]. In treat-
ing the jumps between different configurations as a stochastic
process, the Brownian motion model is conceptually consis-
tent with these quantal approaches.

A comparison of the IMF multiplicity between the Brow-
nian motion and the other two transport models for '**Sn +
12481 is shown in Fig. 7. In our case, fragments are identified
with a simple coalescence algorithm with a cutoff density
pe = 0.02 fm~3 [3]. The distribution is obtained from 100
independent simulations.

For IMFs with charge Z > 2, our multiplicity distribution
looks compatible with that from AMD. Both distributions
maximize around multiplicity = 7 or 8 and share a similar
spread. For larger IMFs with charge Z > 6, our calculations
yield a slightly lower multiplicity, while still predicting es-
sentially the same spread as the others. Since our model, as
well as SMF, predicts more free nucleon emission than AMD,
fewer nucleons are available in the “liquid” phase (p > %,00)
for the assembly of IMFs. Moreover, due to the large number
of free nucleons and light fragments in our simulations, the
effective surface-to-volume ratio is also higher, which might
lead to spurious evaporation of test particles and hinder the
formation of fragments. Nonetheless, the Brownian motion
model breaks through the limitations of traditional Boltzmann
transport framework and proves to have great potential for the
description of multifragmentation.

0.4 — T T T T T T T T T T
- Z>2 _
0.3 |~—Brownian -
--—-SMF
I AMD 1
0.2 -
0.1 N
= 0
D- - -
0.4+ Z>6 | _
| —Brownian | |
B --—-SMF 1
0.3 AMD
02r- 4
01 4
0 WA I N R T—
0 2 4 6 8 10 12

IMF multiplicity M

FIG. 7. Distribution of IMF multiplicity obtained from different
models for the reaction '2*Sn + '**Sn at 50 MeV/nucleon at an
impact parameter b = 0.5 fm. The upper panel shows the multiplicity
distribution of IMFs with charge Z > 2 and the lower panel with
Z > 6[32].

024612-9



HAO LIN AND PAWEL DANIELEWICZ

PHYSICAL REVIEW C 99, 024612 (2019)

IV. SUMMARY AND DISCUSSION

In this paper, we reformulated the beyond-mean-field dy-
namics in heavy-ion collisions in terms of Brownian mo-
tions of nucleons in the viscous, out-of-equilibrium nuclear
medium, as opposed to the typical two-body scatterings.
The Brownian motions are, in effect, the momentum and
energy exchange between a nucleon and the nuclear medium
it is immersed in. They are governed by a set of Langevin
equations consisting of a friction-like term and a stochastic
term. This approach describes the dissipation and fluctuation
dynamics consistently and simultaneously. Furthermore, each
simulation generates a unique dynamical trajectory, enabling
us to probe different exit channels and obtain the distribution
of possible outcomes of the ensemble.

The details of the numerical simulations, including an
alternative method to initialize stable nuclei from the Thomas-
Fermi approximation, are presented. We applied our model to
the time evolution of isolated stable nuclei. The stabilities of
the simulations and the nuclei are well established.

To demonstrate that our model’s ability to describe one-
body observables is on par with that of other transport models,
we have studied the final rapidity distribution and average
in-plane flow in the reaction '°’Au + '’ Au at two incident
energies and showed that our results are comparable to those
obtained from either QMD-type models or BUU-type models
[26].

We also investigated the formation of fragments in heavy-
ion collisions with our model and confirmed the crucial role
fluctuations play in seeding multifragmentation. We repeated
the calculations of Sn + Sn at E = 50 MeV/nucleon, pre-
viously done with the SMF and the AMD models [32]. As
seen from the time evolution of density contours for nucleons
projected on the reaction plane, and all three models depict a
fragmented system with similar general features. Regarding
the distribution of IMF multiplicity, We find that the yield
of light IMFs with Z > 2 in the Brownian motion model is
comparable to that in AMD, but our yield of large IMFs with
Z > 6 is slightly lower than that in SMF or AMD.

So far, we successfully demonstrated the abilities and
potential of the Brownian motion model to describe various
scenarios in heavy-ion collisions at intermediate energies.
Its ability to traverse different dynamical trajectories makes
it particularly suitable for the study of multifragmentation,
which is beyond the reach of many traditional transport
models. It is also superior to many models with stochastic
extensions in that it treats dissipation and fluctuation on
an equal footing. More explicit introductions of many-body
correlations possibly with connections to quantal expectation
values are under consideration. In the future, it is of great
interest to confront the optimized Brownian motion model to
experimental data. We have also in mind the goal of studying
the fragmentation mechanism. For example, we looked at
whether and when the central region of a fragmented system
enters the mechanically unstable region and the findings seem
to favor the spinodal decomposition mechanism. A more
careful inspection is planned.

As a final note, while the Fokker-Planck/Langevin ap-
proach has been motivated here by the Boltzmann equation,

one can think about circumventing the latter in the future and
deriving the coefficients for the equation directly from micro-
scopic theory, upon separating slow coarse-grained nucleon
motion from fast internucleon motion [38].
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APPENDIX A: FOKKER-PLANCK EQUATION
AND LANGEVIN EQUATION

In this Appendix, we provide a summary of the derivation
of the Fokker-Planck equation detailed in Ref. [27] and dis-
cuss the corresponding Langevin equations of different forms.

Consider the following Boltzmann collision integral for
arbitrary statistics,

ton = % [ @ [ a9 T2 vatufofo = usidodon
(AD)
fx 1s to be regarded as the shorthand notation for the one-
body phase distribution function f(p,). f = 1 + Af with A =
—1, 0, 1 corresponding to Fermi-Dirac, Boltzmann, and Bose-
Einstein statistics. g is the degeneracy factor.

For a pair of particles with momenta p, and p, vy is the
relative velocity, and do,,/d 2 is the differential cross section,
where the scattering angle €2 is defined in the center-of-mass
frame of the pair. Final momenta are denoted by primed
subscripts.

In the center-of-mass frame, the initial state of the colliding
pair is characterized by the relative momentum q,, = p, —
p» and the total momentum P, = p, + p». When only elastic
collisions are under consideration, P, remains constant and
qay = qap- It follows that the final relative momentum q; is
completely determined by the scattering angle Q2 = (0, ¢).

For a ¢-independent and forward-peaked cross section, we
can first make the following expansion over the polar angle
0 at a fixed azimuthal angle ¢, and then truncate it up to the
leading order term upon integration over ¢,

n! 06"
n=0

s o . S on gn
JaFofufo = faloFu Ty = Fufs [Z — —(fufb)}

0=0

0 on 9" . .
— fuly [Z m@(fam]

n=0

6=0
(A2)

The zero-order term vanishes conveniently. Since q,p =
qap(sin 0 cos ¢, sin 6 sin ¢, cos 0), the usual chain rule gives

3 .y
0 Z 30
where 0qy /90 |9=0 = qup(cos¢, sing, 0). The integration of

0quy /0090 over ¢ is zero, so the leading order term in
Eq. (A2) is of second order.

0

(A3)

l’ b
=0 ey
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It is easy to show that
2 82
dp— 2 —
/0 ¢892 ( Zq +q Z 3q8q’)
(A4)

where the subscript ab for g is suppressed for brevity and
AV =817 — ¢iq/ /g% is a projection operator onto the plane
perpendicular to qp.

Upon inserting the truncated expansion integrated over ¢
into the Boltzmann collision integral Eq. (A1) and noting that
3/0qt, = 5(3/0p, — 0/3pl,), one will arrive at the following
Fokker-Planck equation:

0=0

0fa 1 . .
aJ: = _VPa : |:§(Ra +faRa)fai| + V;H(Dafa)y (AS)
where
Rfl = h3 d Pb fb ab ngv (A6)
R, = h3 d’pb f fo Fub Ly, (A7)
ij 8
Daj = 4]’!3 d Pb fbbeah(qab8 - qabqah) (A8)
and
1
Fap = (nvab/Z)/ 02 (doup/dS2)d cos . (A9)
0

By assuming that the evolution of particle momentum
p is a Gaussian random process and that the evolution of
the momentum distribution f(p, ¢) follows the Fokker-Planck
Eq. (AS), one can write down the corresponding single-
particle Langevin equation of the /t6 form [39,40]

dp= 1R+ fR)dt + odB,, (A10)
where o is a 3 x 3 positive definite matrix such that
D = % Xk:aiko—jk. (A11)
B, denotes a Guassian random process with properties
(dB,) = 0, (A12)
(dBidB]) = dt §;;. (A13)

Here, and in what follows, some subscripts may be dropped
whenever no confusion arises.

When the cross section do,/d<2 is taken to be independent
of g, one can verify that V, -D = %R. Hence the Fokker-
Planck Eq. (AS5) has then an equivalent simplified form

0 f 1.

rriie Vp - EfRf + Vp - DV /).
This form of the Fokker-Planck Eq. (A14) has the correspond-
ing Langevin equation of the Stranovich form [39,40]

dp=3fRdt +oodB,.

(Al14)

(A15)

Note that the two forms of Langevin equations are equiva-
lent. For the purposes of numerical integrations, in the It6
form, successive increments are evaluated at the beginnings
of each time step, while they are evaluated at the midpoints of
each time step in the Stranovich form. Readers may refer to
Refs. [39,40] for a more detailed discussion of the two forms
of Langevin equations.

APPENDIX B: GENERALIZED EINSTEIN RELATION
IN THERMAL EQUILIBRIUM

Consider a system of particles of arbitrary statistics char-
acterized by a momentum distribution function f(p, #), whose
evolution follows the aforementioned Fokker-Planck equation

0 1
8]; ==V, |:§(1+)\f)Rfi|+Vp~(Dfo), (B1)
where A = —1, 0, +1 correspond to fermions, classical par-

ticles and bosons, respectively. The thermal equilibrium mo-
mentum distribution function f.q(p;7) at constant tempera-
ture T is stationary, and hence should be solutions to Eq. (B1)
in the absence of external fields.

The two terms on the right-hand side of Eq. (B1) can
be identified with divergences of the dissipative momentum
current Jgiss = Ficf = %(1 + Af)RSf and the diffusive mo-
mentum current Jgir = —DV f. In thermal equilibrium, at any
arbitrary location p in momentum space, the net momentum

current must vanish: Jfﬁf: (p) + Jéfgf)(p) =0,ie.,

(eq) (eq) __
Jdiss + Jdiff =

1
5(1 + )‘feq)Reqfeq - Deqvfeq

1
5(1 + )‘feq)Reqfeq

P
+ Deqfeq(l + )‘feq)m

=0, (B2)

which yields the generalized Einstein relation in thermal
equilibrium

D 1

WP _ R (B3)

kaT 2
Note that the drift coefficient Req and the diffusion tensor
D, are evaluated with the same equilibrium distribution fuq
at constant temperature 7', and that this generalized Einstein
relation holds true for all types of statistics. The relation can
also be broken down into a component-wise form

kaT

D
X, Dp! _ mhaT (B4)
—RI, 2

fori =1, 2, and 3.

Direct numerical integrations of the coefficients by defini-
tions in Eq. (A6) to (A8) have also been performed to confirm
the generalized Einstein relation in the thermal equilibrium
limit.
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